Rules of Origin and the Use of NAFTA

José Ramón Morán¹, Alfonso Cebreros¹

¹Banco de México

December 16st, 2025

The data used in this paper are confidential and were made available through the Econlab at Banco de México. Inquiries regarding the terms and conditions for accessing this data should be directed to econlab@banxico.org.mx. The views and conclusions in this paper are solely those of the authors and do not necessarily reflect the opinions of Banco de México or its Board of Governors.

Setting and Research Questions

- ▶ Firms can choose whether to export using the FTA or WTO membership
- ▶ Rules of Origin are the criteria needed to determine if an export can use an FTA
 - ▶ In NAFTA, certain inputs have to be sourced from North America
- ▶ Tradeoff between lower sourcing efficiency and lower barriers to trade
- ► How do Rules of Origin affect the use of a Free Trade Agreement?
- What are their implications for bilateral trade flows?

Motivation

▶ 50.8% of global trade flows occur between members of Free Trade Agreements

▶ 360 active FTAs around the world; at least 62% contain Rules of Origin

Scarce evidence on the use of an FTA and the firm-level effects of RoO

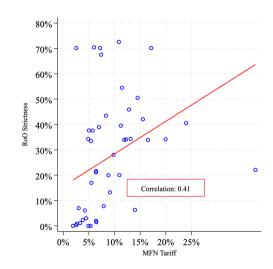
▶ Need for better-designed trade policies given recent waves of protectionism

Related Literature and Contribution

What this paper does

- 1. Data: Build dataset on firms' use of NAFTA and input sourcing, RoO and tariffs
- 2. Empirical evidence: Document three empirical facts
 - Positive correlation between RoO and tariffs
 - ▶ NAFTA usage depends on firm size: inverse u-shape
 - ► Effect of NAFTA on non-NAFTA sourcing is increasing in firm size
- 3. Model: Build a model of input sourcing with NAFTA and RoO
 - ▶ Include fixed costs of using NAFTA and of sourcing from foreign countries
 - Quantify our model by estimating these fixed costs and sourcing attractiveness
- 4. **Counterfactuals**: Explore the effects of:
 - \blacktriangleright A 20 p.p. increase in RoO \rightarrow 3.89% lower US-CA exports of intermediates
 - \blacktriangleright A 20 p.p. increase in MFN tariffs \rightarrow 3.18% higher US-CA exports of intermediates

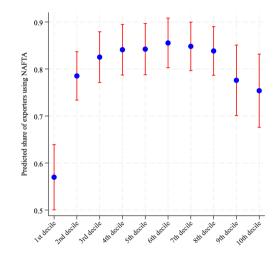
Empirical Facts


Data sources

- 1. Customs data for Mexico accessed through the country's Central Bank
 - Monthly data for exports of final goods and imports of intermediate goods; for every transaction we can observe if it used NAFTA or WTO
- 2. **IO Tables** from the BEA for 2017
- 3. Rules of Origin data contained in NAFTA's Annex 401
 - ▶ We combine these two sources to compute a product-level measure of RoO Strictness
- 4. **US Tariffs** data from the Harmonized Tariff Schedule, revision 2022
 - We only include products with positive ad-valorem MFN Tariffs

EF1: Positive correlation between RoO and MFN Tariffs

- ► Tradeoff between using NAFTA and WTO membership
- Sectors in which the benefit of using NAFTA is higher...
- ... are also sectors in which the cost of using NAFTA is larger


Further details on RoO

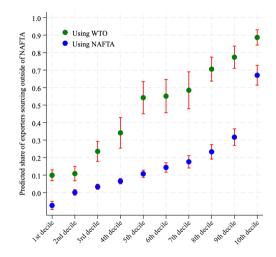
EF 2: The smallest and largest firms use NAFTA less intensively

Probability of using NAFTA to export:

$$\mathbb{N}_{\mathit{ikjt}} = \beta_0 + \sum_{k=2}^{10} \beta_k \mathbb{I}_{\mathit{ikt}} + \alpha_1 \mathsf{ROO}_j + \alpha_2 \mathsf{MFN}_j + \iota_t + \epsilon_{\mathit{ikjt}}$$

- $ightharpoonup \mathbb{N}_{ikjt} = 1$ if NAFTA; $\mathbb{I}_{ikt} = 1$ if size k
- ► Controlling for:
 - ▶ ROO_j: share of inputs restricted
 - MFN_i: ad-valorem tariff

Robustness checks


i: firm; k: decile; j: product; t: month; ι : fixed-effects

EF 3: NAFTA has a larger effect on non-NAFTA sourcing for larger firms

Probability of non-NAFTA sourcing:

$$\mathbb{S}_{ikst} = \beta_0 + \sum_{k=2}^{10} \beta_k \mathbb{I}_{ikt} + \iota_{st} + \epsilon_{ijt}$$

- $\mathbb{S}_{ikjt} = 1$ if non-NAFTA sourcing; $\mathbb{I}_{ikt} = 1$ if size k; ι_{st} industry-year FE
- Separately for either NAFTA or WTO
- Interested in the gap across firm sizes

Robustness checks Evidence of Fixed Costs

i: firm; k: decile; s: sector; t: month; ι : fixed-effects

Model

Setup

- ▶ We extend the model of global sourcing in Antras et al. (2017) to include Rules of Origin and firms choosing to export either using NAFTA or WTO
- ▶ We include a set of sectors and industries within these, as in Chor (2010)
- ▶ Key ingredients of our model:
 - ► CES demand and monopolistic competition final-good producers as in Melitz (2003)
 - Exports of final-goods to US-CA, imports of intermediates
 - lacktriangle Firms source a continuum of intermediate inputs $u \in [0,1]$
 - ► Firms choose from which countries they can source their inputs
 - ► Competitive global suppliers of inputs, following Eaton and Kortum (2002)

Utility maximization

▶ Individuals in US-CA maximize utility by consuming a numeraire domestic good *D* and imported Mexican varieties across sectors and industries:

$$U = D^{1-\eta} \prod_{s=1}^{S} \left[\sum_{i=1}^{l_s} \left(\int_{\omega \in \Omega_{si}} q_{si}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right)^{\frac{\sigma(\epsilon-1)}{\epsilon(\sigma-1)}} \right]^{\frac{\alpha_s \eta \epsilon}{(\epsilon-1)}}$$

subject to the budget constraint:

$$D + \sum_{s=1}^{S} \sum_{i=1}^{l_s} \Big(\int_{\omega \in \Omega_{si}} q_{si}(\omega) p_{si}(\omega) d\omega \Big) = E$$

▶ E: total expenditure; η : share of expenditure spent on Mexican imports; σ : elasticity of substitution across varieties; ϵ : elasticity across industries

NAFTA and RoO

- ▶ To introduce RoO and the use of NAFTA into the model, we define the following:
 - 1. $\kappa \in \{0,1\}$ is equal to 1 when exporting using NAFTA
 - 2. $\lambda \in [0,1]$ is the share of restricted inputs if exporting using NAFTA
 - 3. $\tau \in [0, \infty)$ is the ad-valorem tariff if exporting using WTO
 - 4. $\zeta \in \mathbb{R}^{++}$ is the fixed cost of exporting using NAFTA
 - 5. $f^j \in \mathbb{R}^{++}$ is the fixed cost of sourcing from country j

Price of intermediate inputs

- $J(\phi, \kappa, \lambda, \tau)$: set of countries from which a firm can source inputs
- N: set of NAFTA countries
- ▶ The price firm ϕ pays for input $\nu \in [0,1]$ given κ and J is:

$$z_{si}(\nu, \kappa, \lambda, J) = \begin{cases} \min_{j \in N \cap J} \{d^j a^j_{si}(\nu) w^j_{si}\} & \text{if } \nu \in [0, \kappa \lambda) \\ \min_{j \in J} \{d^j a^j_{si}(\nu) w^j_{si}\} & \text{if } \nu \in [\kappa \lambda, 1] \end{cases}$$

▶ If NAFTA is used, RoO could increase the price of inputs

s: sector; i: industry; j: country; $\kappa = 1$: NAFTA

Marginal cost of exporting and producing

▶ The marginal cost of exporting and producing for a firm with productivity ϕ is:

$$c_{si}(\phi,\kappa,\lambda,\tau,J) = \frac{1+(1-\kappa)\tau}{\phi} \left(\int\limits_0^{\kappa\lambda} z_{si}(\nu)^{1-\rho} d^*\nu + \int\limits_{\kappa\lambda}^1 z_{si}(\nu)^{1-\rho} d\nu \right)^{1/(1-\rho)}$$

Assuming a Fréchet distribution for unit-labor costs:

$$c_{si}(\phi) = \frac{1}{\phi} \gamma^{-1/\theta} [1 + (\mathbf{1} - \kappa)\tau] [\kappa \lambda \Psi_{si}(\phi)^{(\rho-1)/\theta} + (\mathbf{1} - \kappa \lambda) \Phi_{si}(\phi)^{(\rho-1)/\theta}]^{\frac{1}{1-\rho}}$$

where:

$$\Psi_{si}(\phi) = \sum_{h \in \mathcal{N} \cap J} \mathcal{T}^h_{si}(d^h w^h_{si})^{-\theta} \qquad \qquad \Phi_{si}(\phi) = \sum_{h \in J} \mathcal{T}^h_{si}(d^h w^h_{si})^{-\theta}$$

Input Shares

s: sector; i: industry; h: country; $\kappa = 1$: NAFTA

Firm behavior

▶ Firm ϕ exporting using κ will choose sourcing strategy J in order to maximize:

$$\Pi_{si}^{\kappa}(\phi, \lambda, \tau) = \max_{I^{j} \in \{0,1\}_{j=1}^{J}} \pi_{si}(\phi, \kappa, \lambda, \tau, I^{1},, I^{J}) - w \sum_{j=1}^{J} I^{j} f_{si}^{j}(\phi)$$

▶ Firm ϕ will choose to export using the κ that maximizes its profits:

$$\kappa^* = \underset{\kappa \in \{0,1\}}{\arg\max} \ \left\{ \Pi^{\kappa}_{si}(\phi, \lambda, \tau) - \kappa w \zeta_{si} \right\}$$

 \triangleright ζ_{si} is the fixed cost of using NAFTA to export

Profits, Equilibrium and Comparative Statics

Quantifying the Model

Taking our model to the data

- ▶ We include 44 industries (HS 2-digits) within 6 sectors:
 - Agriculture and Foods, Minerals and Chemicals, Skins and Textiles, Mining, Manufacturing, and Others
- Firms can only source inputs from 5 different countries/regions:
 - Mexico, US-CA, China, Europe (Top 10), and ROW
- ▶ Within a sector, industries are heterogeneous in terms of:
 - ▶ RoO Strictness: We average across products within an industry
 - MFN Tariffs: Same as above
 - Sourcing potentials: We estimate these for each industry-country
 - ▶ The number of firms in a sector: We take them from the data
- Within an industry, firms are heterogeneous in terms of their productivity

Quantifying our model

- ▶ We take the following steps in terms of quantifying our model:
 - 1. Take several parameters from the literature e.g. elasticities and distributional parameters
 - 2. Employ fixed effects regressions to estimate sourcing potentials at the country-industry level
 - 3. Use SMM to estimate at the sectoral level market demand in the US, and fixed costs of using NAFTA and of sourcing from foreign countries

Estimation Details

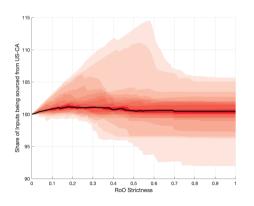
Counterfactuals

Counterfactuals

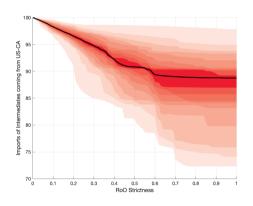
- 1. A 20 p.p. increase in RoO Strictness
- 2. A 20 p.p. increase in MFN Tariffs

- ► Counterfactuals: Does US-CA and/or Mexico benefit from the policy?
 - ▶ US-CA: Change in exports of inputs to Mexico and the price of Mexican imports
 - Mexico: Change in firm profits

Counterfactual Results


► Change, in percentage terms, in key variables:

Counterfactual	+20 p.p. RoO	+20 p.p. Tariff
NAFTA Usage	-5.68	30.11
Share Non-NAFTA Sourcing	-15.99	-8.23
Average Firm Exports	-4.72	-1.50
Average Firm Profits	-4.10	-2.13
US-CA Price Index	1.61	-0.50
Share NAFTA Value	-13.16	23.47
Average Regional Content	0.63	2.12
US-CA Tariff Revenue	35.91	-98.89


Counterfactual	+20 p.p. RoO	+20 p.p. Tariff
Entry Rate CHN	-13.68	-13.21
Entry Rate EUR	-15.11	-13.67
Entry Rate US-CA	-1.18	1.18
Entry Rate ROW	-19.14	-9.88
Domestic Purchases	-2.06	1.48
Imports from CHN	-15.23	-26.23
Imports from EUR	-17.08	-23.65
Imports from US-CA	-3.89	3.18
Imports from ROW	-24.66	-9.25

Laffer Curves

▶ Is there a RoO that maximizes the share of inputs or the amount of imports?

(a) Share of intermediate inputs from US-CA

(b) Imports of intermediates from US-CA $\,$

Conclusions

Conclusions

- ► Main message: The use of an FTA depends on firm size
 - Fixed costs affect the opportunity cost of complying with RoO
- ▶ RoO seek to protect local industries → stricter in inefficient industries
 - ► Lower sourcing efficiency ⇒ decrease in trade
- RoO seek to increase regional content in bilateral exports
 - A larger share of the pie ⇒ eating more pie

Thank you!

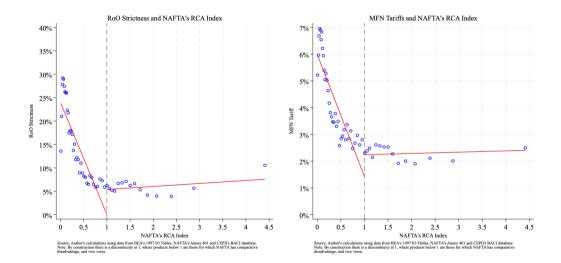
jmoran@banxico.org.mx

Appendix

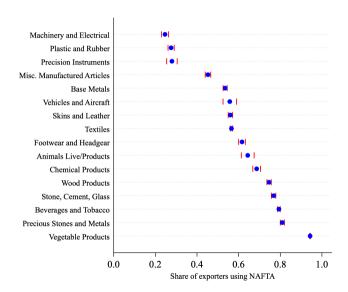
Related literature and contribution

- 1. Impact of Preferential Trade Agreements: Trefler (2004), Romalis (2007), Arkolakis et al. (2008), Bustos (2011), Ossa (2011), Antrás and Staiger (2012), Kehoe and Ruhl (2013), Caliendo and Parro (2015), De Loecker (2016)
 - → Contribution: Provide evidence on which firms use NAFTA to export
- 2. Rules of Origin and content protection: Grossman (1981), Dixit and Grossman (1982), Ju and Krishna (2002), Augier et al. (2005), Deardorff (2018), Conconi et al. (2018), Krishna et al. (2022), Ornelas and Turner (2022), Head et al. (2022)
 - → Contribution: Empirically study the firm-level effects of RoO
- 3. Global sourcing decisions: Antrás and Helpman (2004, 2008), Goldberg et al. (2010), Rodriguez-Clare (2010), Garetto (2013), Kee and Tang (2016), Tintelnot (2017), Antrás et al. (2017), Bernard et al. (2018), Head and Mayer (2019)
 - → Contribution: Build and quantify a model of input sourcing with an FTA

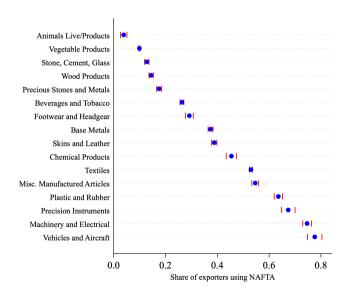
Data sample


- ▶ Observations are between September 2014, when data on NAFTA usage became available, and June 2020, before the introduction of USMCA
- ightharpoonup 25,572 firms exporting 1,050 products to the US ightharpoonup 1,019,408 unique firm-time-product combinations
- We restrict our sample in the following ways:
 - ightharpoonup Keep firms with exports larger than imports ightarrow 70.73% of firms
 - lacktriangle Keep products with positive ad-valorem MFN tariffs ightarrow 63.27% of products
 - lacktriangle Keep products for which exporters have to comply with RoO ightarrow 86.76% of products
- Our sample includes 410 products in 48 different HS 2-digit sectors, and 9,918 unique firms exporting to the US

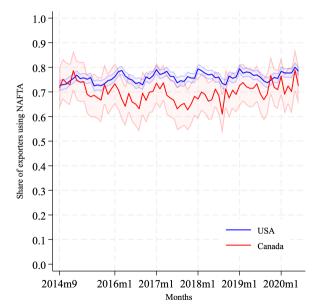
Computing RoO Strictness at the product level


- We compute RoO Strictness at the HS 6-digit level following Conconi et al. (2018); using direct requirement coefficients from the IO Tables and NAFTA's Annex 401 Rules of Origin data
- ► IO Tables give us information on the input shares each product uses, while NAFTA's Annex 401 records for each product which of its inputs have to be sourced from NAFTA countries
- ► For example, we know a product uses 40% of input A, 35% of input B, and 25% of input C. We also know that if a firm wants to export this product using NAFTA, inputs A and B have to be sourced from within NAFTA; therefore, the RoO Strictness of this product is 75%

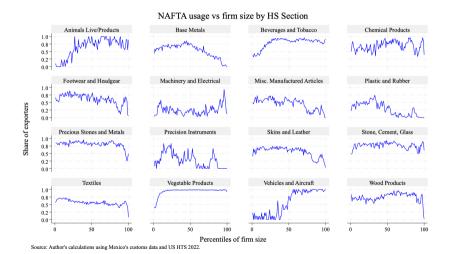
Correlations between RoO, MFN, and RCA


Sectoral heterogeneity in the use of NAFTA

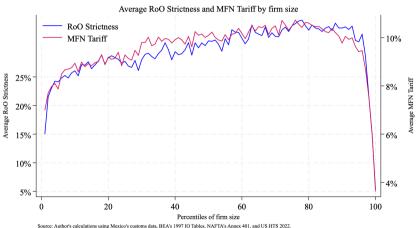
- Heterogeneity in the use of NAFTA could be driven by:
 - Differences in MFN Tariffs and RoO
 - Differences in the fixed cost of using NAFTA


Sectoral heterogeneity in sourcing outside of NAFTA

- Heterogeneity in sourcing outside of NAFTA could be driven by:
 - Differences in countries' sourcing attractiveness
 - Differences in the fixed costs of sourcing

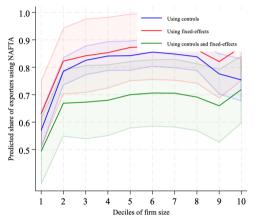


NAFTA usage has been constant over time


- Around 75% of firms export using NAFTA
- Firms use NAFTA to export equally as often whether they are exporting to the USA or Canada
- Share of firms using NAFTA is constant over time, exhibiting some degree of seasonality, likely driven by the sectoral composition of exports

NAFTA usage and firm size by industry

Average RoO and MFN by firm size


Source: Author's calculations using Mexico's customs data, BEA's 1997 IO Tables, NAFTA's Annex 401, and US HTS 2022.

NAFTA usage regression results and industry fixed-effects

Table: Probability of using NAFTA

	(1)	(2)	
d2	0.122*** (7.26)	0.102*** (3.97)	
d3	0.168*** (8.41)	0.133*** (4.22)	
d4	0.200*** (9.68)	0.137*** (4.01)	
d5	0.212*** (10.01)	0.145*** (4.34)	
d6	0.203*** (9.37)	0.137*** (4.00)	
d7	0.206*** (9.55)	0.132*** (3.86)	
d8	0.188*** (8.25)	0.121*** (3.40)	
d9	0.141*** (5.49)	0.0467 (1.03)	
d10	0.0336 (1.07)	0.0263 (0.53)	
RoO Strictness	-0.00184*** (-4.74)		
MFN Tariff	0.00580** (3.02)		
Constant	0.600*** (27.45)	0.610*** (20.98)	
HS Chapter F.E. Observations	X 103,917	163,111	

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Source: Author's calculations using Mexico's customs data, BEA's 1997 IO Tables, NAFTA's Annex 401, and US HTS 2022.

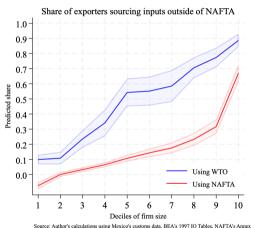
Note: Prediction shows the estimated coefficients controlling either for the effect of RoO and MFN Tariffs, or including HS Chapter fixed-effects. Colored areas show the 95% confidence interval. Standard errors are clustered at the firm-level.

Alternative definitions of firm size

Table: Probability of using NAFTA

	(1)	(2)	(3)	(4)
Size percentile	0.0102*** (11.37)	0.00659*** (7.52)		
Percentile sq	-0.0000982*** (-10.75)	-0.0000584*** (-7.65)		
RoO Strictness	-0.00186*** (-4.78)		-0.00198*** (-5.09)	
MFN Tariff	0.00557** (2.91)		0.00563** (2.94)	
Log of exports			0.153*** (10.18)	0.0881*** (6.56)
Log of exports sq			-0.00663*** (-9.46)	-0.00379*** (-6.01)
Constant	0.565*** (24.30)	0.673*** (30.14)	-0.0925 (-1.17)	0.320*** (4.40)
HS Chapter F.E. Observations	X 103,917	√ 70,785	x 103,917	√ 70,785

t statistics in parentheses


 $^{^*}$ p < 0.05, ** p < 0.01, *** p < 0.001

Non-NAFTA sourcing regression results

Table: Probability of Non-NAFTA sourcing

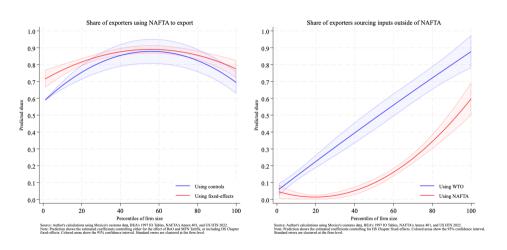
	(1) Firms using WTO	(2) Firms using NAFTA
2nd decile	0.0507*** (4.89)	0.0351*** (6.64)
3rd deciles	0.131*** (5.46)	0.0830*** (11.07)
4th decile	0.224*** (8.43)	0.115*** (11.50)
5th decile	0.318*** (9.02)	0.145*** (13.94)
6th decile	0.467*** (14.03)	0.187*** (15.74)
7th decile	0.517*** (15.12)	0.229*** (15.38)
8th decile	0.599*** (19.42)	0.261*** (15.09)
9th decile	0.701*** (21.55)	0.333*** (16.80)
10th decile	0.832*** (38.05)	0.581*** (21.94)
Constant	0.0215** (3.06)	-0.0765*** (-10.63)
HS Chapter F.E. Observations	13,542	57,209

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Source: Author's calculations using Mexico's customs data, BL-8's 1997/IO Tables, NAFTA's Annex 401, and US HTS 2022.

Note: Prediction shows the estimated coefficients controlling for HS Chapter fixed-effects. Colored areas show the 95% confidence interval. Standard errors are clustered at the firm-level.

Alternative definitions of firm size


Table: Probability of Non-NAFTA sourcing

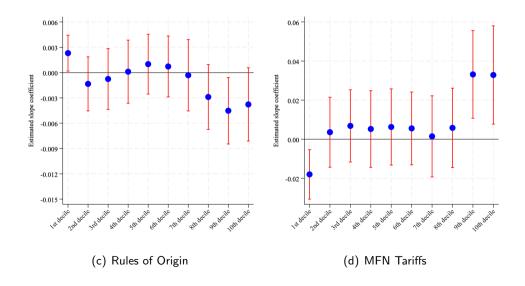
	(1) Firms using WTO	(2) Firms using NAFTA	(3) Firms using WTO	(4) Firms using NAFTA
Size percentile	0.0118*** (9.84)	-0.000312 (-0.27)		
Percentile sq	-0.0000239* (-1.99)	0.0000604*** (4.55)		
Log of exports			0.110*** (6.41)	-0.0948*** (-4.86)
Log of exports sq			-0.000688 (-0.93)	0.00747*** (7.28)
Constant	-0.000222 (-0.01)	-0.0159 (-0.90)	-0.645*** (-7.11)	0.237** (2.65)
HS Chapter F.E. Observations	√ 47,056	√ 112,964	√ 47,056	√ 112,964

t statistics in parentheses

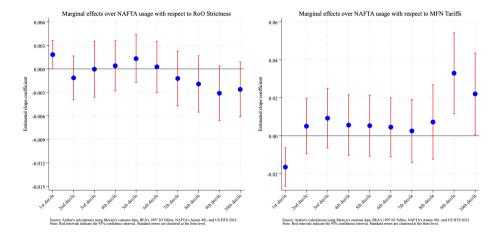
^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Using a quadratic form for percentiles of firm size

Results when defining size deciles within HS Chapters


Evidence of Fixed Costs

- ▶ Effects of RoO and MFN Tariffs should be heterogeneous across firm sizes
- ▶ Regress the probability of using NAFTA against interactions with firm size:


$$\mathbb{N}_{ikjt} = \beta_1 + \sum_{k=2}^{10} \beta_k \mathbb{I}_{ikt} + \alpha_1 \mathsf{ROO}_j + \sum_{k=2}^{10} \alpha_k \mathbb{I}_{ikt} \times \mathsf{ROO}_j + \gamma_1 \mathsf{MFN}_j + \sum_{k=2}^{10} \gamma_k \mathbb{I}_{ikt} \times \mathsf{MFN}_j + \iota_t + \epsilon_{ikjt}$$

- lacktriangle Stronger marginal effects for larger firms \Rightarrow evidence of fixed costs
 - ▶ Absolute value of $\alpha_1 + \alpha_k$ and $\gamma_1 + \gamma_k$ should be increasing in $k \ge 2$

Marginal Effects on the Probability of Using NAFTA

Results when defining size deciles within HS Chapters

Demand in the US

▶ Demand faced by the firm of variety ω :

$$q_{si}(\omega) = rac{lpha_s \eta \mathsf{E} \mathsf{P}_{si}^{\sigma - \epsilon}}{\sum\limits_k P_{sk}^{1 - \epsilon}} \mathsf{p}_{si}(\omega)^{-\sigma}$$

- $P_{si}^{1-\sigma} \equiv \int_0^1 p_{si}(\omega)^{1-\sigma} d\omega$ is the Dixit-Stiglitz ideal price index
- $ightharpoonup \alpha_s$ is the share of expenditure in sector s from total expenditure in imports:

$$\sum_{s} \alpha_{s} = 1$$

Input shares from each sourcing location

▶ Share of inputs firm ϕ purchases from a Non-NAFTA country:

$$x_{si}^{j}(\phi, \kappa, \lambda, J) = (1 - \kappa \lambda) \frac{\overbrace{T_{si}^{j}(d^{j}w_{si}^{j})^{-\theta}}^{\text{Sourcing potential of } j}}{\sum\limits_{h \in J} T_{si}^{h}(d^{h}w_{si}^{h})^{-\theta}}$$

Share of inputs sourced from a NAFTA country:

$$x_{si}^{j}(\phi, \kappa, \lambda, J) = \kappa \lambda \frac{T_{si}^{j}(d^{j}w_{si}^{j})^{-\theta}}{\sum\limits_{h \in \mathcal{N} \cap J} T_{si}^{h}(d^{h}w_{si}^{h})^{-\theta}} + (1 - \kappa \lambda) \frac{T_{si}^{j}(d^{j}w_{si}^{j})^{-\theta}}{\sum\limits_{h \in J} T_{si}^{h}(d^{h}w_{si}^{h})^{-\theta}}$$

Firm operating profits and market demand

▶ Operating profits for a given κ and J:

$$\pi_{si}(\phi,\kappa,\lambda,\tau) = \phi^{\sigma-1} \gamma^{(\sigma-1)/\theta} \mathcal{B}_{si}[1 + (1-\kappa)\tau]^{1-\sigma} [\kappa \lambda \Psi_{si}(\phi)^{(\rho-1)/\theta} + (1-\kappa \lambda) \Phi_{si}(\phi)^{(\rho-1)/\theta}]^{\frac{1-\sigma}{1-\rho}}$$

 \triangleright B_{si} is US market demand:

$$B_{si} = rac{1}{\sigma} igg(rac{\sigma}{\sigma-1}igg)^{1-\sigma} igg[rac{lpha_s \eta \mathsf{E} \mathsf{P}_{si}^{\sigma-\epsilon}}{\sum_k \mathsf{P}_{sk}^{1-\epsilon}}igg]$$

Partial equilibrium

- lacktriangle Assume wages w are exogenous and firms must pay δ to start exporting
- ▶ Prices of varieties $p_{si}(\omega)$ and wages w are such that:
 - 1. Consumers maximize utility by choosing $q_{si}(\omega)$
 - 2. Firms maximize profits by choosing J^* and κ^* given $\{\lambda, \tau, f, \zeta\}$
 - 3. Firms meet demand for their variety
 - 4. Expected profits of exporting to the USA are zero, which yields:

$$N_{si} = \frac{\alpha_s \eta E[1 - G(\tilde{\phi}_{si})]}{\sigma w \left[\delta + \int\limits_{\tilde{\phi}_{si}}^{\infty} \left(\kappa(\phi)\zeta_{si} + \sum\limits_{j \in J(\phi)} f_{si}^{j}(\phi)\right) dG(\phi)\right]} \times \frac{P_{si}^{1-\epsilon}}{\sum\limits_{k} P_{sk}^{1-\epsilon}}$$

► For simplicity, if there were no fixed cost of using NAFTA or fixed costs of sourcing, a firm would choose to export using NAFTA if:

$$(1+ au)\Phi^{-rac{1}{ heta}}>\left[\lambda\Psi^{rac{
ho-1}{ heta}}+(1-\lambda)\Phi^{rac{
ho-1}{ heta}}
ight]^{rac{1}{1-
ho}}$$

The benefit of using NAFTA, avoid paying the MFN tariff, is larger than the cost of using NAFTA, the increase in marginal cost because of RoO

Note that if there are no fixed costs, then Ψ and Φ are constant as firms will always include all countries in their sourcing strategy. For convenience, we can rewrite the above as:

$$rac{1-(1+ au)^{1-
ho}}{\lambda}>1-\left(rac{\Psi}{\Phi}
ight)^{rac{
ho-1}{ heta}}$$

1. NAFTA usage is decreasing in RoO: the derivative of the RHS is 0 while that of the LHS is negative given that ho>1

$$-\frac{[1-(1+\tau)^{1-\rho}]}{\lambda^2}<0$$

NAFTA usage is increasing in the MFN tariff: the derivative of the RHS is 0 while that of the LHS is positive

$$rac{
ho-1}{\lambda}(1+ au)^{-
ho}>0$$

An increase in RoO should increase the opportunity cost of using NAFTA, while an increase in MFN Tariffs increases the benefit from using it

3. NAFTA usage is increasing in the sourcing potential of NAFTA countries: the derivative of the LHS is 0 while that of the RHS is negative given that $\Phi > \Psi$

$$\frac{1-\rho}{\theta} \left(\frac{\Psi}{\Phi}\right)^{\frac{\rho-1}{\theta}-1} \left[\frac{\Phi-\Psi}{\Phi^2}\right] < 0$$

4. NAFTA usage is decreasing in the sourcing potential of non-NAFTA countries: the derivative of the LHS is 0 while that of the RHS is positive

$$\frac{1-\rho}{\theta}\left(\frac{\Psi}{\Phi}\right)^{\frac{\rho-1}{\theta}-1}\left[-\frac{\Psi}{\Phi^2}\right] > 0$$

- 5. NAFTA usage is decreasing in the fixed cost of using NAFTA to export
- 6. NAFTA usage is increasing in the fixed cost of sourcing from a foreign country
 - Φ is weakly decreasing in fixed costs of sourcing; if these increase, the ability to source outside of NAFTA decreases, thus the opportunity cost of using NAFTA decreases.

When we allow for fixed cost of using NAFTA and fixed costs of sourcing from foreign countries, the results above do not necessarily hold. For example:

- ▶ If the sourcing potential of NAFTA countries increases, then revenue increases as marginal cost goes down
- ► This increase might give firms enough revenue to be able to source from a foreign country and then the firm would no longer choose to use NAFTA

- 7. Parameter θ plays a key role in determining the responsiveness of NAFTA usage with respect to changes in RoO
 - $m{ heta}$ is the shape parameter of the Fréchet distribution for a country's unit labor costs of producing an input
 - ▶ Higher values of θ ⇒ less variability in unit labor costs ⇒ less comparative advantage across countries ⇒ firms don't care as much for RoO
 - ▶ Lower values of θ ⇒ more variability in unit labor costs ⇒ stronger comparative advantage across countries ⇒ RoO play a larger role

Parametrization

▶ We take several parameters from the literature:

Parameter	Description	Value	Source
σ	Elasticity across final goods	3.85	Antrás et al. (2017)
ϵ	Elasticity across industries	3.00	Broda and Weinstein (2006)
θ	Fréchet distribution	1.79	Antrás et al. (2017)
κ	Pareto distribution	4.25	Melitz and Redding (2015)

 $lackbox{ We set }
ho = 1.05
ightarrow {
m inputs}$ are complementary in production

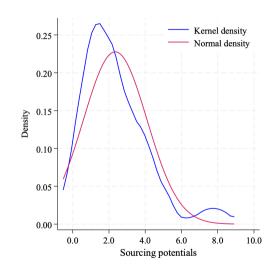
Sourcing potentials

 \blacktriangleright For a firm either using WTO to export or facing no RoO, input share for j is:

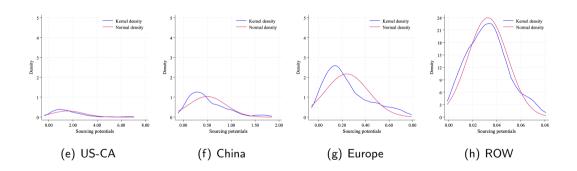
$$x_{si}^{j}(\phi) = \frac{T_{si}^{j}(d^{j}w_{si}^{j})^{-\theta}}{\sum_{h \in J} T_{si}^{h}(d^{h}w_{si}^{h})^{-\theta}}$$

Normalizing Mexico's sourcing potential to one and taking the ratio:

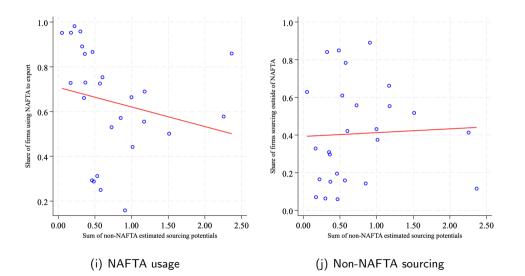
$$\ln x_{si}^j(\phi) - \ln x_{si}^{MEX}(\phi) = \ln T_{si}^j(d_j w_{si}^j)^{-\theta} + \epsilon_{si}^j(\phi)$$
 for $j = \text{NAFTA}$, CHN, EUR, ROW


Regress observed log-difference on industry-country fixed-effects

Sourcing potentials


- ▶ We use IO Tables and our firm-level data for the estimation, assuming that if an input is not imported, it is sourced entirely from Mexico, and vice versa
- ▶ We estimate these sourcing potentials at the HS 2-digit level, using variation at the 6-digit level
 - \blacktriangleright Estimates are at the exporting sector-country level, i.e. how good is a given sector at country j at supplying intermediate inputs
- ▶ We then use IO Tables again to infer the sourcing potential of country *j* specific to an importing sector, i.e. given the inputs a given sector uses, how attractive it is to a Mexican firm in it to source from *j*
 - ► E.g. if China has a sourcing potential of 0.8 in A and 0.2 in B and a sector uses 60% of A and 40% of B, then China's sourcing potential specific to this sector is 0.56

Estimated sourcing potentials


- Average estimated sourcing potential of US-CA is 1.55, of China is 0.49, of Europe is 0.24, and of ROW is 0.03
- ► Lowest potential sourcing capability is for *Preparations of meat, or fish, or crustaceans* (13%)
- ► Highest potential sourcing capability is for *Plastics and articles thereof* (826%)

Estimated sourcing potentials by country

Correlation with NAFTA usage and Non-NAFTA sourcing

Industry-level sourcing potentials

02 03 04 06	Meat Fish and crustaceans	1		0.15	0.03			
04 06						0.02	0.01	0.21
06		1	1	0.38	0.18	0.06	0.06	0.68
06	Dairy Produce, Eggs, Natural Honey	1	1	0.87	0.26	0.14	0.02	1.29
	Live trees and other plants	2 2	1	0.89	0.53	0.63	0.02	2.07
07	Edible vegetables		1	0.25	0.10	0.07	0.04	0.47
08	Edible fruits and nuts	2	1	0.22	0.09	0.05	0.03	0.40
16	Preparations of meat, or fish, or crustaceans	4	1	0.08	0.02	0.02	0.01	0.13
17	Sugars and sugar confectionery	4	1	1.58	0.61	0.38	0.02	2.58
18	Cocoa and cocoa preparations	4	1	2.21	0.87	0.56	0.01	3.65
19	Preparations of cereals, flour, starch or milk	4	1	0.95	0.34	0.20	0.03	1.52
20	Preparations of vegetables, fruit, or nuts	4	1	0.22	0.09	0.05	0.03	0.39
21	Mischellaneous edible preparations	4	ī	0.64	0.22	0.12	0.03	1.00
32	Tanning or dyeing extracts	6	2	3.23	0.51	0.29	0.05	4.08
33	Essential oils and resionoids, perfumery, cosmetics	6	2	1.40	0.38	0.17	0.04	2.00
36	Explosibes, pyrothehnic products	6	2	0.53	0.18	0.08	0.03	0.82
39	Plastics and articles thereof	7	2	6.60	1.08	0.57	0.01	8.26
40	Rubber and articles thereof	ź	2	2.39	0.62	0.26	0.02	3.30
42	Articles of leather	Ŕ	3	1.84	0.61	0.37	0.02	2.84
43	Furskins and artificial fur	8	3	0.96	0.40	0.14	0.03	1.53
44	Wood and articles of wood	ğ	3	1.00	0.22	0.12	0.03	1.38
46	Manufactures of straw, esparto or other plaiting materials	9	3	0.80	0.27	0.12	0.03	1.22
56	Wadding, felt and nonwovens, special varns, ropes	11	3	3.39	1.04	0.12	0.03	4.88
61	Articles of appareal and clothing accessories, knitted	11	3	2.20	0.91	0.43	0.02	3.37
62	Articles of appareal and clothing accessories, knitted Articles of appareal and clothing accessories, not knitted	11	3	2.20	0.91	0.22	0.04	3.38
63		11	3	3.00	1.11	0.22	0.04	4.52
	Other made up textile articles		3					
64	Footwear, gaiters and the like	12		1.77	0.59	0.41	0.01	2.78
65	Headgear and parts thereof	12	3	2.12	0.76	0.23	0.04	3.15
66	Umbrellas, walking sticks, whips	12	3	1.44	0.29	0.14	0.04	1.91
67	Prepared feathers and down articles	12	3	1.44	0.29	0.14	0.04	1.91
69	Ceramic products	13	4	2.33	1.53	0.71	0.02	4.58
70	Glass and glassware	13	4	4.86	1.71	0.65	0.01	7.23
71	Precious stones, precious metals	14	4	0.58	0.28	0.14	0.05	1.04
73	Articles of iron or steel	15	4	0.89	0.21	0.10	0.04	1.24
76	Aluminum and articles thereof	15	4	0.74	0.14	0.07	0.05	1.00
83	Mischellaneous articles of base metal	15	4	0.87	0.22	0.10	0.04	1.24
84	Nuclear reactors, boilers, machinery and mechanical appliances	16	5	0.60	0.19	0.07	0.07	0.92
85	Electrical machinery and equipment and parts thereof	16	5	1.02	0.33	0.13	0.07	1.55
87	Vehicles other than railway or tramway	17	5	0.83	0.30	0.12	0.06	1.31
90	Optical, photographic, precision, medical apparatus	18	5	2.23	0.56	0.27	0.06	3.12
91	Clocks and watches and parts thereof	18	5	0.87	0.81	0.48	0.05	2.22
92	Musical instruments	18	5	1.40	0.29	0.14	0.04	1.86
94	Furniture, bedding, mattresses, cushions, lamps	20	6	1.68	0.49	0.19	0.04	2.41
95	Toys, games and sports requisites	20	6	3.18	0.66	0.38	0.03	4.25
96	Miscellaneous manufactured articles	20	6	1.57	0.33	0.17	0.04	2.11
Average				1.55	0.49	0.24	0.03	2.31
Minimum				0.08	0.02	0.02	0.01	0.13
Maximum				6.60	1.71	0.71	0.07	8.26

Table: Industry-level Sourcing Potentials by Foreign Country.

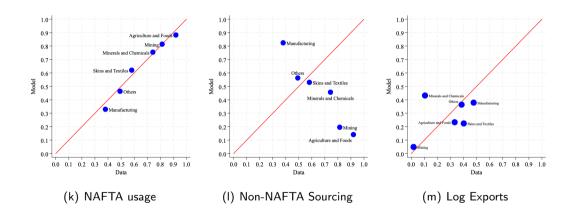
Simulated Method of Moments

- ▶ We estimate the following parameters for **each sector individually**:
 - ▶ Fixed cost of using NAFTA: ζ_s
 - ► Fixed costs of sourcing from each country: $\mu_s^i o f_s^i \stackrel{\text{iid}}{\sim} \text{lognormal}(\mu_s^i, \sqrt{\log(3)})$
 - US market demand: B_s
- Moments used to estimate these parameters are:
 - Share of firms using NAFTA to export
 - Share of firms sourcing inputs from each country
 - Median firm-level exports

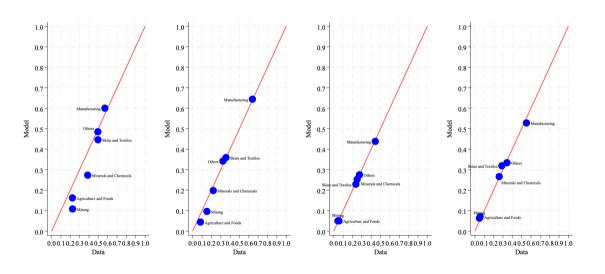
Estimated parameters

ζ_s	f_s^{CHN}	f_s^{EUR}	f_s^{US-CA}	f_s^{ROW}	B_s
0.011	0.143	0.149	0.147	0.035	0.048
0.002	0.072	0.026	0.149	0.003	0.01
0.006	0.053	0.031	0.148	0.003	0.016
0.00	0.021	0.036	0.04	0.003	0.002
0.022	0.023	0.019	0.097	0.006	0.027
0.014	0.064	0.033	0.146	0.005	0.019
0.009	0.063	0.049	0.121	0.009	0.021
	0.011 0.002 0.006 0.00 0.022 0.014	0.011 0.143 0.002 0.072 0.006 0.053 0.00 0.021 0.022 0.023 0.014 0.064	0.011 0.143 0.149 0.002 0.072 0.026 0.006 0.053 0.031 0.00 0.021 0.036 0.022 0.023 0.019 0.014 0.064 0.033	0.011 0.143 0.149 0.147 0.002 0.072 0.026 0.149 0.006 0.053 0.031 0.148 0.00 0.021 0.036 0.04 0.022 0.023 0.019 0.097 0.014 0.064 0.033 0.146	0.011 0.143 0.149 0.147 0.035 0.002 0.072 0.026 0.149 0.003 0.006 0.053 0.031 0.148 0.003 0.00 0.021 0.036 0.04 0.003 0.022 0.023 0.019 0.097 0.006 0.014 0.064 0.033 0.146 0.005

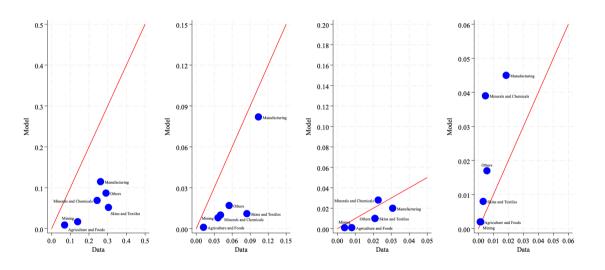
 $[\]zeta$: fixed cost of NAFTA; f: fixed cost of sourcing; B: US market demand

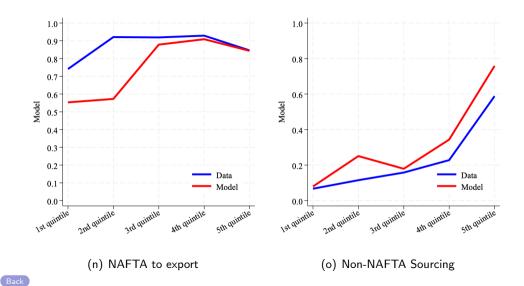

Estimation results

 \blacktriangleright Average fixed costs f as a share of exports X, and market demand:

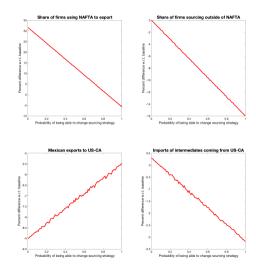

Sector	ζ_s/X	f_s^{CHN}/X	f_s^{EUR}/X	f_s^{US-CA}/X	f_s^{ROW}/X	B_s
Agriculture and Foods	1.10	25.45	26.50	26.14	6.16	0.05
Minerals and Chemicals	0.18	14.82	5.37	30.71	0.60	0.01
Skins and Textiles	0.51	8.21	4.79	23.07	0.41	0.02
Mining	0.25	22.49	37.47	41.78	2.76	0.01
Manufactures	1.60	2.88	2.43	12.09	0.76	0.03
Others	1.17	8.98	4.58	20.37	0.64	0.02
Average	0.80	13.81	13.52	25.69	1.89	0.02

ζ: fixed cost of NAFTA; f: fixed cost of sourcing; B: US market demand

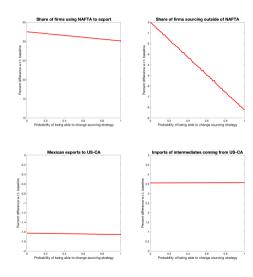

Sectoral NAFTA usage, non-NAFTA sourcing, and Exports


Sectoral Entry Rates

Sectoral Input Shares



Fit of the model


Adjustment Frictions in Sourcing Stategies: ↑ RoO

- ▶ Assume firms can change their supplier mix with probability p ~ Bernoulli(p)
 - Dynamics, Firm size, Specific inputs
- ▶ For $p \approx 0$ firms cannot reconfigure and compliance is met with existing NAFTA suppliers. The increase in MC leads to lower trade
- ▶ For $p \approx 1$ firms reconfigure towards cheaper supplier mixes, softening the increase in MC and the decrease in trade

Adjustment Frictions in Sourcing Stategies: \(\text{Tariffs} \)

- For $p \approx 0$ given their current supplier mix, firms prefer to comply with RoO rather than pay the higher tariffs.
- For $p \approx 1$ firms can change their supplier mix and some find it cheaper to pay tariffs instead of complying with RoO
- Tariff savings lower MC but replacing efficient non-NAFTA suppliers raises it, leaving trade mostly unchanged.

