Protectionism, Evasion, and Household Welfare: Evidence from Nigeria's Import Bans

Erhan Artuc¹ Guillermo Falcone² Guido Porto² Bob Rijkers^{1,3}

 1 World Bank 2 Universidad Nacional de La Plata 3 Utrecht University

Banca d'Italia, European Central Bank and World Bank Conference Trade, value chains and financial linkages in the global economy

Motivation

► Developing countries are more prone to protectionism than developed countries

Motivation

- Developing countries are more prone to protectionism than developed countries
- ► They also face greater challenges enforcing trade policy (Atkin and Khandelwal, 2020; Irwin 2019; Olken and Pande 2012)

Motivation

- Developing countries are more prone to protectionism than developed countries
- ► They also face greater challenges enforcing trade policy (Atkin and Khandelwal, 2020; Irwin 2019; Olken and Pande 2012)
- How does enforcement shape the welfare impact of trade policy?

Examines welfare impacts of Nigerian import bans and how these are shaped by evasion

1. Were bans effectively enforced?

- 1. Were bans effectively enforced?
 - Examine impact on informal (unreported) trade.

- 1. Were bans effectively enforced?
 - Examine impact on informal (unreported) trade.
- 2. Did their price impact vary with enforcement?

- 1. Were bans effectively enforced?
 - Examine impact on informal (unreported) trade.
- 2. Did their price impact vary with enforcement?
 - Examine whether price responses vary with product-level "ease of evasion"

- 1. Were bans effectively enforced?
 - Examine impact on informal (unreported) trade.
- 2. Did their price impact vary with enforcement?
 - Examine whether price responses vary with product-level "ease of evasion"
- 3. Who gains and who loses from import bans and evasion?

- 1. Were bans effectively enforced?
 - Examine impact on informal (unreported) trade.
- 2. Did their price impact vary with enforcement?
 - Examine whether price responses vary with product-level "ease of evasion"
- 3. Who gains and who loses from import bans and evasion?
 - Simple model calibrated using the 2018/2019 Nigerian Living Standards Survey

- ▶ Highly protectionist: bans are prevalent
 - ▶ Sectoral composition is idiosyncratic → hard to predict
 - lacktriangle Bans do not generate revenue ightarrow simplifies welfare analysis

- ▶ Highly protectionist: bans are prevalent
 - ▶ Sectoral composition is idiosyncratic → hard to predict
 - lacktriangle Bans do not generate revenue ightarrow simplifies welfare analysis
- Weak trade policy enforcement

- ▶ Highly protectionist: bans are prevalent
 - ▶ Sectoral composition is idiosyncratic → hard to predict
 - ightharpoonup Bans do not generate revenue ightharpoonup simplifies welfare analysis
- Weak trade policy enforcement
- High quality price and household survey data

Preview of Main Findings

- Import bans are not effectively enforced:
 - ► Bans trigger **increases in evasion**.

Preview of Main Findings

- Import bans are not effectively enforced:
 - ► Bans trigger increases in evasion.
- ► Ban imposition increases prices by 9.9% on average, but inflation is attenuated by evasion
 - Higher increases for goods with lowest evadability

Preview of Main Findings

- Import bans are not effectively enforced:
 - ► Bans trigger increases in evasion.
- ► Ban imposition increases prices by 9.9% on average, but inflation is attenuated by evasion
 - Higher increases for goods with lowest evadability
- Bans disproportionately hurt the rich
 - Poorer households derive a larger share of their income from banned goods
 - Enhanced enforcement would disproportionately hurt the rich:
 - ⇒ evasion is welfare-enhancing but regressive

Outline Rest of the Talk

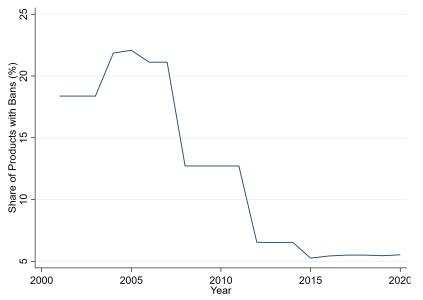
- 1. Introduction
- 2. Data and context
 - Data
 - Context
 - Measuring evasion
- 3. Were bans effectively enforced?
- 4. Did bans impact prices?
 - Average impacts
 - Measuring evadability
 - Did price impacts vary with ease of evasion?
- 5. Distributional impacts
- 6. Conclusion

Data and Context

Data

- ► Import Bans and Taxes (tariffs, levies, VAT) (HS6 level) (Law firm)
- ► Trade Flows (COMTRADE)
- ► CPI Micro Data (Nigerian Bureau of Statistics)
- 2018-2019 Nigeria Living Standards Survey
 - 22,110 households, nationally representative

Evolution of Import Bans in Nigeria, 2001-2020



► G_{pist}: Evasion gap (Fisman and Wei, 2004)

$$G_{pist} = \log(E_{xports_{pist}}) - \log(I_{mports_{pist}})$$

▶ G_{pist}: Evasion gap (Fisman and Wei, 2004)

$$G_{pist} = \log(E_{xports_{pist}}) - \log(I_{mports_{pist}})$$

Exports_{pist}: Exports of product p from source country s to receiving country i in year t (mirror imports) - recorded by the source country

► G_{pist}: Evasion gap (Fisman and Wei, 2004)

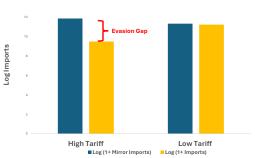
$$G_{pist} = \log(E_{xports_{pist}}) - \log(I_{mports_{pist}})$$

- Exports_{pist}: Exports of product p from source country s to receiving country i in year t (mirror imports) - recorded by the source country
- ► *Imports*_{pist}: Imports of product *p* from source country *s* in year *t* (Official imports) recorded by Nigeria

► G_{pist}: Evasion gap (Fisman and Wei, 2004)

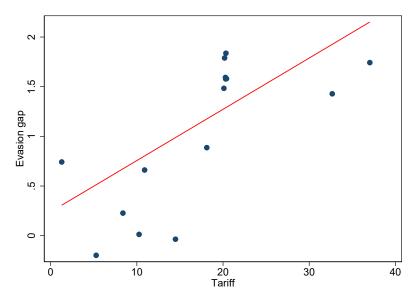
$$G_{pist} = \log(E_{xports_{pist}}) - \log(I_{mports_{pist}})$$

- Exports_{pist}: Exports of product p from source country s to receiving country i in year t (mirror imports) - recorded by the source country
- Imports_{pist}: Imports of product p from source country s in year t (Official imports) recorded by Nigeria



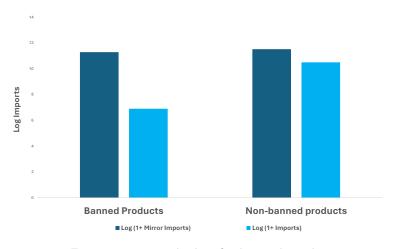
Evasion Gaps Increase with Tariffs

Total revenue loss: 33%



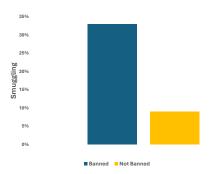
Were Bans Effectively Enforced?

Were Import Bans Effectively Enforced?



Evasion gaps are higher for banned products

Lost Exports and Import Bans



Banned products are more likely to be smuggled

► Lost exports: Mirror imports > 0 and formal imports=0

- Treatment is non-absorbing
 - ► TWFE estimates can be biased due to
 - 1. "forbidden comparisons"
 - 2. negative weights

- Treatment is non-absorbing
 - ► TWFE estimates can be biased due to
 - 1. "forbidden comparisons"
 - 2. negative weights
- Trade data are highly skewed very often 0 or missing

- Treatment is non-absorbing
 - TWFE estimates can be biased due to
 - 1. "forbidden comparisons"
 - 2. negative weights
- Trade data are highly skewed very often 0 or missing
- Ban imposition and removal may have different effects

Solution

► For trade outcomes: use PPML estimator that accomodates staggered treatment (Moreau-Kastler, 2025)

- Treatment is non-absorbing
 - TWFE estimates can be biased due to
 - 1. "forbidden comparisons"
 - 2. negative weights
- Trade data are highly skewed very often 0 or missing
- Ban imposition and removal may have different effects

Solution

- ► For trade outcomes: use PPML estimator that accomodates staggered treatment (Moreau-Kastler, 2025)
- ► Evasion: use local-projections difference-in-difference estimator (Dube et al., 2025)

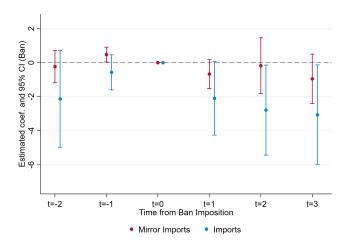
- Treatment is non-absorbing
 - TWFE estimates can be biased due to
 - 1. "forbidden comparisons"
 - 2. negative weights
- Trade data are highly skewed very often 0 or missing
- Ban imposition and removal may have different effects

Solution

- ► For trade outcomes: use PPML estimator that accomodates staggered treatment (Moreau-Kastler, 2025)
- Evasion: use local-projections difference-in-difference estimator (Dube et al., 2025)
- Separately estimate impact of ban imposition and ban removals

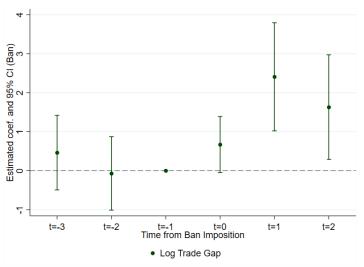
Impact of ban impositions on trade

Imports fall more precipitously than mirror imports



Notes: Figure shows the results of a staggered PPML estimator (Moreau-Kasltler, 2025) of mirror imports and imports on ban imposition controlling for $(1-Ban) \times Taxes$.

Import bans trigger evasion



Notes: Figure shows the results of a local projection difference-in-difference estimation (Dube et al. 2025) of the log trade gap on ban imposition controlling for $(1-Ban) \times Taxes$.

Did Bans Trigger Price Increases?

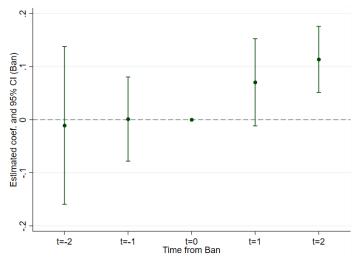
How did bans impact prices?

Econometric Strategy

- Use same strategy as for trade
 - use local-projections difference-in-difference estimator (Dube et al., 2025)
- ► First examine impacts on average prices, then assess heterogeneity by susceptibility to evasion

Impact of ban imposition on prices

Prices increase by 9.9% when bans are imposed



Notes: Figure shows the results of a local projection difference-in-difference estimation (Dube et al. 2025) controlling for $(1 - Ban) \times Taxes$.

Measuring Evadability

Evadability ("Ease of Evasion")

- Use mirror statistics for other countries:
 - ECOWAS countries not bordering Nigeria nor source of informal flows

$$G_{pist} = Ev_p \cdot Tariff_{pist} + \mu_{st} + \mu_{it} + \epsilon_{pt}$$

Evadability ("Ease of Evasion")

- Use mirror statistics for other countries:
 - ECOWAS countries not bordering Nigeria nor source of informal flows

$$G_{pist} = Ev_p \cdot Tariff_{pist} + \mu_{st} + \mu_{it} + \epsilon_{pt}$$

- Where:
 - ► *Tariff_{pist}*: Bilateral tariff
 - μ_{st} : Source-country × time fixed effects
 - μ_{it} : Importing country \times time fixed effects

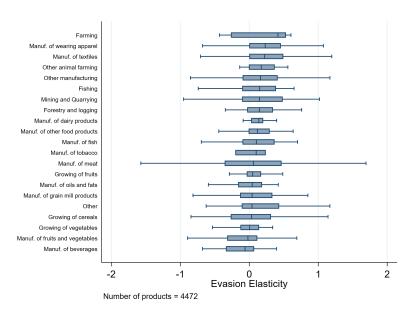
Evadability ("Ease of Evasion")

- Use mirror statistics for other countries:
 - ECOWAS countries not bordering Nigeria nor source of informal flows

$$G_{pist} = Ev_p \cdot Tariff_{pist} + \mu_{st} + \mu_{it} + \epsilon_{pt}$$

- Where:
 - ► *Tariff*_{pist}: Bilateral tariff
 - \blacktriangleright μ_{st} : Source-country \times time fixed effects
 - μ_{it} : Importing country × time fixed effects
- Ev_p measures the "ease of evasion" or "evadability":
 - Intuition: how responsive is underreporting to an increase in tariffs?
 - Arguably exogenous to evasion in Nigeria

Ease of evasion estimates



Alternative Proxies for Ease of Evasion

- Value relative to transport costs:
 - Using COMTRADE, we calculate value to transport ratio

$$r = \frac{\mathsf{FOB}}{\mathsf{CIF} - \mathsf{FOB}}$$

sample restricted to trade with the US

► higher *r* indicates greater ease of evasion

Alternative Proxies for Ease of Evasion

Value relative to transport costs:

Using COMTRADE, we calculate value to transport ratio

$$r = \frac{\mathsf{FOB}}{\mathsf{CIF} - \mathsf{FOB}}$$

sample restricted to trade with the US

higher r indicates greater ease of evasion
 Transport Costs

Similarity (ease of misclassification):

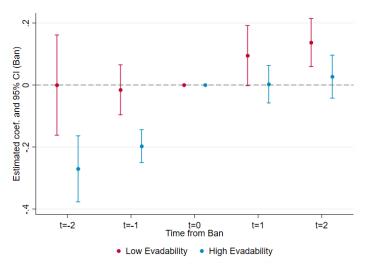
- Using a pre-trained SBERT model, we compute cosine similarity between product descriptions.
- Similarity: average similarity among the top quartile of most similar, non-banned products
- ► Greater similarity ⇒ greater ease of evasion Similarity

Validation of evadability measures

Did Price Impact Vary with Susceptibility to Evasion?

Heterogeneous impact of bans on prices

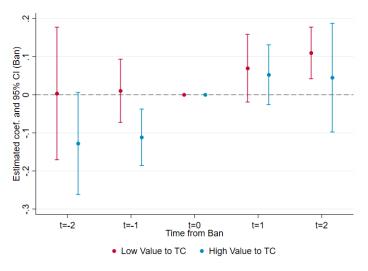
Higher evadability → lower increase in prices



Notes: Figure shows the results of a local projection difference-in-difference estimation (Dube et al. 2025) controlling for $(1 - Ban) \times Taxes$.

Heterogeneous impact of bans on prices

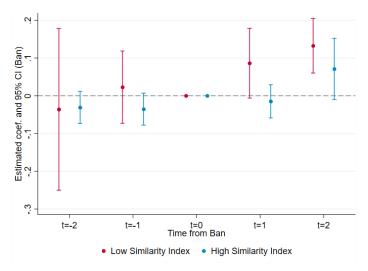
Lower transport costs (=high value to TC) \rightarrow lower increase in prices



Notes: Figure shows the results of a local projection difference-in-difference estimation (Dube et al. 2025) controlling for $(1 - Ban) \times Taxes$.

Heterogeneous impact of bans on prices

Greater similarity to other products \rightarrow lower increase in prices



Notes: Figure shows the results of a local projection difference-in-difference estimation (Dube et al. 2025) controlling for $(1-Ban) \times Taxes$.

Distributional Impacts

Distributional impacts

- ► Stylized model of households as consumers and producers (Deaton, 1989; Artuc Porto and Rijkers, 2017)
 - Households make consumption and income decisions
 - No savings (income = expenditures)
 - Simple framework for studying welfare effects of bans

Distributional impacts

- Stylized model of households as consumers and producers (Deaton, 1989; Artuc Porto and Rijkers, 2017)
 - Households make consumption and income decisions
 - No savings (income = expenditures)
 - Simple framework for studying welfare effects of bans
- Calibration
 - ▶ Income and budget shares: NLSS 2018/2019
 - Price changes: estimated

Distributional impacts

- ➤ Stylized model of households as consumers and producers (Deaton, 1989; Artuc Porto and Rijkers, 2017)
 - ► Households make consumption and income decisions
 - No savings (income = expenditures)
 - Simple framework for studying welfare effects of bans
- Calibration
 - ▶ Income and budget shares: NLSS 2018/2019
 - Price changes: estimated
- Simulations of enforcement changes:
 - Enforcement conceptualized as changes in evadability

Welfare impacts of Bans

First-order welfare effect of a change in the price of i

$$\frac{dV_i^h}{y^h} = \begin{pmatrix} \phi_i^h - g_i^h \\ Income \text{ share of } i \end{pmatrix} \underbrace{\frac{d \ln p_i}{p_i}}_{\text{Price change of } i}$$
Velfare effect

Welfare impacts of Bans

First-order welfare effect of a change in the price of i

$$\frac{dV_i^h}{y^h} = \begin{pmatrix} \phi_i^h & - & s_i^h \\ Income \text{ share of } i & Budget \text{ share of } i \end{pmatrix} \underbrace{d \ln p_i}_{Price \text{ change of } i}$$
Welfare effect

- Limitations
 - Only captures the direct short-run welfare impacts
 - ▶ No impacts on wages and family enterprise income
 - No adjustment of consumption and production choices

Aggregate welfare changes across traded goods i using:

$$\widehat{V}^h = \sum_i \left(\phi_i^h - s_i^h \right) d \ln p_i,$$

 \triangleright \hat{V}^h : proportional change in household real income.

Aggregate welfare changes across traded goods i using:

$$\widehat{V}^h = \sum_i \left(\phi_i^h - s_i^h \right) d \ln p_i,$$

- \triangleright \widehat{V}^h : proportional change in household real income.
- Welfare impacts of import bans and evasion evaluated as:

Aggregate welfare changes across traded goods i using:

$$\widehat{V}^h = \sum_i \left(\phi_i^h - s_i^h \right) d \ln p_i,$$

- \triangleright \widehat{V}^h : proportional change in household real income.
- Welfare impacts of import bans and evasion evaluated as:
 - 1. Baseline: estimated price changes

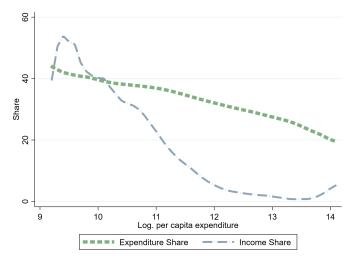
Aggregate welfare changes across traded goods i using:

$$\widehat{V}^h = \sum_i \left(\phi_i^h - s_i^h \right) d \ln p_i,$$

- \triangleright \hat{V}^h : proportional change in household real income.
- ▶ Welfare impacts of import bans and evasion evaluated as:
 - 1. Baseline: estimated price changes
 - 2. Counterfactual: reduced ease of evasion (Ev)
 - Assume each product falls in the "low evadability" category

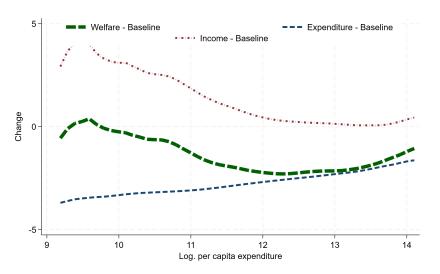
Income and expenditure shares

Poor household spend more on banned products, but also generate more income from them



Welfare effects of import bans

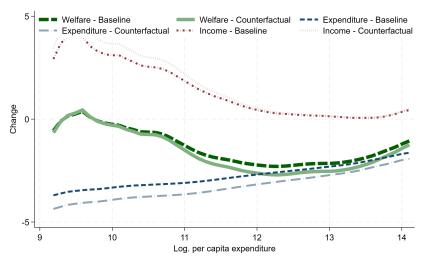
Evasion is welfare enhancing but regressive



Import bans reduce welfare, but they are progressive

Welfare effects of import bans

Evasion is welfare enhancing but regressive



Import bans reduce welfare, but they are progressive

⇒ evasion is welfare enhancing but regressive

- Import bans were not effectively enforced
 - they trigger evasion

- ► Import bans were not effectively enforced
 - they trigger evasion
- Bans fuel inflation, the impact of which is softened by evasion
 - ► Average impact of ban imposition 9.9%
 - Price response attenuated for goods which are easy to evade

- Import bans were not effectively enforced
 - they trigger evasion
- Bans fuel inflation, the impact of which is softened by evasion
 - ► Average impact of ban imposition 9.9%
 - Price response attenuated for goods which are easy to evade
- Bans repress real income, especially of rich households
 - ⇒ evasion is welfare enhancing, and pro-rich

Examples of Banned Products

Meat & Poultry

Live/Dead Birds, Frozen Poultry, Pork, Beef, Bird Eggs (excl. hatching)

Food & Beverages

Refined Oils/Fats, Sugar, Cocoa, Spaghetti/Noodles, Juice, Waters, Beer, Stout

Household Items

Bagged Cement, Soaps/Detergents, Mosquito Coils, Paper, Cartons, Toilet Paper, Exercise Books, Footwear, Bags, Carpets/Textiles

Pharma & Medications

Tablets/Syrups (Paracetamol, Aspirin, etc.), Multivitamins, Haematinics, Ointments, IV Fluids, Waste Pharmaceuticals

Used Equipment & Vehicles

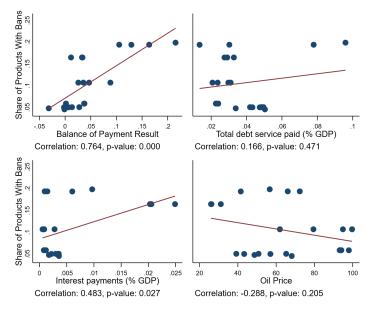
 $\begin{array}{l} {\sf Compressors,\ AC,} \\ {\sf Fridges/Freezers,\ Motor} \\ {\sf Vehicles} > 12\ {\sf yrs,} \\ {\sf Rethreaded/Used\ Tyres} \end{array}$

Other Items

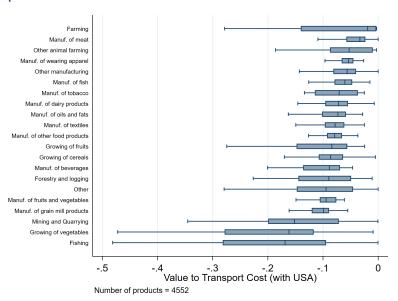
Telephone Recharge Cards, Ballpoint Pens Parts, Hollow Glass Bottles $> 150 \, \mathrm{ml}$

▶ Go Back

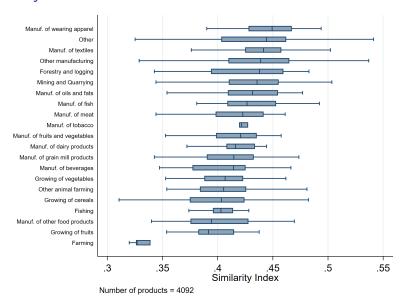
Prevalence of Bans and Macroeconomic Conditions



Transport Costs



Similarity scores

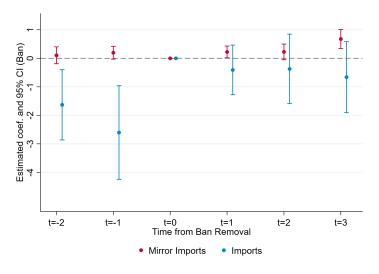


Validation of Evasion Measures

Explaining evasion gaps in other countries

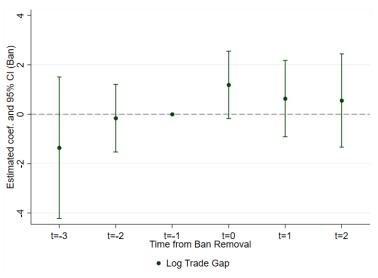
	$Log(Trade\;Gap+1)$					
	(1)	(2)	(3)	(4)	(5)	(6)
Log(Tariffs +1)		0.065***		0.067***		0.067***
		(0.011)		(0.011)		(0.011)
Evadability	0.016**	0.015**				
	(0.008)	(0.008)				
Value/Transport			0.143	0.399*		
			(0.208)	(0.211)		
Similarity					0.592**	0.813***
					(0.248)	(0.258)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Source FE	Yes	Yes	Yes	Yes	Yes	Yes
Importer FE	Yes	Yes	Yes	Yes	Yes	Yes
Obs	1,274,080	963,507	1,256,133	945,746	1,134,676	854,904
R ²	0.066	0.069	0.066	0.069	0.066	0.068

Impact of Ban Removal on Trade



Notes: Figure shows the results of a staggered PPML difference-in-difference estimation on mirror imports and imports (Moreau-Kastler et al. 2025) controlling for $(1-Ban) \times Taxes$.

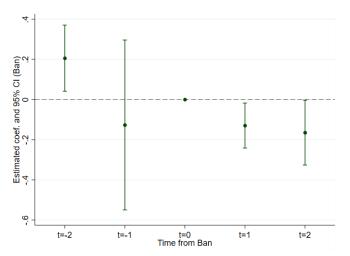
Impact of Ban Removal on Evasion



Notes: Figure shows the results of a local projection difference-in-difference estimation (Dube et al. 2025) controlling for $(1 - Ban) \times Taxes$.

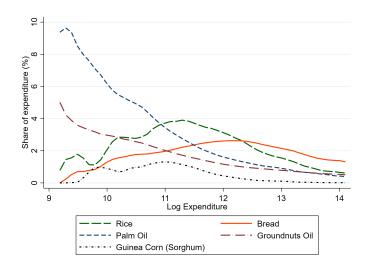
Impact of ban removal on prices

Prices drop when bans are removed - but there are pre-trends



Notes: Figure shows the results of a local projection difference-in-difference estimation (Dube et al. 2025) controlling for $(1-Ban) \times Taxes$.

Expenditure shares specific banned products



Income shares specific banned products



