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1 Introduction

Central bankers, other policy makers, and investors are increasingly concerned about transition risks

and physical risks related to global warming highlighted by the former Governor of the Bank of England

on breaking the tragedy of the horizon (Carney, 2015).1 Transition risks can originate from a sudden

stepping up of climate policies, a breakthrough in green technologies, or a sudden shifts towards green

consumer preferences (e.g. Campiglio and van der Ploeg, 2022).2 Physical risks include the risks of

extreme weather events (hurricanes, floods, droughts, etc.) and the risks of tipping the climate system

(e.g., melting of the Greenland or Antarctic Ice Sheets, or melting of the Siberian permafrost).

Central bankers use scenarios developed by the Network for Greening the Financial System (NGFS)

and conduct stress tests to see how robust the economy is to transition and physical risks.3 In contrast,

we analyze the effects of transition and physical risks in a calibrated two-sector DSGE model of the

economy and the climate, and allow for the effects of these risks on asset prices, carbon prices and the

rest of the economy. We do not use ad hoc scenarios to capture transition and physical risks.4 Instead, we

model transition risk by stochastic transitions between three different climate policy states (no, modest,

and ambitious climate policies) and two technology states (competitive negative emissions technology

or not) and model physical risk by stochastic transitions between three different climate tipping states

and by the risk of climate-related extreme weather events.

Our objective is to investigate the implications of transition and physical risks on climate policies and

financial markets, in particular on carbon premiums and the risk of stranded financial assets, and on

the speed of the green transition. Our contributions are threefold.

First, we show that both types of physical risk significantly increase carbon pricing and the ambition of

climate policies. If financial markets price in these risks, they increase the equity premium and curb

the risk-free interest rate in line with the empirical findings of Bansal et al. (2017) and Donadelli et al.

(2017). In contrast, transition risks (both political and the possibility of a technological breakthrough

in negative emission technologies) imply that climate policies are on average less ambitious than the

first-best optimal policies.

1Witness the large number of central banks that have joined the Network for Greening the Financial System.
2Companies, investors, and regulators increasingly have to take account of how climate litigation, regulatory enforcement,

and other legal action shifts or amplifies exposure to transition and physical risks, and thus leads to additional climate risk
exposures (Wetzer et al., 2024). We abstract from such issues here.

3See https://www.ngfs.net/ngfs-scenarios-portal/explore.
4The NFGS has designed 7 scenarios: an ambitious net-zero by 2050 scenario that limits global warming to 1.5 ˝C through

stringent climate policies and innovation; (ii) as (i) but through behavioral changes that lower energy demand; (iii) a scenario
with a 67% change of keep temperature below ˝C; (iv) delayed transition so mitigation policies have to be much more aggres-
sive from 2030 onwards to reach net-zero in 2050; (v) a scenario with all pledged policies even if not implemented; (vi) current
policies with high physical risks; (vii) a fragmented world scenario.
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Second, we show that these transition risks are at the root of positive carbon premiums. This might

explain the empirical evidence for such premiums since 2015 by Bolton and Kacperczyk (2021, 2023).5

and for a wider set of pollutants by Hsu et al. (2023).6 We thus provide an explanation why risk pre-

miums on carbon-intensive assets have been consistently higher than those on greener, more climate-

friendly assets, and why the resulting carbon premiums speed up the green transition. Moreover, we

provide a mechanism of how the risk of tightening climate policy affects the pricing of brown assets

as documented by Bouman (2023) and Campos-Martins and Hendry (2023).7 The same mechanism

leads political transition risk to increase the demand for precautionary savings and reduce the risk-free

interest rate considerably if temperatures are close to two degrees.

Third, we show that if the carbon-intensive sector operates with only fossil fuel, the possibility of a long

wait before existing policies switch to greener policies implies the risk of stranded financial assets.8

This occurs, since it is costly or impossible to shift around capital from brown industries to productive

use elsewhere after the green transition. However, the brown sector will never disappear completely,

because with negative emissions technology there is always the possibility that policy makers tip and

become brown again. In fact, negative emissions counteract the risk of stranded assets. The risk of

stranded assets leads to higher carbon prices, boosts the risk premiums of risky assets, and accelerates

the green transition. The risk of stranding coal-related and other carbon-intensive assets is a real

possibility if climate policy is stepped up or sudden technological or regulatory change takes place (e.g.

Caldecott et al., 2016, 2021; Caldecott, 2018).

To establish these results, we specify a two-sector DSGE model of climate and the economy with fossil

fuel, renewable energy, and a wide array of economic, climate, and damage risks (cf. Hambel et al.,

2024). There is limited substitutability between the two types of energy. Investments and capital

reallocation from the brown to the green capital stock are subject to intertemporal and intrasectoral

adjustment costs. We abstract from directed technical change towards green technologies (e.g. Boven-

berg and Smulders, 1996; Acemoglu et al., 2012; Casey, 2023), but instead we have learning by doing

in renewables production which captures some features of directed technical change. Temperature is

5Similarly, Delis et al. (2019) have found that banks price in climate policy exposure, especially after 2015, and also charge
higher loan rates to fossil fuel firms. Ivanov et al. (2023) show that high-emission firms face shorter loan maturities, lower
access to permanent forms of bank financing, and higher interest rates. Others have found mixed or even contrary evidence
and thus challenge the existence of carbon and pollution premiums (e.g. Pastor et al., 2021, 2022; Bauer et al., 2022; Ardia
et al., 2023; Aswani et al., 2024; Zhang, 2024; Hambel and van der Sanden, 2024 among others). Bolton and Kacperczyk (2024)
have given a robust defense of their results in response to Aswani et al. (2024). However, Zhang (2024) argue that emissions
grow linearly with firm sales, data is only available to investors with significant lags, and the positive carbon premium arises
from the forward-looking firm performance information contained in emissions rather than from risk premiums. They show
that, after accounting for the data release lag, the carbon premium turns negative in the U.S. and is insignificant globally.

6Hsu et al. (2023) find an annual pollution premium of 4.42% and suggest that this may stem from environmental litigation.
7These studies extract climate news from newspapers using textual analysis and show how these news affect risk premiums

in the U.S. equity and corporate bond markets.
8For a further discussion of the risk of stranded assets during the green transition, see, e.g., van der Ploeg and Rezai (2020),

Campiglio and van der Ploeg (2022) and the references therein.
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driven by cumulative emissions.9 We allow global warming to adversely affect output as in the seminal

DICE model (e.g., Nordhaus, 2017), to increase the risk of recurring climate-related disasters (cf. Kary-

das and Xepapadeas, 2022; Hambel et al., 2024), and to increase the risk of (repeated) climate tipping

(cf. Lemoine and Traeger, 2014, 2016; van der Ploeg and de Zeeuw, 2018; Cai and Lontzek, 2019). If

policy makers undertake climate policies, they internalize these three externalities.

Our key novel feature is to allow for two types of transition risks and two types of physical risks. The

first transition risk is technological and comes from the emergence of a negative emissions technology at

an uncertain future date, and thus corresponds to 2 states.10 The second transition risk is due to chang-

ing policy regimes as we allow for the repeated tipping between three policy states corresponding to no,

moderate, and strong carbon pricing, respectively. Our climate policy scenarios are calibrated to the

range presented in Moore et al. (2022). We allow for the risk of climate tipping leading to upward jumps

in the sensitivity of temperature to cumulative damages and in damages to aggregate production. This

gives 3 climate states. We thus model technological, policy, and climate tipping by a three-dimensional

Markov chain with 2 ˆ 3 ˆ 3 “ 18 states, where policy tipping is reversible as it can also go back from

more ambitious to less ambitious policies, or to no climate policies. We also allow for a second type

of physical risk, i.e. the temperature-related increase in extreme weather events. We extend Cai and

Lontzek (2019), who focus on climate tipping only with a one-sector DSGE model, by allowing for brown

and green capital stocks and for two types of transition risks as well as the recurring risk of extreme

weather events in a two-sector DSGE model of climate and the economy.

While the effect of climate tipping points and feedback loops in the temperature dynamics on the social

cost of carbon has been studied (e.g. Lemoine and Traeger, 2014, 2016, Cai et al., 2016; Cai and Lontzek,

2019; Hambel et al., 2021a), these studies are silent about the influence of physical climate risk on

financial markets. We show how those risks are priced in by financial markets, and lead to higher risk

premiums and an increased demand for precautionary savings curbing the risk-free interest rate.11

Although Hsu et al. (2023) formulates a reduced-form model of transition risk, Barnett (2023) is per-

haps most closely related. It investigates transition risk within the context of a DSGE model but we

allow for a richer structure and interactions between climate tipping risk, political risk, and risk of a

technological breakthrough, and the possibility of one tip setting in motion another, different type of

tip ("cascading"). We have 18 Markov states rather than 2. We allow for the emergence of a negative

9See Matthews et al. (2009), Allen et al. (2009), IPCC (2014), van der Ploeg (2018), and Dietz and Venmans (2019), among
others, for a discussion and justification of this approach.

10Negative emissions technologies such as direct air capture and storage are not yet competitive as their current marginal
removal costs exceed by far current carbon prices (e.g., Rebonato et al., 2023). Technological breakthroughs can make those
technologies competitive and allow removal of carbon dioxide from the atmosphere. Those technologies are essential for the
target of net-zero emissions.

11In contrast to Kelly and Kolstad (1999), Kelly and Tan (2015), and Gerlagh and Liski (2018), we abstract from learning
about climate parameters.
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emissions technology, essential for a serious story of the green transition, and for imperfect substitution

between the energy types and intra-sectoral adjustment costs which allow us to study stranded assets.

In contrast to Barnett (2023), we allow for repeated climate tipping points, temperature-related risks of

recurring climate-related disasters, and exogenous risks of recurring Barro-style macro disasters.

Our model explains three types of climate-related risk premiums in equity markets. First, we provide a

mechanism for a temperature risk premium in the spirit of Bansal et al. (2017), Donadelli et al. (2017),

Hong et al. (2019), and Gregory (2024). In line with those empirical results, we find that global warming

carries a positive risk premium that is rooted in physical climate risk and increases in the level of

temperature. Second, our model can explain the existence of a transition risk premium in the spirit of

Engle et al. (2020) and Faccini et al. (2023). In particular, we show how political risk drives the risk

premiums of both green and brown assets. The effect of transition risk on asset markets is particularly

pronounced when tightening climate policy could weight down the economy, i.e. when the share of brown

capital is relatively high. Third, although both types of risky assets carry this risk premium, the brown

asset is stronger affected than the green asset. This asymmetry is in line with Bolton and Kacperczyk

(2021, 2023) and Hsu et al. (2023). Thus, our analysis also sheds light on the carbon premium or

pollution premium.

Section 2 presents our DSGE model of climate and the economy. Section 3 explains how we solve and

optimize our model. Section 4 presents the calibration. Section 5 provides our benchmark results on

carbon pricing, carbon premiums, and the green transition. Section 6 show how transition risks might

affect the risk of stranded assets. Section 7 concludes.12

2 A DSGE Model of Climate and the Economy

We present a stochastic, dynamic two-sector production economy with endogenous growth and recursive

preferences. Global warming adversely affects production and increases the recurring risk of climate-

related disasters and the risk of irreversible climate tipping. We also allow for the possibility of techno-

logical breakthroughs. We first discuss the economic part, then the climate part, and finally the various

policy transition scenarios and disruptive changes resulting from climate, technological, and political

tipping points. Those disruptive changes are modeled by a three-dimensional Markov chain X, which is

described in detail in Section 2.4.
12Proofs, the numerical solution algorithm, calibration details, and further simulation results and robustness checks are

presented in the appendices.
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2.1 Economic Part

Production of Green and Brown Goods Final goods are produced in two sectors. Total output is

the sum of outputs produced in the two sectors, Y “ Y1 ` Y2.13 Outputs of both sectors n P t1,2u follow

from the Cobb-Douglas production functions

Yn “ AnK1´ηn
n Eηn

n ΛnpT,Xq, (2.1)

where Kn is the capital stock of sector n and En is an energy composite consisting of renewable energy

and fossil fuel.14 The Cobb-Douglas weight 0 ă ηn ă 1 and total factor productivity An ą 0 are sector-

specific constants. Here, T denotes global mean temperature relative to the beginning of the industrial

revolution. Following Cai and Lontzek (2019), mean temperature and the climate tipping state affect

the sectors of the economy negatively via

ΛnpT,Xq “
1´ dpXq

1`θnT2 , (2.2)

where the function d increases in the climate tipping state. In line with Golosov et al. (2014), En is an

energy composite modeled by a CES aggregate,

En “
`

κ1,nGρn
n `κ2,nFρn

n
˘

1
ρn , (2.3)

where κi,n ě 0 and ρn ă 1 may be positive or negative. Here Gn and Fn denote renewable (or green)

energy and fossil fuel use in sector n, respectively, and are imperfect substitutes. The elasticity of

substitution between the two energy sources in sector n is ζn “ 1
1´ρn

. We suppose that the second sector

relies significantly more on fossil fuel use than the first sector. We thus refer to the first sector (n “ 1)

as green and to the second sector (n “ 2) as brown.

Dynamics of Green and Brown Capital Let In be the investment rate in sector n and R the rate at

which brown capital can be converted into green capital. Investment is subject to quadratic intertem-

poral adjustment costs (cf. Pindyck and Wang, 2013). The conversion of brown into green capital incurs

quadratic intrasectoral adjustment costs. One dollar of brown capital can thus be converted into less

than one dollar of green capital where the wedge increases in the amount being converted. The depre-

13We have perfect substitution between the two outputs, but it is easy to have imperfect substitution (Hambel et al., 2024).
This does not change the qualitative nature of the results much.

14There is an additional production factor, i.e. labour, which is subsumed in total factor productivity An. This production
function allows for endogenous technical change, since the Cobb-Douglas weights add up to one.
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ciation rates of the physical capital stocks are δk
n ě 0, n P t1,2u. The capital stock dynamics of the green

and brown sector are then

dK1 “

´

I1 ´
1
2
ϕ1

I2
1

K1
` R ´

1
2
κ

R2

K1
´δk

1K1

¯

dt ` K1σ1dW1 ´
ÿ

i“c,e

K1´ℓidNi (2.4)

dK2 “

´

I2 ´
1
2
ϕ2

I2
2

K2
´ R ´δk

2K2

¯

dt ` K2σ2

´

ρ12dW1 `

b

1´ρ2
12dW2

¯

´
ÿ

i“c,e

K2´ℓidNi

where ϕn ą 0, n “ 1,2, are the investment adjustment cost parameters, κ ą 0 the capital reallocation

cost parameter, and W1 and W2 two independent Brownian motions. The parameter ρ12 denotes the in-

stantaneous diffusive correlation coefficient between the Brownian shocks of the two capital stocks. The

processes Ni, i P tc, eu are independent point processes modeling macroeconomic disasters and climate-

related disasters (e.g. extreme weather events), respectively. The disaster intensity of macroeconomic

disasters λe is constant (Barro, 2006, 2009; Barro and Jin, 2011). The disaster intensity of climate-

related disasters λcpTq increases in temperature (Hambel et al., 2024). The probability for a jump to

occur over a small time interval dt is λidt and the expected waiting time to the next jump is 1{λi. The

parameter ℓi denotes the corresponding jump size which is drawn from an i.i.d. process, but indepen-

dent of the Brownian and Poisson shocks in the model. The corresponding recovery rate is denoted by

Zi “ 1´ℓi. We suppose that the jump sizes are the same for both types of capital.15

The total stock of capital is defined by K ” K1 ` K2 and the share of brown capital by S ”
K2

K1`K2
. The

dynamics of K and S are discussed in Appendix A.3.

Equilibrium Conditions The amount of consumption goods provided by each sector is the cash flow

net of investments, energy costs, and costs of negative emissions technology,

Cn “ Yn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kq, (2.5)

where bg “ bgpSq denotes the real price of one unit of green energy and b f “ b f pSq the real price of

one unit of fossil fuel. We suppose that over time green energy becomes more competitive, so that bg

decreases in the share of green capital 1´S.16 The technology for producing fossil fuel is more likely to

be mature, so that b f does not depend on S.

15Since this disaster shock affects both types of capital, it significantly increases the total correlation between the capital
stocks; see Hambel et al. (2024). Besides, we can allow for different jump sizes for the sectors.

16One way of justifying this is Wright’s law, which states that unit production costs of solar panels, wind mills, and batteries
decline as more of these have been used in the past. This captures learning by doing.
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Negative Emissions Rechnology A competitive negative emission technology, such as direct air

carbon capture and storage (DACCS), that extracts CO2 from the atmosphere at low marginal costs,

may eventually emerge. We model such a technological breakthrough as an irreversible technological

tipping point. The cost of removing an amount D of CO2 from the atmosphere is bd “ bdpS,X,D,Kq

and depends on the share of brown capital. These costs are homogeneous of degree one in capital and

marginal removal costs Bbd
BD are strictly positive for every level D (cf. Rebonato et al., 2023). The term

ςn “ ςnpSq models a cost-sharing mechanism by which the total removal costs are divided between

the two sectors, so that ς1 `ς2 “ 1.17 Without a technological breakthrough modeled by the two-state

Markov chain X t, this technology is not yet competitive and plays only a negligible role and D “ 0. We

then have X t “ 1, while if the breakthrough in negative emissions technology has taken place we have

X t “ 2.

Aggregate Consumption Consumption goods are perfect substitutes, so that aggregate consumption

is C “ C1 `C2. Our analysis would also work for imperfect substitutes (e.g., if aggregate consumption is

a CES aggregate of the consumption goods produced in each sector). To focus on the novel implications

of transition risks on carbon prices, asset prices, and the green transition, we keep the setting simple

and consider the special case of perfect substitutes.

Recursive Preferences Our economy has identical agents with recursive preferences. As shown in

Duffie and Epstein (1992b), these preferences are the continuous-time version of discrete-time recursive

utility (Kreps and Porteus, 1978; Epstein and Zin, 1989). The coefficient γ of relative risk aversion (RRA)

can be chosen independently of the elasticity of intertemporal substitution (EIS), ψ. The value function

(or indirect utility function) of the representative household J is recursively defined by

Jpt,K1,K2,T,Xq “ sup
D,Fn,Gn,In,R

Et

”

ż 8

t
f
`

Cs, Jps,K1s,K2s,Ts,Xsq
˘

ds
ı

, (2.6)

where f is the aggregator function determining preferences. For relative risk aversion γ‰ 1 and elas-

ticity of intertemporal substitution ψ, this aggregator function has the form

f pC, Jq “

$

’

&

’

%

δθJ
”

C1´1{ψ

rp1´γqJs1{θ ´1
ı

, ψ‰ 1,

δp1´γqJ ln
´

C

rp1´γqJs
1

1´γ

¯

, ψ“ 1,

where θ“
1´γ

1´1{ψ
and δą 0 is the rate of time impatience. Notice that f depends on the value function J,

which reflects the recursive structure of the preferences. Relative risk aversion typically exceeds 1{ψ,

17In our calibrated model, ς1 “ 1´ S and ς2 “ S, but a more general case is given in Proposition A.1.
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which reflects preference for early resolution of uncertainty. For γ“ 1{ψ, i.e. θ“ 1, preferences collapse

to time-additive CRRA utility with Jt “
ş8

t e´δps´tq C1´γ
s

1´γ
ds.

Dividends Empirically, dividends are more volatile than consumption (e.g. Bansal and Yaron, 2004)

and much more so if a disaster hits the economy (Longstaff and Piazzesi, 2004; Wachter, 2013). This

is because dividends are only a small part of household income, while labour income is the largest part

of household income is much less volatile than dividends. Following Wachter (2013), among others, we

thus model dividends as leveraged consumption, Dn “ Cφ
n with leverage parameter φą 1, common for

both sectors.18

2.2 Climate Part

Following Allen et al. (2009), Matthews et al. (2009), and IPCC (2014), global mean temperature T rises

in cumulative net emissions E t “
şt
0 Enet

s ds measured in gigatons of carbon (GtCs),

dT “ϑEnetdt `σTdW3, (2.7)

where ϑ“ϑpXq denotes the transient climate response to cumulative emissions (TCRE) and W3 denotes

a third standard Wiener process that is independent of W1, W2, N c, N e, and X to allow for regular shocks

to the climate system. In line with Cai and Lontzek (2019), the Earth’s climate system is also exposed

to tipping risk modeled by the Markov chain X c. These climate tipping points irreversibly affect the

future evolution of the climate system by increasing the TCRE, ϑpXq, and also affect output damages

from climate change.19 The temperature diffusion coefficient, σT , is constant and captures remaining

uncertainty in the climate system.

Gross emissions are νpF1`F2q, where Fn denotes fossil fuel use in sector n,20 and the emission intensity

per unit of fossil fuel use, denoted by ν, evolves according to

dν“ ν´

”

gνdt ´
dK
K´

ı

. (2.8)

18An alternative to this approach is modelling the consumption-dividend ratio as a stationary but persistent process (e.g.
Longstaff and Piazzesi, 2004). In order to focus on the novel implications of climate transition risk on asset prices, we keep
the setting simple although following this approach would also be feasible in our setting. A more rigorous approach where
capital is owned by intermediaries who issue stocks and pay dividends to households is beyond the scope of this paper.

19An example is the melting of permafrost soils in the Siberian tundra, which is the largest methane reservoir in the Earth.
Such a tipping event is irreversible because, for example, the methane cannot be restored once it has been released. Other
examples are melting of the Greenland or Antarctic Ice Sheet or dieback of the Amazon rain forest (cf. Cai et al., 2016).

20 We model fossil fuel as an inexhaustible resource. To test whether exhaustibility matters for our policy simulations, we
have studied a model variant that takes account of the constraint

şt
0 E ind

s ds ď E, where E denotes the maximum amount of
total carbon emissions if all fossil fuel resources were to be exploited. We find that this constraint is not binding if E is set in
line with recent estimates on exhaustible fossil fuel resources, 11,000GtCO2 or 3,000GtC (McGlade and Ekins, 2015).
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If gν is smaller than the expected economic growth rate, the emission intensity declines in expectation

but it might be state-dependent. Net emissions are gross emissions reduced by the amount of CO2

extracted from the atmosphere if the negative emission technology is available, Enet “ νpF1 ` F2q ´ D.

Hence, the temperature dynamics becomes

dT “ϑrνpF1 ` F2q´ Dsdt `σTdW3. (2.9)

2.3 Policy Tipping

The third Markov chain X p models different policy scenarios. While climate tipping and technological

breakthroughs are irreversible, policy shocks are reversible due to political regime changes. For exam-

ple, the election of a new government that takes climate change less seriously than its predecessor can

at a later time be replaced by a government with more climate ambition. We focus on three policy states

of the Markov chain:

(i) No climate policies (BAU): In this business-as-usual (BAU) state (X p “ 1), policy makers are

climate change deniers and ignore the adverse impacts of climate change on the economy, so do

not implement a carbon tax. Global warming damages are not internalized by policy makers but

financial markets do price in physical and transitions risks.

(ii) Modest climate policies (PIGOU): In this state (X p “ 2), policy makers levy an optimal carbon tax,

which is set to the social cost of carbon or SCC and internalizes all three externalities resulting

from the adverse effect of global warming on aggregate production, the risk of climate-related

disasters, and the risks of climate tipping.

(iii) Ambitious climate policies (CAP): In this state (X p “ 3), there is in addition a legally binding

carbon budget constraint to ensure that temperature stays below a pre-specified cap Tcap of a two-

degrees target, Tcap “ 2˝C, in accordance with the Paris agreement (cf. United Nations, 2015). If

the cap (CAP) is exceeded, a binding constraint comes into force so that fossil fuels cannot be

burnt anymore: F1,t “ F2,t “ 0 if Tt ą Tcap. If this constraint bites, carbon prices will exceed the

Pigouvian carbon prices.

A transition from one policy regime to another arises when a policy maker changes its climate ambition

or when there is a change of policy makers (e.g., due to an election). Financial markets anticipate

transition risks as well as physical risks and technological risks. Asset prices reflect transition risks

even if society is still in the BAU state. Starting in the BAU state also implies that society faces and

internalizes the economic costs of delaying climate action, which lead to more stringent policies as soon

9



as the government starts internalizing global warming externalities or as a legally binding temperature

cap comes into force. These costs of delaying climate policies are priced in and thus affect asset returns.

2.4 Full Markov Chain for Disruptive Changes

Our framework is rich enough to model disruptive changes to a broad range of input parameters and

political scenarios, but we focus on three dimensions. First, the Earth’s climate system is affected by

two irreversible climate tipping points and modeled by a directed Markov chain X c with 3 states (cf. Cai

et al., 2016). Second, an irreversible technological breakthrough in negative emission technologies (e.g.

direct air capture and storage to remove CO2 from the atmosphere) is modeled by X t tipping from state

1 to state 2. Third, the political regime switches are modeled by the non-directed Markov chain X p.

The political regime can thus shift to and from each of three states: no, modest, or ambitious climate

policies.21 The sudden shocks to the political landscape, the Earth’s climate system, and negative emis-

sions technology are summarized by the 3-dimensional Markov chain X “ pX c, X t, X pq with 18 different

states in X “ t1,2,3u ˆ t1,2u ˆ t1,2,3u as illustrated in Figure 1. The transition intensity of jumping

from state i P X to state j P X is endogenous and modeled by the sufficiently smooth non-negative

function λxpS, i, jq, where S denotes the vector of all state variables in the economy.22

3 Carbon Taxes, Negative Emissions, and Asset Returns

In both the modest (PIGOU) and ambitious (CAP) policy scenarios, welfare (2.6) is optimized subject to

the constraints of our DSGE model of the climate and the economy. The only difference between the

modest and ambitious policy scenario is that in the latter there is an additional constraint on cumulative

emissions to take account of. The no policy (BAU) scenario also requires solving a stochastic dynamic

optimization problem where no account is taken of the adverse effects of temperature on the economy

and on the risk of climate-related disasters or climate tipping points. Once this optimization is done,

these adverse effects do impinge on the economy and private agents take account of this.

The numerical algorithm that we use to solve our dynamic programming problems is discussed in Ap-

pendix A. The value function must satisfy the Hamilton-Jacobi-Bellman equation (A.1). Under some

very mild assumptions, it can be expressed as Jpt,K1,K2,T,Xq “ 1
1´γ

K1´γV
`

t,T,SpK1,K2q,X
˘

, where

21We can easily allow for more states in each of these layers. For instance, a model extension with more climate tipping ele-
ments or several intermediate states between BAU and PIGOU, in which an increasing proportion of carbon dioxide emissions
is taxed, can be implemented, but we keep this simple structure for ease of exposition.

22We also denote the transition intensities of Xℓ by λℓpS, i, jq, where ℓ equals c, t, or p, respectively. To keep the mecha-
nisms transparent, we assume that the jump intensity λℓpS, i, jq of a component Xℓ does not explicitly depend on the other
components. We therefore have no direct domino effects of the entire chain, but we do have the indirect effect, since the jump
intensities depend on the common factors S and T.
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Figure 1: Structure of the Markov Chains. The Markov system consists of a three-dimensional Markov
chain X “ pX c, X t, X pq with three states for climate tipping points X c P t1,2,3u, two technological states X t P

t1,2u and three political states X p P t1,2,3u. Jump intensities between two states may explicitly depend on the
share of brown capital and temperature. The states from the different chains can link together in 18 different
combinations.

S “ SpK1,K2q ”
K2

K1`K2
, K ” K1 ` K2, and V “ V pt,T,S,Xq satisfies the simpler and easier-to-solve

Hamilton-Jacobi-Bellman equation (A.12).

Social Cost of Carbon The SCC, the expected present discounted value of all present and future

negative effects of emitting one ton of CO2, is

τ“ ´
ϑpXq JT

fcpC, Jq
“
ϑpXqc1{ψ

δpγ´1q

VT

V 1´1{θ
K ą 0 (3.1)

(see Appendix A.2). The SCC is proportional to the total stock of capital as marginal damages are

proportional to aggregate economic activity (e.g., Nordhaus, 1991; Golosov et al., 2014; van den Bijgaart

et al., 2016; Rezai and van der Ploeg, 2016; Hambel et al., 2021b). Notice that if the political state

is BAU rather than PIGOU or CAP, the SCC can be computed too but there is no carbon price that is

implemented by policy makers.

Negative Emissions The optimality condition for carbon removal is

BbdpS,X,D,Kq

BD
ě τ, D ě 0, c.s. (3.2)
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(see Appendix A.2). The economy does not extract carbon from the atmosphere, D “ 0, if the marginal

cost of extraction exceeds the marginal benefit (i.e. the SCC). As soon as, negative emissions technology

has become competitive, the marginal cost equals the SCC and D ą 0.

Risk-free Rate and Precautionary Savings In equilibrium the risk-free rate r f is23

r f
t “ δ

loomoon

Discounting

`
1
ψ
µC

loomoon

Smoothing

´
1
2
γ

´

1`
1
ψ

¯

}σC}2

looooooooomooooooooon

Standard Diffusion Risk

´
ÿ

i“c,e

λipTqE

”

Z´γ

i ´1`
θ´1
θ

`

1´ Z1´γ

i

˘

ı

looooooooooooooooooooooooomooooooooooooooooooooooooon

Macroeconomic and Climate-related Disaster Risk

`
γψ´1

2ψ2

´

}σC ´σk}2 `ψ
`

}σC}2 ´}σk}2˘
¯

`
θ´1
θψ

σJ
g pσC ´σkq

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

Temperature Interaction Risk

(3.3)

´
ÿ

x‰X
λxpS,X, xq

”

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1`
θ´1
θ

jx
v

ı

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

Tipping and Transition Risk

Equation (3.3) decomposes the risk-free interest rate (cf. Barro, 2006, 2009; Pindyck and Wang, 2013;

Wachter, 2013). It extends the results in Hambel et al. (2024) to various types of climate-related tipping

and transition risks. The first two terms in equation (3.3) also arise in deterministic models. If the

time preference rate δ is high, there are strong preferences for early consumption and one would like to

borrow. Since, in equilibrium, the risk-free asset is in zero net supply, the risk-free rate must increase to

counter this. The risk-free rate also increases in expected consumption growth µC due to the preference

for smooth consumption streams. This effect is bigger if it is more difficult to substitute present for

future consumption (if the elasticity of intertemporal substitution ψ is small).

The third term ´1
2γ
`

1` 1
ψ

˘

}σC}2 in equation (3.3) is negative and represents the motive for precaution-

ary savings in response to diffusion risk, which requires the interest rate to fall to keep the risk-free

asset in zero net supply. Expected consumption growth and its volatility depend non-linearly on both

temperature and the brown capital share, whereby the result is more involved and qualitatively differ-

ent from one-tree endowment economies. While the effect of temperature on the precautionary-savings

term ´1
2γ
`

1` 1
ψ

˘

}σC}2 is negligible, the share of brown capital has a significant influence on the equi-

librium risk-free rate. The latter result stems from a diversification argument (cf. Cochrane et al., 2007;

Hambel et al., 2024). Diversifying across the green and brown capital stocks reduces the volatility of

the total capital stock and aggregate consumption, so that the need for precautionary saving falls.

The fourth term ´
ř

i“c,eλipTqE
“

Z´γ

i ´ 1 `
ψ´1´γ

1´γ

`

1 ´ Z1´γ

i

˘‰

in (3.3) reflects precautionary savings in

response to both macroeconomic and climate-related recurring disaster risks (denoted by subscripts e

23Details on the derivation are in Appendix B.1, where we also derive the dynamics of the pricing kernel (B.6).
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and c, respectively. As for standard diffusion risk, these terms reduce the interest rate to keep the risk-

free asset in zero net supply. The greater the coefficient of relative risk aversion γ, the greater is this

effect, see also the extensive discussion in Wachter (2013).

The terms in the second row in equation (3.3) capture the interdependence between capital, consump-

tion, temperature, and the value function. They represent precautionary savings for uninsurable tem-

perature risk. These components depend on the relevant state variables, in particular on temperature,

in a nonlinear manner, but have little effect on the risk-free rate because consumption volatility σC is

close to capital volatility σk. In case of time-additive CRRA-utility (γ“ 1{ψ, θ“ 1), these terms vanish.

The last term in (3.3) reflects precautionary savings in response to the disruptive changes resulting from

climate, technological, and political tipping. These terms have a similar structure as the precautionary

savings terms for standard disaster risk and also lead to higher precautionary savings and curb the

risk-free rate. While disaster risk affects the capital stock via the loss ℓ, these shocks affect utility

and consumption via state-dependent terms jx
v and jx

c that measure the relative change in the indirect

utility function and consumption rate, respectively, when the Markov chain jumps to state x.24

In contrast to the well-established decompositions in the aforementioned literature, the risk-free inter-

est rate (3.3) is not a continuous process because it depends on the current state of the Markov chain

X and thus reacts abruptly to climate tipping and transition risks. This novel feature can be seen from

the precautionary savings term ´
ř

x‰XλxpS,X, xq
“

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1` θ´1
θ

jx
v
‰

, which depends

on X. Moreover, the expected consumption growth rate µC also depends on X. We perform an extensive

quantitative analysis on how transition risks affect the risk-free rate in Section 5.3.

Asset Prices For the dividend stream Dn “ Cϕ
n , the time-t ex-dividend price of asset n equals

Pnt “ Et

”

ż 8

t

Hs

Ht
Dnsds

ı

, (3.4)

where Hs denotes the pricing kernel for discounting from time s to time t (see (B.6)). Its equilibrium

expected excess return corresponds to the risk premium of the asset. It is the sum of its expected ex-

dividend stock return, µp
n, and the dividend yield, yd

n “ Dn{Pn, minus the risk-free interest rate, r f , so

that rp
n “ µ

p
n ` yd

n ´ r f .25 Finally, we define the carbon premium as the difference between the brown

and green risk premiums, i.e. rp
2 ´ rp

1 .

24These are computed numerically and are given in equations (B.3) and (B.5) of Appendix B.1.
25The price-dividend ratio Πn “ Pn{Dn satisfies the parabolic partial differential equation (B.11), which we solve numeri-

cally (see Appendices B.3 and B.4).
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4 Calibration

We first calibrate the economic part of our model by disregarding climate damages and tipping points

to closely match the historical evolution of interest rates, expected asset returns, GDP growth, and the

consumption-GDP ratio. We then calibrate the climate part of our model and damages in the pre-tipping

state. Finally, we calibrate the Markov chains, which model disruptive changes stemming from tipping

points in the climate system, negative emission technologies, and the political landscape.

Table 1 summarizes our benchmark calibration. Appendix C.1 discusses the details (macroeconomic

uncertainty, economic growth, asset returns, energy consumption, energy intensity, temperature dy-

namics, and damages). Our calibration is market-based. We have learning by doing in the production of

renewables as the unit production cost drops by 20% for every doubling of cumulative installed volume

of renewables. The green sector does not fuse fossil fuel. The elasticity of substitution between the two

energy types in the brown sector is ζ2 “ 2 ą 1. It is thus possible to fully replace fossil fuel by renew-

ables. The initial share of brown capital is 87.6%. The calibrated emission intensity νt is deterministic

and declines over time. Our transient climate response to cumulative emissions is 1.8˝C/TtC.

Damage Specification We have a level impact and a climate-related disaster risk component. We

adapt the damage function (2.2) from Cai and Lontzek (2019) but modify our damage parameter θn “

0.00236 in line with the DICE model in the pre-tipping state (Nordhaus, 2017). Following the median

damage scenario in Cai and Lontzek (2019), we set a post-tipping permanent damage of 5% of global

output and 2.5% in the intermediate state: dpX c “ 0q “ 0, dpX c “ 1q “ 0.025, dpX c “ 2q “ 0.05. We

assume that the intensity of climate-related disasters rises linearly in temperature, so λcpTq “ λ̂cT

with λ̂c “ 0.096 and λcpT0q “ 0.122. The expected loss is Erℓcs “ 1.5% (cf. Karydas and Xepapadeas,

2022; Hambel et al., 2024), compared to 25% for economic disasters. Fitting a power distribution, we

obtain αc “ 65.7.26 Climate-related disasters thus occur about twice as often as economic disasters but

are less severe.

Table 2 summarizes the calibration of our three Markov chains with details in Appendix C.1.

Climate tipping The tip from a TCRE of 1.8 to 2.1˝C{TtC has an expected duration of 309 years if

temperature remains fixed at T0 “ 1.27˝C while the expected tip from a TCRE of 2.1 to 2.4˝C{TtC has

an expected duration of 50 years. We thus allow for both imminent and slow tips of the climate system.

26The intensity of climate-related disasters or their damage distribution may depend on the climate tipping state X c. This
generalizes Cai et al. (2016) and Cai and Lontzek (2019), and leads to qualitatively similar results.
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Preferences
δ time-preference rate calibrated (Appendix C.1) 0.0346
γ relative risk aversion calibrated (Appendix C.1) 2.977
ψ elasticity of intertemp. substitution Bansal and Yaron (2004) 1.5

Economic Model
Y0 initial GDP (trillion US $) Nordhaus (2017) 116
S0 initial share of brown capital from World Bank data (Footnote 43) 0.876
K1,0 initial green capital (trillion US $) calibrated (Appendix C.1) 74.3
K2,0 initial brown capital (trillion US $) calibrated (Appendix C.1) 1353.9
A1 green productivity calibrated (Appendix C.1) 0.3323
A2 brown productivity calibrated (Appendix C.1) 0.3451
ϕn investment adjustment cost parameter calibrated (Appendix C.1) 13.61
κ capital reallocation cost parameter calibrated to modified RCP8.5 (Section 4) 2
b f ,0 initial fossil fuel costs ($ per tC) Hambel et al. (2024) 540
bg,0 initial renewable energy costs ($ per etC) Hambel et al. (2024) 810
k0 cost function parameter from Swanson’s law (Footnote 41) 0.5107
k1 cost function parameter from Swanson’s law (Footnote 41) 0.3219
ηn energy share in production van den Bremer and van der Ploeg (2021) 0.043
ζ2 elasticity of energy substitution Golosov et al. (2014) 2
κ1,2 renewable energy weight in brown sector Golosov et al. (2014) 0.356
κ2,2 fossil fuel weight in brown sector Golosov et al. (2014) 0.644
κ1,1 renewable energy weight in green sector assumption 1
κ2,1 fossil fuel weight in green sector assumption 0
φ leverage parameter Wachter (2013) 2.6
σn annual capital volatility Wachter (2013) 0.02
ρ12 instantaneous correlation Cochrane et al. (2007) 0
αe macroeconomic jump size parameter calibrated in line with Wachter (2013) 5
λe macroeconomic disaster intensity calibrated in line with Wachter (2013) 0.06

Climate Model and Damages
T0 initial temperature (˝C) temperature data 1.27
ϑpX0q TCRE (˝C/TtC) Hambel et al. (2024) 1.8
σT annual temperature volatility RCP data (Footnote 45) 0.033
θn damage function parameter Nordhaus (2017) 0.00236
αc climate disaster jump size parameter Hambel et al. (2024) 65.7
λ̂c marginal climate disaster intensity Hambel et al. (2024) 0.096

Table 1: Benchmark Calibration. Preferences, the economy, the climate, and damages.

Irreversible Climate Tipping Risk
TCRE ϑpX c “ 1q “ 1.8, ϑpX c “ 2q “ 2.1, ϑpX c “ 3q “ 2.4 ˝C/TtC from Allen et al. (2009)
Damage parameters dpX c “ 1q “ 0, dpX c “ 2q “ 0.025, dpX c “ 3q “ 0.05 cf. Cai and Lontzek (2019)
Intensity parameters λ̂

1,2
c “ 0.012, λ̂1,3

c “ 0.012, λ̂2,3
c “ 0.02 cf. Cai and Lontzek (2019)

Breakthrough of Negative Emission Technology
Cost function b1 “1.77¨10´4, b2 “ 1.19¨10´5, b3 “ 1 from Rebonato et al. (2023)

c1 “ 0.34, c2 “ 0.03, c3 “ 0.34, ζ“ 0.1 Appendix C.2, Footnote 27
Intensity parameter λ̂

1,2
t “ 0.0224 assumed

Political Transition Risks
Intensity parameters λ̂

1,2
p “ 0.12, λ̂1,3

p “ 0.05, λ̂2,3
p “ 0.05, µ̂“ 0.75 using Moore et al. (2022)

λ̂
2,1
p “ 0.12, λ̂3,1

p “ 0.06, λ̂3,2
p “ 0.10

Table 2: Benchmark Calibration of the Markov chain X “ pX c, X t, X pq.
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Technological Tipping The cost of the negative emission technology once it has become available is

proportional to the capital stock, bdpS,X,D,Kq “ b̃dpS,X,DqK with

b̃dpS,X,Dq “ 1tDą0u

“

a1pSqD ` a2pSqexp
`

a3pSqD
˘‰

,

where a j are truncated power functions of the form a jpSq “ b j maxpζ,Sqc j , j P t1,2,3u. This mim-

ics the exponential marginal cost structure of Rebonato et al. (2023) with some differences. First,

the term a1pSqD ensures that even the first ton of carbon to be removed and stored has non-zero

marginal costs. Second, carbon removal becomes cheaper as the green transition progresses via a jpSq “

b j maxpζ,Sqc j .27 Third, carbon removal costs are stochastic as S is stochastic. Fourth, this technology

operates at strictly positive but finite marginal costs 0 ă
Bb̂dpS,X t“2,Dq

BD “ a1pSq`a2pSqa3pSqexppa3pSqDq ă

8. We have calibrated this cost function to the marginal cost curves in Figure 5 of Rebonato et al. (2023)

for 2050 and 2100.28 The calibration details are given in Appendix C.2 and the fit to the data is shown

in Figure C.2. We assume that costs are shared according to the size of the two sectors, ς1 “ 1 ´ S and

ς1 “ S. We assume that the negative emission technology becomes competitive somewhere in the period

up to the year 2050 with a probability of 50% corresponding to a jump intensity of λ̂1,2
t “ 0.0224.29

Political Transition Risks Ongoing global warming (exponentially) increases the likelihood of strength-

ening climate policy once temperature has crossed 1.5˝C (Barnett, 2023). Although carbon taxes or

cap-and-trade systems have never been completely abolished after they had been implemented, there is

a significant hazard of climate change deniers coming (back) to power. To allow for transitions back to

BAU, we model political transition intensities by

λppS, i, jq “ λ̂
i, j
p exp

`

µ̂rmaxpT ´1.5,0q´ Ss
˘

, i ă j

λppS, i, jq “ λ̂
i, j
p exp

`

µ̂rminp1.5´ T,0q` Ss
˘

, i ą j

with λ̂
i, j
p ą 0 for i ‰ j and µ̂ ą 0. The probability for jumps to a more ambitious climate policy ( j ą i)

thus rises in temperature if T ą 1.5˝C. It also falls in the share of brown capital as a result of lobbies

27 We assume that carbon removal costs no longer fall once the share of green capital reaches 90%, so set ζ “ 0.1. The
truncation parameter ensures that costs for carbon removal does not fall to zero when the share of green capital approaches
100%. Alternative parametrizations with different truncation parameters or alternative functional forms do not significantly
affect the qualitative nature of our results.

28These marginal cost curves build upon cost estimates for negative emission technologies of Fuss et al. (2018) and the
comprehensive review in the of the Sixth Assessment Report of the IPCC (2022), which has shown the important role for
negative emissions technologies in limiting global warming to 2˝C.

29Alternative calibrations for when the jump intensity depends on the political state or the share of brown capital do not
significantly affect our results. Moreover, our main asset pricing implications are hardly affected if we exclude the possibility
of a competitive negative emissions technology (see Appendix D.3).
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to slow down the green transition;30 also, as the green sector grows in size, green lobbies increase the

chance of more stringent climate policies. Conversely, the probability for jumps back to a less ambitious

climate policy ( j ă i), falls in temperature if T ą 1.5˝C and rises in the share of brown capital due to

stronger brown and weaker green lobbies.

We choose parameters to roughly match the likelihood and resulting temperature increase of the various

transition scenarios in Moore et al. (2022): about 48% of their simulations are in their modal scenario,

which leads to an average temperature increase of 2.3˝C. About 28% of their simulations lead to ag-

gressive climate action limiting global warming to up to 1.8˝C. There is less ambitious or less effective

climate action in the remaining scenarios (about 24%) with average temperature increases of around

3˝C, of which less than two percent of the simulations lead to significantly higher temperatures. To

replicate those figures with our model, we use the parameterization in Table 2. We thus find that the

jump intensity from BAU to modest (PIGOU) or ambitious (CAP) climate policies at T0 “ 1.27˝C and

S0 “ 0.876 is 6.22% and 2.59%, respectively, which correspond to an expected duration of 16.08 or 38.56

years. The average time until the government takes climate action is half the harmonic mean of those

average durations: 11.35 years. Compared to technological or climate tips, these are quick transitions.

If BAU continues and temperature rises to say 2˝C, expected durations shorten to 11.05 and 26.52 years,

respectively. This cuts the average time until the government takes climate action to 7.80 years. Hence,

we assume that ongoing global warming and a smaller share of brown capital make it more likely that

policy makers start taking the climate serious.

5 Benchmark Results

Here we present our policy optimization and simulation results using the calibration discussed in Sec-

tion 4. We solve our model numerically with the grid-based finite-differences method outlined in Ap-

pendix A.5, and use 200,000 sample paths until the year 2100 to calculate means, medians, and quan-

tiles of all relevant decision and state variables.

5.1 Business-as-usual Scenario without Policy Transition Risks

First, we discuss the results for a pure BAU scenario, which excludes policy transitions to active climate

policies (PIGOU or CAP) and with the political and technological Markov chains switched off. This aids

comparison with transition risk scenarios.Figure 2 shows the simulation of key variables until the year

2100. The average values of a variable are depicted by solid lines ( ) and referred to as the mean

30For instance, more than 2400 lobbyists affiliated with oil and gas industries attended the re-
cent climate summit COP28, e.g. https://www.theguardian.com/environment/2023/dec/05/
record-number-of-fossil-fuel-lobbyists-get-access-to-cop28-climate-talks.
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Figure 2: Business-as-usual Scenario With No Transition Risks. Average values are depicted by solid lines
( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a) depicts the mean path
of the share of fossil fuel in the global energy mix. The light (■), dark gray (■), and black (■) areas in Panel d)
depict the proportion of simulations in the pre-tip (X c “ 1), intermediate (X c “ 2), and post-tip (X c “ 3) climate
state, respectively.

path. Dashed lines ( ) show 5% and 95% quantiles. In this scenario, policy makers never take

account of negative global warming externalities, and thus the green transition takes place at a slow
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pace (Panel a)). The transition is solely driven by the desire to diversify assets and the falling cost of

green energy as the share of green capital rises (Hambel et al., 2024). The share of fossil fuel in the

energy mix is always a bit below the share of brown capital, since the brown sector can be operated with

both fossil fuel and renewable energy. Emissions are high (Panel b)) and global average temperatures

reach on average 4.2˝C (3.8˝C disregarding climate tipping) above the pre-industrial average by the end

of this century (Panel c)). The latter is thus partly due to climate tipping.

The light area (■) in Panel d) represents the proportion of paths in the pre-tip state (X c “ 1), the dark

gray area (■) in the intermediate state (X c “ 2), and the black area (■) in the post-tip state (X c “ 3).

Climate tipping points occurs in almost 90% of the paths. These events further fuel global warming and

lead to additional economic damages.

In contrast to policy makers, financial markets do anticipate the negative effects of emissions on output,

the intensity of recurring climate-related disasters, and the risk of climate tipping, and price these risks

in. This leads to an additional risk premium for both green and brown assets (Panels e) and f)). These

premiums show a slight upward-trend because of growing climate risks. There is a tiny carbon premium

(the difference between the brown and green risk premium) of 0.1% per year as in this scenario we have

no policy tipping. As discussed in Section 3, the risk-free rate falls over time as growing temperatures

and tipping risks increase demand for precautionary savings (Panel g)). The effect of physical climate

risks on interest rates is slightly more pronounced than those on risk premiums. Global output appears

quite volatile as it is plagued by many types of economic uncertainty (Panel h)).

5.2 Business-as-Usual Scenario with Transition Risks

Now, we turn to our benchmark scenario for which we switch on the political Markov chain and start in

the year 2020 with the BAU state.

Markov Chains and Temperature Scenarios By 2060, society has implemented a carbon tax (■)

or temperature cap (■) in about half of the simulated pathways (see Panel a) of Figure 3). This figure

rises to 80% by the end of the century and stabilizes there. The gradual increase in paths with active

climate policies is due to the dependence of transition intensities on temperature and the share of brown

capital. Even the paths that are in the BAU state in 2100 often had carbon taxes implemented in the

past and thus emissions in 2100 are lower than in the pure BAU simulation. The evolution of the

climate tipping state (see Panel b)) looks similar to the pure BAU simulation, but the tipping loop is

slowed down somewhat because society is mitigating climate change in many paths and thus delaying

climate tipping. In about two-thirds of the simulated paths, there is a technological breakthrough by

2100 that makes negative emission technologies competitive (see Panel c)).
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Figure 3: Markov Chains and Temperature Scenarios (starting from BAU with transition risks). In
Panel a) the light area (■) is the proportion of simulations in the BAU state, the dark gray area (■) the proportion
in the PIGOU state, and the black area (■) the proportion in the CAP state. In Panel b) the light area (■) is the
proportion of simulations in the pre-tip state, the dark gray area (■) the proportion in the intermediate state, and
the black area (■) the proportion in the post-tip state. In Panel c) the light area (■) is the proportion of simulations
in the pre-breakthrough state and the black area (■) the proportion where the negative emission technology has
come into force. In Panel d) the light area (■) is the proportion of simulations with temperature less than 1.8˝C,
the gray area (■) with temperature between 1.8˝C and 2˝C, the dark gray area (■) with temperature between
2˝C and 2.5˝C, and the black area (■) that with temperature above 2.5˝C.

About 29% of the paths lead to a temperature lower than 1.8˝C by the end of the century as shown by the

light area (■) and 47% of the paths lead to a temperature increase between 1.8˝C and 2.5˝C, as shown

by the aggregated gray and dark gray areas (■ and ■) (Panel d)). The remaining paths suffer from little

or ineffective climate action and lead to a significant temperature increase of more than 2.5˝C, as shown

by the black area (■). These figures roughly correspond to the scenarios in Moore et al. (2022). The 2˝C

cap is violated for many paths from 2040 onwards, with the number of violations increasing sharply

around 2050. About 46% of the sample paths up to 2100 adhere to the 2˝C cap, but a greater proportion

of paths temporarily violate the target. These paths are represented by the aggregated light and gray

areas (■ and ■). These temporary violations are compensated by negative emissions. This underlines

the importance of negative emissions technologies for the transition to a low-carbon economy.

Energy Transition and Global Output Figure 4 illustrates the transition towards a low-carbon

economy until the year 2100. Due to political tipping the share of brown capital and the share of fossil
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Figure 4: Transition of the Real Economy (starting from BAU with transition risks). Mean paths are
depicted by solid lines ( ) and dashed lines ( ) show 5% and 95% quantiles. The dotted line ( ) in Panel
a) shows the share of fossil fuel in the global energy mix.

fuel in the global energy mix decline much faster than in the pure BAU simulation (Panel a)). Still,

the transition is plagued by substantial political uncertainty since in our policy tipping scenario policy

makers can be replaced. In particular, in some paths already implemented carbon taxes are reversed

by a new BAU-type government. Such political uncertainties explain the broad confidence bands of the

share of brown capital and net emissions.

Mean temperature reaches a maximum around 2085 when the mean net emission path crosses the zero

line (see Panel b and c)). Hereafter, mean temperature slowly falls due to the negative net emissions

technology, which has become available in many paths. Global output increases at a slightly higher rate

as society internalizes the negative externalities from emissions or imposes a temperature cap.

Carbon Tax Paths Starting from BAU The number of paths with active climate policies increases

rapidly over time (Panel a) of Figure 3). Panel a) of Figure 5 shows unconditional means and quan-

tiles of carbon taxes, and Panel b) shows means and quantiles of carbon taxes conditional on modest

(PIGOU) or ambitious (CAP) climate policies being implemented. In about 8% of paths, the carbon tax

is implemented in the year 2021 and then starts at an average of $308/tC. The conditional distributions

of the implemented carbon taxes are left-skewed in 2025 and become right-skewed in later years (see

Figure D.3 and Table D.3). This negative skew is due to the negatively skewed distribution of the aggre-
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Figure 5: Carbon Taxes (starting from BAU with transition risks). The figure depicts the carbon taxes for
the benchmark simulation until the year 2100. Mean paths are depicted by solid lines ( ) and dashed lines
( ) show 5% and 95% quantiles. Panel a) shows unconditional means and quantiles, and Panel b) shows means
and quantiles conditional on being in the PIGOU or CAP state.

gate capital stock, which largely stems from rare economic disasters, and the optimal carbon tax being

proportional to the capital stock (see (3.1)). As time goes by, climate risks (tipping points and climate

disasters) and political shocks increase in intensity. These risks skew the carbon price to the right,

hence gradually transforming the left-skewed into a right-skewed distribution (see Appendix D.1).

To analyze whether and how different political, technological, and tipping states affect the optimal

carbon tax, we perform several Welch’s t-tests.31 We find three results that are statistically significant

at the 1% level. First, optimal carbon taxes are consistently higher in the climate tipping state. This

reflects that climate tipping leads to more pronounced economic damages (Panels d) – f) of Table D.3).

Second average carbon taxes are slightly lower after a technological breakthrough. This is because

negative emissions help reduce temperatures.32 Third, carbon taxes are consistently higher in the CAP

state than in the PIGOU state but the differences are not very pronounced. Note that carbon taxes in

the PIGOU state grow roughly in line with the growth rate of the economy while carbon taxes in the

CAP state follow an average of such a Pigouvian path and a Hotelling path, where the carbon price

in the latter path grows at a higher rate equal to the risk-adjusted interest rate (e.g. Olijslagers et al.,

2023). This implies that the CAP state tilts the carbon path away from the present to the future relative

to the carbon path in the PIGOU state, and thus the differences are not pronounced.

31A Welch’s t-test is a variant of a two-sample t-test which is used to test the null hypothesis that two populations have
equal means. This test is more reliable than the classical Student’s t-test if both samples have unequal variances and possibly
unequal sample sizes.

32This finding is statistically significant for all years until 2100, but the difference is not always economically significant. E.g.
in 2025 when this technology is too expensive to play a big role, the average carbon tax before the technological breakthrough
is 333 $/tC and 331 $/tC after the technological breakthrough.
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Figure 6: Asset Pricing Moments (starting from BAU with transition risks). This figure depicts the
simulation of several asset pricing moments for benchmark simulation until the year 2100. Mean paths are
depicted by solid lines ( ) and dashed lines ( ) show 5% and 95% quantiles.

5.3 Asset Pricing Paths with Transition Risks

Figure 6 illustrates the mean path as well as 5% and 95% quantiles of the risk-free rate, the green and

brown risk premium, and the carbon premium until the year 2100. Equation (3.3) implies that sudden

shocks to the political landscape, the climate system, and the technological state affect the risk-free

rate, and thus also the price-dividend ratios and risk premiums of the risky assets. Moreover, the asset

pricing moments depend in a non-linear manner on temperature, especially as the impact of a policy

transition to CAP becomes potentially devastating when the 2˝C cap is exceeded. This is reflected in the

large extent of variation of the key variables shown in Figure 6. Although the effects of temperature and

the share of brown capital on those asset pricing moments have extensively been discussed in Hambel

et al. (2024), we want to stress that our model generates a temperature risk premium as empirically

documented by Bansal et al. (2017), Donadelli et al. (2017), and Hong et al. (2019), which consistently
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increases in temperature and can be interpreted as compensation for physical climate risk. In the

remainder of this section, we focus on the novel implications of transition risks.

Risk-free Interest Rate The mean risk-free interest rate ( ) starts at 0.8% and slowly decreases

over time in response to growing climate-related risks (see Panel a)). The 5% quantile of the interest rate

reflects extreme transition risks and starts to fall rapidly around 2045. This happens especially in paths

with temperatures close to the 2˝C cap while being in the CAP state. Under these circumstances only a

small amount of carbon may be released and exceeding this would massively affect the productivity in

the brown sector when fossil fuels can no longer be burned. This risk is priced in by financial markets

and the corresponding precautionary savings reduce the risk-free interest rate considerably, up to -3%

in some extreme paths. When the transition continues and the brown capital stock becomes smaller, the

impact of ambitious policies to phase out fossil fuels diminishes, which is why demand for precautionary

savings will fall again and the 5% quantile eventually returns to 0% in 2100.

Green and Brown Asset Returns In contrast to Hambel et al. (2024), which ignores climate transi-

tion risk, we consistently have a positive carbon premium even in the PIGOU state and the CAP state

(see Panel b) of Figure 6).33 This carbon premium is initially small and not economically significant

(about 0.1%), in line with the empirical findings of Aswani et al. (2024) and Zhang (2024). Still, our

model offers a mechanism to explain sizable carbon premiums when political transition risks prevail.

The effect of transition risk is particularly strong if temperatures are close to the 2˝C cap and society is

already in the CAP state. The 95% quantiles in Panels c) and d) indicate that then the risk premiums

for both assets go up considerably. This finding can be interpreted as a transition risk premium in the

spirit of Engle et al. (2020) and Faccini et al. (2023). Moreover, transition risk has a larger effect on

the brown asset. Consequently and in line with the empirical findings of Hsu et al. (2023) and Bolton

and Kacperczyk (2021, 2023), a sizable carbon premium emerges that reflects the asymmetric impact of

political transition risk (see Panel b)).34

The green and brown price-dividend ratios tend to decline over time (see Panels e) and f)). The green

asset’s price-dividend ratio is initially relatively high reflecting the scarcity of this asset. A transition

to active climate policies (either PIGOU or CAP) boosts demand for the green asset and thus sizably

increases its price-dividend ratio (see the 95% quantile). The brown asset becomes worthless when the

transition has come to an end and the brown capital stock has been run down completely.

33Although Hambel et al. (2024) find a small positive carbon premium in their pure BAU scenario, this premium becomes
negative if policy makers implement the first-best optimal Pigouvian carbon tax.

34Further insights are given in Appendix D.1 and Figure D.4 by considering the effects on macroeconomics and financial
variables if the carbon premium exceeds 1%.
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Figure 7: Illustrative Sample Path for BAU Scenario with Transition Risks. Average values are depicted
by solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a) depicts
the mean path of the share of fossil fuel in the global energy mix. The thin black line ( ) shows one exemplary
sample path.

An Exemplary Sample Path Figure 7 illustrates the mechanisms for generating the various climate-

related risk premiums along one selected sample path shown by the thin black lines ( ). Along this
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path the economy is in the BAU state until the year 2030 when it transitions to the most climate

ambitious policy, the CAP state (Panel d)). This transition leads to a drastic emission cut (Panel b)) and

suddenly increases the risk premium of both risky assets by about 0.5 %-points as now the political risk

of phasing out fossil fuels has increased substantially (Panels g and h)). At the same time, demand for

precautionary savings is rising sharply and the risk-free interest rate is falling accordingly by around

0.5 %-points (Panel e)).

After a few years, the economy jumps to modest climate action, the PIGOU state, which further in-

creases risk premiums and demand for precautionary savings. This shows that the transition risk in

the PIGOU state is more pronounced than in the CAP state as in the PIGOU state policy transitions are

possible in both directions, i.e. to more stringent climate action and to BAU. The return to BAU in 2055

is accompanied by increased emissions and a decline in risk premiums and demand for precautionary

savings. This can be explained by the fact that a transition away from BAU is not considered a risk but

a chance by market participants since the negative externality is not internalized in this state.

After 2060, the economy transitions back to ambitious climate action (CAP), thus lifting again risk

premiums and curbing the risk-free rate. This effect is particularly pronounced when temperatures are

close to the 2˝C cap, hence transition risks are asymmetric as the brown sector faces the risk that fossil

fuels could be phased out. This asymmetry leads then to a sizable carbon premium of about 3 %-points

that reacts sensitively to small temperature fluctuations (see Panels c) and f)). Moreover, this carbon

premium rapidly declines and becomes meaningless when the brown capital stock has been run down

completely around 2080. Then, political transition risk plays a minor role and risk premium of the

green asset and the demand for precautionary savings eventually get back to a level which is slightly

higher than at the beginning. This additional risk premium is due to physical climate risk.

Finally, a competitive negative emission technology becomes available around 2090 (Panel b)) but this

has a negligible effect on asset pricing moments.

5.4 Robustness

Pure PIGOU Scenario To test if the carbon premium emerges due to political transition risks, we

have simulated a pure PIGOU scenario with no policy transitions to the BAU or CAP state (see Ap-

pendix D.2). Compared to the benchmark simulation, the carbon premium is initially very small and

negative (0.08%) due to the absence of political transition risk, and turns positive when physical risks

become sizable. Still, the magnitude of the carbon premium is small and economically not significant.

This confirms that transition risk is the root of a sizable positive carbon premium and to a much lesser

extent physical risk.
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No negative emission technology To test if technological transition risk carries a risk premium,

we have also simulated a scenario without the possibility of technological breakthroughs and obtain

virtually unchanged results for the risk premiums as in the benchmark case (see Appendix D.3). This

confirms that our results are robust to different assumptions about the existence and likelihood of

competitive negative emissions technologies. Moreover, they support the empirical results of Engle

et al. (2020), whose WSJ Climate Change index primarily reacts to climate-related political shocks and

climate summits.

Tighter Carbon Budget We also consider a scenario where policy makers phase out fossil fuels in

the CAP state if temperature exceeds 1.5˝C instead of 2˝C. Carbon pricing is then more ambitious to

avoid the potentially devastating effects of overshooting the carbon budget. Figure D.7 shows that the

carbon premium becomes earlier economically relevant than in the benchmark case when the economy

is in the CAP state and the temperature is close to 1.5˝C.

6 Transition Risk and Stranded Assets

To investigate the interplay between climate transition risk and stranded assets, we now adopt an

alternative calibration where the brown sector only uses fossil fuel and the green sector uses both

energy types (see Appendix C.3).35 We still reproduce the emission and temperature paths of the pure

BAU simulation of Section 5.1 but things become different once the political Markov chain is switched

on. To ensure a consistent comparison with the benchmark results of Section 5, we keep the calibration

of the Markov chains unchanged.36

Energy Transition and Carbon Taxes In this alternative calibration it is no longer possible to

replace fossil fuels with renewable energy in the brown sector. Thus, the transition to a green economy

must necessarily take place through the development of the green sector. If this does not happen quickly

enough before society jumps to the state with the most ambitious climate policies (the CAP state), the

brown asset may become stranded. This hazard and the costs of stranding are priced in by policy

makers, who thus implement higher carbon taxes compared to our benchmark calibration (in both the

PIGOU state and the CAP state). Conditional on being implemented, the average carbon tax in the

year 2021 is 366 $/tC, which is about 19% higher than the 308 $/tC in our benchmark simulation. This

markup is sizable and solely driven by the transition risk of policy-related stranding of financial assets.

35To test how sensitive our results are with respect to this assumption, Appendix C.3 provides two more alternative calibra-
tions. The qualitative conclusions for those alternatives are unaltered and available upon request.

36Results for a modified calibration that matches the temperature ranges in Moore et al. (2022) are available.
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Figure 8: Transition of the Real Economy (Stranded Assets Scenario). Mean paths are depicted by solid
lines ( ) and dashed lines ( ) show 5% and 95% quantiles. The dotted line ( ) in Panel a) shows the
share of fossil fuel in the global energy mix.

Consequently, the transition to a low-carbon economy takes place at a much faster pace as policy makers

aim to avoid the economic costs of stranded assets.

Figure 8 illustrates the transition towards a low-carbon economy until the year 2100. The hazard of

stranded assets accelerates the green transition a lot relative to our benchmark scenario (see Panels a)

and b)). Mean temperature reaches its maximum around 2065, about 20 years earlier than in our bench-

mark simulation (see Panel c)). The acceleration of the green transition is also reflected in Figure D.9 in

Appendix D.5, which shows that the number of paths keeping global mean temperature below the 2˝C

cap in the year 2100 is 75% and thus much higher than the 45% in our benchmark (see Panel d). This

stems from the much more stringent climate policies in paths that entered the PIGOU or CAP state

compared to our benchmark scenario even though slightly less paths than in our benchmark scenario

have left the BAU state in the year 2100 (see Panel a)).

Economic Costs of Stranded Assets Panel a) of Figure 9 indicates that the share of sample paths

with stranded assets increases rapidly from 2035 on, and peaks in the year 2080 at 15% of paths. Then

this share starts to decline slowly. In our framework, the risk of stranded assets can be reverted if either

policy makers switch back from the CAP state to less ambitious or no climate policies or if temperature

falls below 2˝C so that brown production can start up again. Negative emission technologies curb the
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Figure 9: Risk of Stranded Assets. Panel a) shows the share of sample paths with stranded assets in simu-
lations with our alternative calibration. Panel b) depicts the share of stranded capital by calculating the sample
mean of 1tTě2,X p“3uS over all paths. Panel c) depicts the share of stranded capital conditional on those paths
in which stranded asset occur by calculating the sample mean and quantiles of 1tTě2,X p“3uS over all paths in
which stranded assets occur.

likelihood of stranded assets and increase the likelihood that the brown technology may eventually be

operated again.

Panel b) of Figure 9 depicts the economic costs of stranded assets expressed as the average share of

stranded capital. It peaks around 2055 at 1% of total capital. Conditioning this figure on those paths

in which stranded assets occur, the economic costs are much higher and amount to up to around 75% of

total capital if stranded assets occur before 2030 (see Panel c)). Although this happens in less than 0.2%

of the paths, the probability of stranded assets sharply increases around 2040 while its economic costs

decline gradually as the brown capital stock is cut back. Still, the economic impact of stranded assets

can be devastating and its magnitude is comparable to the risk of recurring macroeconomic disasters.

Asset Pricing Implications of Stranded Assets Figure 10 that a policy transition to a 2˝C tem-

perature cap now has much more severe impacts on asset prices than in our benchmark simulations.

Demand for precautionary savings and the risk-free rate are more strongly affected (see Panel a)). The

risk premiums for both assets are significantly boosted by the risk of stranded assets and rises to 15%

per year in some extreme cases (see Panels c) and d)). The effect is more pronounced for the brown asset,

because of the enormous economic impact of stranded assets discussed in the previous paragraph. This
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Figure 10: Asset Pricing Moments (Stranded Assets). This figure depicts the simulation of several asset
pricing moments for simulations based on our alternative calibration until the year 2100. Mean paths are depicted
by solid lines ( ) and dashed lines ( ) show 5% and 95% quantiles.

effect is much stronger than in our benchmark simulation without stranded assets. This leads to quite

a high carbon premium of up to 2.5% per year (see Panel b)). Moreover, when the brown asset becomes

stranded, it looses almost its whole value (see Panel f)).37

7 Concluding Remarks

Our aim has been to better understand how transition risks (uncertainty about future policy regimes

and breakthroughs in negative emissions technologies) and physical risks (temperature-related risks

37Its value remains strictly positive as there is always a strictly positive probability that this policy transition will be
reversed eventually or temperature falls again below 2˝C because of use of the negative emission technology. Our framework
does generate a brown asset price of zero if we model CAP as an absorbing state, there is no negative emissions technology,
and the temperature evolution is deterministic.
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of recurring climate disasters and climate tipping points) affect carbon pricing, asset returns, carbon

premiums, and the risk of stranded assets. For this purpose, we have formulated and calibrated a

two-sector DSGE model of the economy and the climate with a wide range of uncertainties affecting

the economy, the climate, and global warming damages. We have distinguished three different political

states: (i) no carbon pricing (business as usual), (ii) modest carbon pricing with the carbon tax set to

the social cost of carbon, and (iii) ambitious climate carbon pricing with in addition a temperature gap

of 2˝C. Under (ii) and (iii) policy makers take account of the risks of future policy, technological, and

climate tipping as well as the risk of regular macroeconomic disasters and temperature-related risk of

climate disasters. Financial markets always takes account of all these risks.

If policy makers do not price carbon and negative emissions technology is excluded, the green transition

takes place at a slow pace. In this business-as-usual scenario, emissions are high and global mean

temperatures reach 4.2˝C by the end of the century. Climate tipping points occurs in almost 90% of

paths. This fuels global warming and leads to additional economic damages. Financial markets price

in the adverse effects of global warming on output, the frequency of climate-related disasters, and the

probability of climate tipping. This gives rise to a tiny carbon risk premium, since transition risks

are absent. The risk-free rate falls due to precautionary saving. Global output is quite volatile due to

growing physical risks.

However, if political and technological tipping are allowed for, carbon taxes are implemented by 2060

in about half of simulated pathways. Emissions and temperature are lower than in the absence of

transition risks, which delays activation of climate tipping points. Now a little less than a third of

paths lead to temperatures of less than 1.8˝C by the end of this century, about half of paths lead to

temperatures between 1.8˝C and 2.5˝C, and remaining paths lead to temperatures of more than 2.5˝C.

This is a lot better than in the scenario without transition risks. But the greening of the economy is

plagued by substantial political uncertainty and thus temperatures are still a lot higher than if policy

makers did not face such risks and could impose the first-best optimal climate policies.

The risk-free rate slowly decreases over time in response to growing climate-related risks. If the temper-

ature cap kicks in, markets respond with precautionary savings and rapid falls in the risk-free interest

rate. As the green transition continues and the brown capital stock falls, precautionary savings will fall

again. We consistently find a positive carbon premium even when policy makers set carbon taxes or

enforce a cap. This carbon premium reflects transition risks, especially political risk, and is particularly

large if temperatures are close to or exceed the 2˝C cap. This premium incentivizes firms to accelerate

the green transition. In contrast, if policy makers ignore political transition risk and implement first-

best carbon taxes, there is a slightly negative carbon premium. The green asset’s price-dividend ratio

is initially relatively high reflecting the scarcity of this asset. The brown asset becomes worthless when

the transition has come to an end and the brown capital stock has run down completely.
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To highlight the risk of stranded assets, we have also considered an alternative calibration in which the

brown sector only uses fossil fuel energy and the green sector uses both energies. If it takes too long

before society jumps into climate action, the brown asset may now become stranded. Policy makers want

to avoid this by implementing higher carbon taxes and thus the green transition occurs more quickly.

Policy makers now find themselves more often in a state where they take ambitious climate action. The

risk of stranded assets can be reverted if policy makers switch back to less ambitious or no climate

polices or if temperature falls below its cap in which case brown capital comes into operation again.

Also, negative emission technologies curb the risk of stranded assets and make it more likely that brown

technology may some time be operated again. Up to three quarters of total capital can become stranded

before 2030 in all paths where stranded assets occur. The economic impact of stranding is comparable

to that of the risk of macroeconomic disasters. The financial impacts are also more pronounced. For

example, the risk premium on both green and brown assets and the carbon premium rise more sharply

due to the risk of stranded assets. The carbon premium can be as much as 2.5% per year. Once the

brown assets strand they loose almost their whole value, but not all as there is always a chance that

brown capital comes into operation again.

Summing up, we have provided a mechanism for the carbon premium and stranded assets and have

shown how these and carbon prices are qualitatively affected by political and technological tipping (tran-

sition risks) and by climate tipping and the risk of climate-related disasters such as extreme weather

events (physical risks). In further research we aim to extend our framework to allow for credit mar-

ket constraints, monetary policy, and systemic financial risk, and to study empirically the mechanisms

underlying carbon premiums and stranded assets.
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A Solution Approach

A.1 Hamilton-Jacobi-Bellman Equation

Applying the Bellman principle in continuous time, the value function J “ Jpt,K1,K2,T,Xq solves a

non-linear partial differential equation, which is typically refered to as Hamilton-Jacobi-Bellman equa-

tion (e.g., Duffie and Epstein 1992b). This equation is given by

0 “ max
D,Fn,Gn,In,R

"

Jt `δθJ
´

`
ř

n“1,2rYn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kqs
˘1´1{ψ

rp1´γqJs
1´1{ψ

1´γ

´1
¯

` JTϑpXq
`

νtrF1 ` F2s´ D
˘

`
1
2

JTTσ
2
T ` JK1

´

I1 ´
1
2
φ1

I2
1

K1
` R ´

1
2
κ

R2

K1
´δk

1K1

¯

(A.1)

`
1
2

JK1K1 K2
1σ

2
1 ` JK2

´

I2 ´
1
2
φ2

I2
2

K2
´ R ´δk

2K2

¯

`
1
2

JK2K2 K2
2σ

2
2 ` JK1K2 K1K2σ1σ2ρ12

`
ÿ

i“c,e

λipT,XqE
“

JpK1Zi,K2Zi,T,Xq´ J
‰

`
ÿ

x‰X
λxpS,X, xq

“

JpK1,K2,T, xq´ J
‰

*

,

subject to the constraints D,Fn,Gn, In,R ě 0. Subscripts of J denote partial derivatives, e.g., JK1 “ BJ
BK1

.

A.2 Optimal Carbon Tax and Negative Emission Technology

The first-order condition for optimal fossil fuel use is

fCpC, Jq

´

BYn

BFn
´ b f

¯

“ ´JTϑpXqνt.

Setting the marginal product of fossil fuel equal its marginal cost b f plus the external costs of emitting

greenhouse gases into the atmosphere,

BYn

BFn
“ b f `τ f .

The optimal Pigouvian social cost for using one unit of fossil fuel is thus

τ f “ ´
ϑpXqνtJTC1{ψ

δrp1´γqJs1´1{θ
.

Taking the different units between fossil fuel and carbon emissions into account, the SCC is

τ“ ´
ϑpXqJTC1{ψ

δrp1´γqJs1´1{θ
. (A.2)
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Since ς1 `ς2 “ 1, the first-order conditions for optimal carbon removal give

fCpC, Jq
BbdpS,X,D,Kq

BD
“ ´JTϑpXq.

A.3 Share of Brown Capital

To solve the Hamilton-Jacobi-Bellman equation (A.1), we first transform it by expressing the decision

variables in relative terms and reducing the number of state variables by one. Let gn “ Gn{Kn, fn “

Fn{Kn, in “ In{Kn, r “ R{K1 denote the relative control variables. Exploiting the homogeneity property

of bd, we use the notation b̃dpS,X,Dq “ bdpS,X,D,Kq{K . We express the value function in terms of total

capital K “ K1 ` K2 and share of brown capital S “ K2{pK1 ` K2q (instead of K1 and K2). Besides, we

set c “ C{K . Using the notation S1 “ 1´ S, S2 “ S, the production functions can then be expressed as

Yn “ AnSnK
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpTq.

The amounts of consumption goods produced by each sector are

Cn “ SnK
”

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpT,Xq´ in ´ bgpSqgn ´ b f pSq fn ´

ςnpSq

Sn
b̃dpS,X,Dq

ı

.

Therefore,

c “ A1p1´ Sq
`

κ1,1 gρ1
1 `κ2,1 f ρ1

1

˘

η1
ρ1Λ1pT,Xq` A2S

`

κ1,2 gρ2
2 `κ2,2 f ρ2

2

˘

η2
ρ2Λ2pT,Xq´ i1p1´ Sq´ i2S

´ bgpSqrg1p1´ Sq` g2Ss´ b f pSqr f1p1´ Sq` f2Ss´ b̃dpS,X,Dq.

The dynamics of the state variables can be written as

dK1 “ K1´

”´

i1 ´
1
2
ϕ1 i2

1 ` r ´
1
2
κr2 ´δk

1

¯

dt `σ1dW1 ´
ÿ

i“c,e

ℓidNi

ı

,

dK2 “ K2´

”´

i2 ´
1
2
ϕ2 i2

2 ´ r
1´ S

S
´δk

2

¯

dt `σ2

´

ρ12dW1 `

b

1´ρ2
12dW2

¯

´
ÿ

i“c,e

ℓidNi

ı

,

dT “ ϑ̂pt,Xqr f1p1´ Sq` f2Ssdt ´ϑpXqD dt `σTdW3 `κT´dX c,

where ϑ̂pt,Xq “ ϑpXqK0e
şt

0 gνpsqds. To shorten the notation, we write W “ pW1,W2,W3qJ and denote the

drift of the capital stocks and temperature by µK i and µT , respectively. The dynamics of K and S can

be calculated using Ito’s lemma:

dS “ Sp1´ Sq

”

µSpi1, i2, r,Sqdt `pσ2ρ12 ´σ1qdW1 `σ2

b

1´ρ2
12dW2

ı

,
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dK “ K´

”

µK pi1, i2, r,Sqdt `rp1´ Sqσ1 ` Sσ2ρ12sdW1 ` Sσ2

b

1´ρ2
12dW2 ´

ÿ

i“c,e

ℓidNi

ı

,

where the drift rates are given by

µSpi1, i2, r,Sq “µK1 ´µK2 ` Spσ1σ2ρ12 ´σ2
2q`p1´ Sqpσ2

1 ´σ1σ2ρ12q,

µK pi1, i2, r,Sq “ p1´ SqµK1 ` SµK2 .

A.4 Separation and Reduced-Form Value Function

We solve a modified HJB equation with finite differences in terms of only three (S,T,X) instead of four

state variables (K1,K2,T,X). For this to be possible, we must assume that the transition intensities

λℓpS, i, jq depend on S and T but not explicitly on K1 and K2. The following proposition summarizes

our findings for the PIGOU state. The situation for the CAP state is discussed in Corollary A.3.

Proposition A.1 (Value Function and Optimal Controls in the PIGOU state). Let ϑ̂pt,Xq “ϑpXqK0e
şt

0 gνpsqds.

Suppose that there is no temperature cap in the current state. The value function (2.6) then has the form

Jpt,K1,K2,T,Xq “
1

1´γ
pK1 ` K2q1´γV

`

t,T,SpK1,K2q,X
˘

. (A.3)

where V satisfies a certain HJB equation which is given in (A.12) below. Optimal consumption is

c “
ÿ

n“1,2
Sn

”

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpT,Xq´ in ´ bgpSqgn ´ b f pSq fn ´

ςn

Sn
b̃dpS,X,Dq

ı

. (A.4)

Optimal energy use is

g1 “

´ bgpSq

η1 A1
`

κ1,1 `κ2,1zρ1
˘

η1
ρ1

´1
Λ1pT,Xqκ1,1

¯
1

η1´1
, f1 “ g1z1, (A.5)

g2 “

´ bgpSq

η2 A2
`

κ1,2 `κ2,2zρ2
˘

η2
ρ2

´1
Λ2pT,Xqκ1,2

¯
1

η2´1
f2 “ g2z2, (A.6)

where

z1 “

´ κ1,1

κ2,1bgpSq

¯
1

ρ1´1
”

b f pSq´
VT ϑ̂pt,Xqp1´ Sq

“

p1´γqV ´VSS
‰

r1´ϕ1 i1s

ı
1

ρ1´1
,

z2 “

´ κ1,2

κ2,2bgpSq

¯
1

ρ2´1
”

b f pSq´
VT ϑ̂pt,XqS

“

p1´γqV ´VSS
‰

r1´ϕ1 i1s

ı
1

ρ2´1
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The condition for the optimal reallocation strategy is

r “
1
κ

´ VS

VSS `pγ´1qV

¯

(A.7)

and optimal investment and carbon removal solves the nonlinear system

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV ´VSS
‰

r1´ϕ1 i1s, (A.8)

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV `VSp1´ Sq
‰

r1´ϕ2 i2s, (A.9)

δp1´γqV 1´1{θc´1{ψ “ ´VTϑpXq

´

Bb̃dpS,X,Dq

BD

¯´1
, (A.10)

The optimal carbon tax is

τ“
ϑpXqc1{ψ

δpγ´1q

VT

V 1´1{θ
K . (A.11)

Proof. Let in “ In{Kn, fn “ Fn{Kn, gn “ Gn{Kn, r “ R{K1 denote the control variables in relative

terms. Substituting these relative controls into (A.1) leads to the HJB equation:

0 “ sup
D,in, fn,gn,r

!

Jt `
δ

1´1{ψ
rp1´γqJs1´1{θ

´

ÿ

n“1,2
rYn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kqs

¯1´1{ψ

´δθJ ` JK1 K1
`

i1 ´
1
2
ϕ1 i2

1 ` r ´
1
2
κr2 ´δk

1
˘

` JK2 K2
`

i2 ´
1
2
ϕ2 i2

2 ´ r
K1

K2
´δk

2
˘

`
1
2

JK1K1 K2
1σ

2
1 `

1
2

JK2K2 K2
2σ

2
2 ` JK1K2 K1K2σ1σ2ρ12 ` JTrϑ̂p f1S1 ` f2S2q´ϑDs` JTT

1
2
σ2

T

`
ÿ

i“c,e

λipTqErJpK1Zi,K2Zi,T,Xq´ Js`
ÿ

x‰X

λxpS,X, xq
“

JpK1,K2,T, xq´ J
‰

)

We conjecture that the value function has the form

Jpt,K1,K2,T,Xq “
1

1´γ
pK1 ` K2q1´γV

`

t,T,SpK1,K2q,X
˘

.

The partial derivatives of S are SK1 “ ´ S
K , SK2 “ 1´S

K . This specification implies38

V pt,T,S,Xq ą 0, VTpt,T,S,Xq ą 0.

38The sign of VSpt,T,S,Xq is ambiguous because S indicates how CO2 intensive the economy is but also how much the econ-
omy is diversified, see Hambel et al. (2024) for an extensive discussion about the interaction of abatement and diversification
motives.
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The relevant partial derivatives of the value function J are

JK1 “ K´γV `
1

1´γ
K1´γVS

´S
K

,

JK1K1 “ ´γK´γ´1V `2K´γVS
´S
K

`
1

1´γ
K1´γ

”

VSS
S2

K2 `2VS
S

K2

ı

,

JK2 “ K´γV `
1

1´γ
K1´γVS

1´ S
K

,

JK2K2 “ ´γK´γ´1V `2K´γVS
1´ S

K
`

1
1´γ

K1´γ
”

VSS
p1´ Sq2

K2 ´2VS
1´ S
K2

ı

,

JK1K2 “ ´γK´1´γV ` K´γVS
1´2S

K
`

1
1´γ

K1´γ
”

VSS
´p1´ SqS

K2 `VS
2S ´1

K2

ı

,

JT “
1

1´γ
K1´γVT .

The aggregator is given by f pC, Jq “ K1´γ
“

δθV 1´1{θc1´1{ψ´δθV
‰

. Substituting the conjecture and its

partial derivatives into the HJB equation leads to the following reduced-form HJB equation

0 “ sup
D, fn,,gn,in,r

!

Vt ` M0 ` M1V ` M2VS ` M3VSS ` M4VT ` M5VTT

)

(A.12)

We introduce the three-dimensional volatility vectors

σkpSq “
`

p1´ Sqσ1 ` Sσ2ρ12, Sσ2

b

1´ρ2
12, 0

˘J, (A.13)

σs “
`

σ2ρ12 ´σ1, σ2

b

1´ρ2
12, 0

˘J. (A.14)

The coefficients Mℓ (ℓ“ 1, . . . ,5) are given by

M0 “ δθV 1´1{θc1´1{ψ`
ÿ

x‰X
λxpS,X, xqV pt,T,S, xq,

M1 “ p1´γq

”

p1´ Sqµ1 ` Sµ2
loooooooomoooooooon

“µk

´
1
2
γrp1´ Sq2σ2

1 ` S2σ2
2 `2Sp1´ Sqσ1σ2ρ12

loooooooooooooooooooooooomoooooooooooooooooooooooon

“}σk}2

s

ı

`
ÿ

i“c,e

λipTqErp1´ℓiq
1´γ´1s´

ÿ

x‰ X
λxpS,X, xq´δθ,

M2 “ Sp1´ Sq

´

µ2 ´µ1 ´γ
“

Sσ2
2 ´p1´ Sqσ2

1 `p1´2Sqσ1σ2ρ12
loooooooooooooooooooooomoooooooooooooooooooooon

“σJ
k σs

‰

¯

,

M3 “
1
2

p1´ Sq2S2“σ2
1 `σ2

2 ´2σ1σ2ρ12
looooooooooomooooooooooon

“}σs}2

‰

,

M4 “ ϑ̂pt,Xqr f1p1´ Sq` f2Ss´ϑpXqD,

A-5



M5 “
1
2
σ2

T ,

where c is given in (A.4) and ϑ̂pt,Xq “ ϑpXqK0e
şt

0 gνpsqds. Calculating the first-order conditions leads to

the system of equations (A.5) – (A.9), which determine the optimal controls. The optimal SCC follows

from substituting the value function (A.3) into (A.2).

We emphasize that the proposition is also valid in the BAU state. Policy makers ignore the negative

externalities from emitting CO2, so behave as if ΛnpT,Xq “ 0 and λcpTq “ 0. This implies in particular

VT “ 0, D “ 0, and τ“ 0.

Corollary A.2 (Tobin’s Q’s). Under the conditions of Proposition A.1, the Tobin’s Q’s of the green and

brown asset, respectively, are given by

q1 “
p1´γqV ´VSS

δp1´γqV 1´1{θc´1{ψ
, q2 “

p1´γqV `VSp1´ Sq

δp1´γqV 1´1{θc´1{ψ
.

Proof. This follows immediately from (A.8) and (A.9).

Now, we consider the case where a temperature cap is implemented in some state X, i.e., carbon emis-

sions are only allowed as long as Tt ď Tcap. If the carbon budget has been maxed out, i.e. if temperature

exceeds Tcap, society is not allowed anymore to release CO2 into the atmosphere.

Corollary A.3 (Optimal Controls in the CAP state). Suppose that in state X, carbon emissions are

prohibited if temperature exceeds its limit Tcap.

(i) If temperature is below the cap, T ď Tcap, the indirect utility function and the optimal controls are

as stated in Proposition A.1.

(ii) If temperature exceeds Tcap, the separation (A.3) still holds, but the release of CO2 into the atmo-

sphere is no longer allowed, i.e. fn “ 0. Then, the optimal energy composites are

en “ gnκ
1
ρn
1,n “

$

’

&

’

%

”

bgpSq

Anηnκ
ηn{ρn
1,n ΛnpTq

ı
1

ηn´1
κ

1
ρn
1,n, if ρn ą 0

0, if ρn ď 0.
(A.15)

Optimal consumption is

c “
ÿ

n“1,2

´

Sn

”

Aneηn
n ΛnpTq´ in ´ bgpSqgn ´

ςn

Sn
b̃dpS,X,Dq

ı¯

. (A.16)
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The optimal reallocation strategy is

r “
1
κ

´ VS

VSS `pγ´1qV

¯

(A.17)

and optimal investment and optimal carbon removal solve the nonlinear system

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV ´VSS
‰

r1´ϕ1 i1s, (A.18)

δp1´γqV 1´1{θc´1{ψ “
“

p1´γqV `VSp1´ Sq
‰

r1´ϕ2 i2s, (A.19)

δp1´γqV 1´1{θc´1{ψ “ ´VTϑpXq

´

Bb̃dpS,X,Dq

BD

¯´1
. (A.20)

The optimal SCC is as stated in Proposition A.1 and the Tobin’s Q’s are as stated in Corollary A.2.

Proof. Along the lines of the proof of Proposition A.1.

Although the decomposition of the indirect utility function and the optimal controls in (i) are unaffected

when the temperature cap kicks in, the values are different. This is because V has a different shape in

states with and without temperature cap. In the latter scenario, the value function is much steeper as

temperature approaches Tcap.

A.5 Numerical Solution Approach

Basic Idea We face a problem with an infinite time horizon. To solve this problem we first compute

the steady state Ṽ pT,S,Xq on a grid pT,S,Xq assuming there is no exogenous time trend. Thus, we first

have to solve a similar PDE as in (A.12) but without the time derivative. The resulting steady state

Ṽ pT,S,Xq is then used as a terminal condition V ptmax,T,S,Xq “ Ṽ pT,S,Xq for the value function in the

year 2400 corresponding to tmax “ 380. Starting with this terminal condition, we proceed backwards

through the time grid to analyze the transition towards the steady state.

Definition of the Grid We use a grid-based solution approach to solve the non-linear PDE. We dis-

cretize the pt,T,Sq-space using an equally-spaced lattice. Its grid points are defined by

␣

ptn,Ti,S jq | n “ 0, ¨ ¨ ¨ , Nt, i “ 0, ¨ ¨ ¨ , NT , j “ 0, ¨ ¨ ¨ , NS
(

,

where tn “ n∆t, Ti “ i∆T , and S j “ j∆S for some fixed grid size parameters ∆t, ∆T , and ∆S that denote

the distances between two grid points. The numerical results are based on a choice of NT “ 50, NS “ 200

and one time step per year. Our results hardly change if we use a finer grid or more time steps per year.
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In the sequel, Vn,i, j,k denotes the approximated value function at the grid point ptn,Ti,S j,X “ kq and

πn,i, j,k refers to the corresponding set of optimal controls. We apply an implicit finite-difference scheme.

Finite Differences Approach We now describe the numerical solution approach in more detail. We

adapt the numerical solution approach used by Munk and Sørensen (2010). The numerical procedure

works as follows. At any point in time, we make a conjecture for the optimal strategy π˚
n,i, j,k. A good

guess is the value at the previous grid point since the abatement strategy varies only slightly over a

small time interval, i.e. we set πn´1,i, j,k “π˚
n,i, j,k. Substituting this guess into the HJB equation yields

a semi-linear PDE:

0 “ Vt `δθV 1´1{θc1´1{ψ`
ÿ

x‰X
λxpS,X, xqV pt,T,S, xq` M1V ` M2VT ` M3VTT ` M4VS ` M5VSS

with state-dependent coefficients Mi “ Mipt,T,S,Xq as stated in Appendix A.4. Due to the implicit

approach, we approximate the time derivative by forward finite differences. In the approximation, we

use the so-called up-wind scheme that stabilizes the finite differences approach. Therefore, the relevant

finite differences at the grid point pn, i, j,kq are given by

D`

T Vn,i, j,k “
Vn,i`1, j,k ´Vn,i, j,k

∆T
, D´

T Vn,i, j,k “
Vn,i, j,k ´Vn,i´1, j,k

∆T
,

D`

S Vn,i, j,k “
Vn,i, j`1,k ´Vn,i, j,k

∆S
, D´

S Vn,i, j,k “
Vn,i, j,k ´Vn,i, j´1,k

∆S
,

D2
TTVn,i, j,k “

Vn,i`1, j,k ´2Vn,i, j,k `Vn,i´1, j,k

∆2
T

,

D2
SSVn,i, j,k “

Vn,i, j`1,k ´2Vn,i, j,k `Vn,i, j´1,k

∆2
S

,

D`
t Vn,i, j,k “

Vn`1,i, j,k ´Vn,i, j,k

∆t
.

Substituting these expressions into the PDE above yields the following semi-linear equation for the grid

point ptn,Ti,S j,kq:

Vn`1,i, j,k
1
∆t

“ Vn,i, j,k

”

´ M1 `
1
∆t

`abs
´M2

∆T

¯

`abs
´M4

∆S

¯

`2
M3

∆2
T

`2
M5

∆2
S

ı

`Vn,i´1, j,k

”M´
2

∆T
´

M3

∆2
T

ı

`Vn,i`1, j,k

”

´
M`

2

∆T
´

M3

∆2
T

ı

`Vn,i, j´1,k

”M´
4

∆S
´

M5

∆2
S

ı

`Vn,i, j`1,k

”

´
M`

4

∆S
´

M5

∆2
S

ı

`δθV 1´1{θ

n,i, j,k c1´1{ψ

n,i, j,k `
ÿ

k̂‰k

λpS,k, k̂qVn,i, j,k̂.
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Therefore, for a fixed point in time each grid point is determined by a non-linear equation. This results

in a non-linear system of pNS ` 1qpNT ` 1q equations for every state k of the Markov chain X that can

be solved for the vector

Vn,k “ pVn,1,1,k, ¨ ¨ ¨ ,Vn,1,NS ,k,Vn,2,1,k, ¨ ¨ ¨ ,Vn,2,NS ,k, ¨ ¨ ¨ ,Vn,NT ,1,k, ¨ ¨ ¨ ,Vn,NT ,NS ,kq.

Using this solution we update our conjecture for the optimal controls at the current point in the time

dimension. We apply the first-order conditions as stated in Proposition A.1 and determine the opti-

mal strategies and the optimal SCC with the above-mentioned finite-difference approximations of the

corresponding partial derivatives. After we have solved the model, we simulate all state and decision

variables in a Monte-Carlo simulation. We simulate 200,000 paths and calculate quantiles, means, and

other moments for all relevant variables.

B Asset Pricing

B.1 Dynamics of the Stochastic Discount Factor

Duffie and Epstein (1992a) show that the dynamics of the pricing kernel H are given by

dH
H´

“
d fcpC, Jq

fcpC, Jq
` fJpC, Jqdt.

The relevant partial derivatives of the aggregator are

fcpC, Jq “ δV 1´1{θK´γc´1{ψ, fJpC, Jq “ δpθ´1qc1´1{ψV ´1{θ ´δθ.

To calculate the dynamics of the SDF, we first compute

dK´γ

K´γ
´

“

´

´γµk `
1
2
γpγ`1q}σk}2

¯

dt ´γσJ
k dW `

ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi.

Secondly, we determine the dynamics of V 1´1{θ. According to Ito’s lemma, V “ V pt,S,T,Xq satisfies

dV
V´

“µvdt `σJ
v dW ´

ÿ

x‰X
jx
vdNx
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where Nx is a point process that indicates a jump to state x, i.e.,

Nx
τx

“

$

&

%

Nx
τx´ `1 : Xτx “ x, Xτx´ ‰ x

Nx
τx´ : else

with

µv “
1

V´

´

Vt `VSSp1´ Sqµs `VTϑνp f1p1´ Sq` f2Sq´VTϑD (B.1)

`
1
2

VSSS2p1´ Sq2}σs}2 `
1
2

VTTσ
2
T

¯

,

σv “
1

V´

´

VSSp1´ Sqp´σ1 `σ2ρ12q, VSSp1´ Sqσ2

b

1´ρ2
12, VTσT

¯J

, (B.2)

jx
v “ 1´

V pt,T,S, xq

V pt,T,S,Xq
. (B.3)

Another application of Ito’s lemma yields

dV 1´1{θ

V 1´1{θ
´

“

”

θ´1
θ

µv ´
θ´1
2θ2 }σv}2

ı

dt `
θ´1
θ

σJ
v dW `

ÿ

x‰X

`

p1´ jx
vq1´1{θ ´1

˘

dNx.

Therefore, by Ito’s product rule,

dpV 1´1{θK´γq

pV 1´1{θK´γq´

“

´

´γµk `
1
2
γpγ`1q}σk}2

¯

dt `
θ´1
θ

´

µv ´γxσk,σsy
VS

V
Sp1´ Sq

¯

dt

´
θ´1
2θ2 }σs}2 V 2

S

V 2 S2p1´ Sq2dt `

´

θ´1
θ

σv ´γσk

¯J

dW `
ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi (B.4)

`
ÿ

x‰X

`

p1´ jx
vq1´1{θ ´1

˘

dNx.

Notice that according to the simplified HJB equation (A.12),

µv ´γxσk,σsy
VS

V
Sp1´ Sq “ pγ´1q

`

µk ´
1
2
γ}σk}2˘`δθ´δθV ´1{θc1´1{ψ

´
ÿ

i“c,e

λiErp1´ℓiq
1´γ´1s`

ÿ

x‰X
λx jx

v,

where we use the short-hand notation λx “λxpS,X, xq. Substituting this term into (B.4) yields

dpV 1´1{θK´γq

pV 1´1{θK´γq´

“

´

´γµk `
1
2
γpγ`1q}σk}2

¯

dt ´
θ´1
2θ2 }σs}2 V 2

S

V 2 S2p1´ Sq2dt

`

´

θ´1
θ

σv ´γσk

¯J

dW
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`
θ´1
θ

´

pγ´1q
`

µk ´
1
2
γ}σk}2˘`δθ´δθV ´1{θc1´1{ψ

¯

dt `
ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi

`
ÿ

x‰X

`

p1´ jx
vq1´1{θ ´1

˘

dNx ´
θ´1
θ

´

ÿ

i“c,e

λiErp1´ℓiq
1´γ´1s´

ÿ

x‰X
λx jx

v

¯

dt.

Furthermore, the consumption-capital ratio c “ C{K has the following dynamics

dc
c´

“µcdt `σJ
c dW ´

ÿ

x‰X
jx
cdNx

for auxiliary functions µcpt,T,S,Xq and σcpt,T,S,Xq, which can be determined numerically, and

jx
c “ 1´

cpt,T,S, xq

cpt,T,S,Xq
. (B.5)

In turn,

dc´1{ψ

c´1{ψ
´

“ ´
1
ψ

pµcdt `σJ
c dWq`

1`ψ

ψ2 }σc}2dt `
ÿ

x‰X

`

p1´ jx
cq´1{ψ´1

˘

dNx

Consequently, the pricing kernel dynamics are given by

dH´

H´

“ ´r f
t dt `

´

´γσk `
θ´1
θ

σv ´
1
ψ
σc

¯J

dW `
ÿ

i“c,e

`

p1´ℓiq
´γ´1

˘

dNi ´λiErp1´ℓiq
´γ´1sdt

`
ÿ

x‰X

”

`

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1
˘

dNx ´λx
`

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1
˘

dt
ı

, (B.6)

where the risk-free rate is given by

r f
t “ δ`

1
ψ
µk ´

1
2
γ

´

1`
1
ψ

¯

}σk}2 ´

´1`ψ

ψ2 }σc}2 ´
θ´1
2θ2 }σv}2 ´

1
ψ
σJ

c

´

θ´1
θ

σv ´γσk

¯¯

´
ÿ

i“c,e

λiE
”

p1´ℓiq
´γ´1`

ψ´1 ´γ

1´γ

`

1´p1´ℓiq
1´γ

˘

ı

´
ÿ

x‰X

”

λx
`

p1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1
˘

`
θ´1
θ

λx jx
v

ı

.

An application of Itô’s lemma gives the drift and volatility vector of optimal consumption as

µCpt,T,Sq “µkpSq`µcpt,T,Sq`xσcpt,T,Sq,σkpSqy, (B.7)

σCpt,T,Sq “σkpSq`σcpt,T,Sq. (B.8)

Substituting (B.7) and (B.8) into the pricing kernel dynamics and some algebra completes the proof.
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B.2 Dividend Dynamics

The amount of consumption goods produced by asset n are

Cn “ Yn ´ In ´ b f Fn ´ bgGn ´ bdpS,X,D,Kq “ χnKn

with χn “
“

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpTq ´ in ´ bgpSqgn ´ b f pSq fn ´ b̃dpS,X,Dq

‰

. An application of

Ito’s lemma shows that χn evolves according to

dχn

χn´

“µχndt `σJ
χn

dW ´
ÿ

x‰X
jx
χn

dNx

for auxiliary functions µχn , σχn , jx
χn

that can be determined numerically along the lines of (B.1) – (B.3).

Notice that χn is unaffected when the economy is hit by an economic Barro-type disaster shock Nd.

Empirically, dividends are more volatile than consumption (e.g. Bansal and Yaron 2004) and dividends

fall more than consumption when a disaster hits the economy (e.g. Longstaff and Piazzesi 2004). Fol-

lowing Wachter (2013), among others, we thus model dividends as levered consumption, i.e. Dn “ Cφ
n

for φě 1.39 An application of Ito’s product rule yields the dividend dynamics

dDn

Dn´

“µDndt `σJ
Dn

dW `
ÿ

i“c,e

j i
Dn

dN i `
ÿ

x‰X
jx
Dn

dNx

with

µDn “φpµKn `µχn `σJ
χn
σKnq`

1
2
φpφ´1q}σKn `σχn}2,

σDn “φpσKn `σχnq,

j i
Dn

“ p1´ℓiq
φ´1,

jx
Dn

“ p1´ jx
χn

qφ´1.

In a next step, we determine the dynamics of discounted dividends, D̂n “ HDn. Another application of

Itô’s product rule implies

dD̂n

D̂n´

“µD̂n
dt `σJ

D̂n
dW `

ÿ

i“c,e

j i
D̂n

dNi `
ÿ

x‰X
jx
D̂n

dNx

39A popular alternative to this approach is modelling the consumption-dividend ratio as a stationary but persistent process,
as in Longstaff and Piazzesi (2004), among others. In order to focus on the novel implications of climate transition risk on
asset prices, we keep the setting simple although following this approach would also be feasible in our setting.
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with

µD̂n
“µH `µDn `σJ

HσDn ,

σD̂n
“σH `σDn ,

j i
D̂n

“ p1´ℓiq
φ´γ´1,

jx
D̂n

“ p1´ jx
χn

qφp1´ jx
vq1´1{θp1´ jx

cq´1{ψ´1.

B.3 Price-dividend Ratios of Dividend Claims

Let Πn “
Pn
Dn

denote the price-dividend ration of asset n, and πn “ log
` Pn

Dn

˘

the log price-dividend ratio.

Due to the representation of the dividends, the dynamics of Kn, and the pricing equation, the price is

linear in Kn and thus the price-dividend ratio is independent of Kn. Therefore, it is not driven by the

disaster risk process Nd, and the dynamics of the log price-dividend ratio can be written as

dπn

πn´

“µπndt `σJ
πn

dW ´
ÿ

x‰X
jx
πn

dNx,

where the drift and the volatility vector are given by

µπn “
1
πn

“

πn,t `πn,SSp1´ SqµS `πn,TµT `
1
2
πn,TT}σT}2 `

1
2
πn,SSS2p1´ Sq2}σS}2‰,

σπn “
1
πn

“

πn,TσT `πn,SSp1´ SqσS
‰

,

jx
πn

“ 1´
πnpt,T,S, xq

πnpt,T,S,Xq
.

In particular, the price-dividend ratio Πn “ eπn satisfies the following dynamics

dΠn

Πn´

“
`

πnµπn `
1
2
π2

n}σπn}2˘dt `πnσ
J
πn

dW ´
ÿ

x‰X
jx
Πn

dNx,

where

jx
Πn

“ 1´
Πnpt,T,S, xq

Πnpt,T,S,Xq
.

We rewrite the discounted asset price HPn as P̂npD̂n,πnq “ D̂neπn . An application of Itô’s lemma implies

dP̂n

P̂n´

“
`

µD̂n
`πnµπn `

1
2
π2

n}σπn}2 `πnσ
J
πn
σD̂n

˘

dt `pπnσπn `σD̂n
qJdW
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`
ÿ

i“c,e

`

p1´ℓiq
φ´γ´1

˘

dNi `
ÿ

x‰X

`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

dNx.

An application of the Feynman-Kač Theorem yields

L P̂n `e´πn P̂n “ 0, (B.9)

where L P̂n denotes the infinitesimal generator. The no-arbitrage condition implies

L P̂n

P̂n´

“µD̂n
`πnµπn `

1
2
π2

n}σπn}2 `πnσ
J
πn
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

(B.10)

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Substituting (B.10) into (B.9) yields

0 “µD̂n
`πnµπn `

1
2
π2

n}σπn}2 `πnσ
J
πn
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

`e´π

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Consequently, we obtain the following partial differential equation for the log price-dividend ratio πn:

0 “ e´πn `µD̂n
`πn,t `πn,SSp1´ SqµS `πn,TµT `

1
2

pπn,TT `π2
n,Tq}σT}2

`
1
2

pπn,SS `π2
n,SqS2p1´ Sq2}σS}2 `

`

πn,TσT `πn,SSp1´ SqσS
˘J
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Notice that this PDE is nonlinear since it involves squared partial derivatives of πn. To simplify the

numerical solution approach, we transform this PDE into a linear, parabolic PDE that can be solved

using finite differences. We substitute Πn “ eπn and end up with

0 “ 1`
ÿ

x‰X
λxΠnpt,T,S, xqp1` jx

D̂n
q`Πn

´

µD̂n
`

ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ´1

‰

´
ÿ

x‰X
λx

¯

`Πn,t `Πn,SSp1´ SqµS `Πn,TµT `
1
2
Πn,TT}σT}2 `

1
2
Πn,SSS2p1´ Sq2}σS}2 (B.11)

`pΠn,TσT `Πn,SSp1´ SqσSqJσD̂n
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B.4 Risk Premiums

The dynamics of the asset price Pn “ eπnDn follow by Itô’s lemma. We obtain the following asset price

dynamics

dPn

Pn´

“µ
p
ndt `pσπn `σDnqJdW `

ÿ

i“c,e

`

p1´ℓiq
φ´1

˘

dNi ´λipTqE
“

p1´ℓiq
φ´1

‰

dt

`
ÿ

x‰X

”

`

p1´ jx
Πn

qp1` jx
Dn

q´1
˘

dNx ´λx
`

p1´ jx
Πn

qp1` jx
Dn

q´1
˘

ı

,

where the expected stock return and the volatility vector are given by

µ
p
n “µπn `µDn `σJ

Dn
σπn `

1
2

}σπn}2 `
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´1

‰

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
Dn

q´1
˘

.

Now, the risk premium of asset n can be computed as the sum of its expected stock return, µPn , and its

dividend yield, yd
n “ e´πn , minus the risk-free interest rate, r f , i.e.

rp
n “µ

p
n ` yd

n ´ r f .

C Details on the Calibration

Here we provide further calibration details for all relevant parts of the model. We also present alterna-

tive calibrations used for sensitivity analyses and robustness checks.

C.1 Benchmark Calibration

Macroeconomic Uncertainty We set annual volatility of capital diffusion risk to σ1 “ σ2 “ 2%

matching the observed volatility of consumption or output (e.g., Wachter 2013). We assume a zero

instantaneous correlation between the two capital stocks, ρ12 “ 0 (cf. Cochrane et al., 2007). The

total correlation between capital stocks is much higher than indicated by the value of ρ12 due to joint

macroeconomic disaster shocks and common state variables that affect both sectors (cf. Hambel et al.,

2024).

The recovery rates of macroeconomic and climate-related disasters, respectively, Zi “ 1 ´ℓi, i P tc, eu,

have a power distribution over p0,1q with parameter αi ą 0 and density functions ζipZiq “ αiZ
αi´1
i ,

Zi P p0,1q (Pindyck and Wang, 2013). The nth moment of the recovery rate is ErZn
i s “

αi
αi`n . To calibrate

the macroeconomic disaster-size distribution, we follow Wachter (2013) and define a disaster as an event

destroying more than ℓ“ 10% of GDP or aggregate consumption. She uses historical consumption data
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to estimate an annual disaster probability of 3.55% and an average consumption loss of 25% when a

disaster strikes: λe
ş1´ℓ

0 ζepZqdZ “ 0.0355 and Erℓe|ℓe ą ℓs “ 0.25. This pins down αe “ 5 and λe “ 0.06.

Economic Growth To jointly calibrate the production and preference parameters, we follow Hambel

et al. (2024) and firstly consider a model with only one capital share in the spirit of Pindyck and Wang

(2013). Their model also abstracts from climate change, but it is nested in our two-sector model. The

model is well-suited to explain historical asset returns, since dirty capital dominated the world economy

in the past, while the influence of climate change on asset markets was modest. We assume that the

single-capital stock evolves according to

dK “

´

I ´
1
2
ϕ

I2

K
´δkK

¯

dt ` KσdW ´ K´ℓedNe.

Besides, output is produced by capital K and energy E by a Cobb-Douglas production technology, Y “

AK1´ηEη “ I `C ` bE, where b is the price of one unit of the energy composite E. In the optimum, the

model becomes a simple AK-technology with linear production function Y “ A˚K where productivity is

A˚ “ A
´ b
ηA

¯

η

η´1
.

This aggregate model closely follows Pindyck and Wang (2013), but involves an energy input E. We

solve this model for a representative investor with Epstein-Zin-preferences and obtain a set of non-

linear equations that pin down the model parameters.

Fixing the leverage parameter at φ“ 2.6 (Wachter 2013) and the elasticity of intertemporal subsitution

at ψ“ 1.5 (Bansal and Yaron 2004), we calibrate the remaining parameters to match an expected GDP

growth rate of µ“ 2.52% in normal times, i.e. in the absence of a disaster (Wachter 2013), an average

consumption rate of C
Y “ 63% of GDP, a risk-free interest rate of r f “ 0.8%, an equity premium of

rp “ 6.6%, and a Tobin’s Q of 1.548 (Pindyck and Wang 2013). Following the calculations in Pindyck

and Wang (2013) but taking leverage into account one obtains a non-linear system that involves five

equations and five unknowns A˚,ϕ,δk,δ,γ. For the risk-free rate and the risk premium, one obtains

r f “ δ`
µ

ψ
´ 1

2γ
´

1`
1
ψ

¯

σ2 ´λe

´

αe

αe ´γ`1
1{ψ´γ

1´γ
´

αe

αe ´γ

¯

, (C.1)

rp “φγσ2 `λeγ
”

αe

αe ´γ
´

αe

αe ´γ`φ
`

αe

αe `φ
´1

ı

. (C.2)
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Given the values of σ,λe, and αe, (C.2) pins down the degree of relative risk aversion γ. Then, (C.1) can

be solved for the time preference rate δ. Then, we determine the productivity by

A˚ “
q
χ

”

δ`

´ 1
ψ

´1
¯´

µ´ 1
2γσ

2 ´
λe

1´γ

αe

αe ´γ`1

¯ı

. (C.3)

In equilibrium, the model generates an investment-capital ratio of i “ A˚p1 ´χ´ηq and Tobin’s Q is

q “ 1
1´ϕi . Hence, the adjustment cost parameter ϕ is given by

ϕ“
1´1{q

i
. (C.4)

Finally, the capital depreciation rate δk is given by

δk “ i ´0.5ϕi2 ´µ. (C.5)

We use the above equations to calibrate the remaining preference parameters, the depreciation rate, the

investment adjustment cost parameters, and the total factor productivities given in Table 1 to match

an expected GDP growth rate of µ “ 2.52% in normal times without disasters (Wachter, 2013), a con-

sumption share of C
Y “ 63% of GDP, a risk-free interest rate of r f “ 0.8%, an equity risk premium of

rp “ 6.6%, and a Tobin’s Q of 1.548 (Pindyck and Wang, 2013).

Energy Consumption We set the energy shares in the production functions to ηi “ 0.043 (van den

Bremer and van der Ploeg, 2021).40 We set the initial cost of fossil fuel to b f pS0q = $540/tC (cf. van

den Bremer and van der Ploeg, 2021), but use a significantly higher initial cost of green energy, bgpS0q

= $810/etC, in line with production costs in developed countries. We suppose that the cost parameter

for green energy gradually declines over time as the green transition progresses by setting bgpStq “

bgpS0qk0p1 ´ Stq
´k1 with k0 ą 0 and k1 ą 0. We calibrate so that costs for renewable energy drop by

20% for every doubling of cumulative installed volume in accordance with Swanson’s law.41 This gives

k0 “ 0.5107 and k1 “ 0.3219.

The green sector only uses renewable energy, so κ1,1 “ 1, κ2,1 “ 0, and ρ1 can be chosen arbitrarily.

The brown sector can be fueled by both energy sources. To calibrate the energy composite of the brown

sector and the CES weights, we set the elasticity of intratemporal substitution to ζ2 “ 2 corresponding

to ρ2 “ 0.5 and the CES weights to κ1,2 “ 0.356, κ2,2 “ 0.644 (Golosov et al., 2014). With this calibration

it is possible to fully replace fossil fuel by green energy withing this sector even though moving capital

40This assumption is in line with Golosov et al. (2014) who use an energy share of 4%.
41Swanson’s law is the solar industry specific application of Wright’s Law which states there will be a fixed cost reduction for

each doubling of manufacturing volume. More specifically, Swanson’s law states that the price of solar panels drops by 20 per-
cent every time the volume of panels shipped doubles, see https://www.economist.com/news/2012/11/21/sunny-uplands.
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to the green sector may be more efficient.42 Given those parameter choices, we determine the share of

brown capital such that the model generates 19.77% of renewable energy in total energy demand in the

BAU-scenario in 2020.43 This gives an initial share of brown capital of S0 “ 0.876. We can thus back

out the initial green and brown capital stocks (74.3 and 1353.9 trillion US $, respectively).

Emission Intensity Since the emission intensity ν follows equation (2.8), industrial emissions are

given by E ind
t “ p f1tp1 ´ Stq ` f2tStqK0e

şt
0 gνpsqds. In the BAU state, the social planner does not take

account of the negative externalities caused by emissions but reallocates capital from the brown to

the green sector for other reasons such as diversification purposes (e.g. Hambel et al. (2024) and the

references therein). We now solve and simulate the pure BAU scenario over the next 100 years assuming

a reallocation cost parameter of κ“ 2. This parameter choice yields a BAU simulation of temperature,

emissions, and energy that is well in line with the adjusted RCP8.5 scenario. Given the adjusted RCP8.5

emission data E t and the simulated share of brown capital St, we approximate pptq “
E t

Er f1tp1´Stq` f2tSts
by

a cubic polynomial function of time, pptq “ p0 ` p1t ` p2t2 ` p3t3, with p0 “ 2.08 ¨1015, p1 “ 4.22 ¨1013,

p2 “ 1.01 ¨ 1012, p3 “ ´9.76 ¨ 109, and R2 ą 99%. The corresponding growth rate gν is then given by

gνptq “ d
dt ln pptq. Figure C.1 depicts the adjusted RCP8.5 emission data and the model fit. Panel (a)

shows the simulated data pptq (o) determining the emission intensity and its cubic fit. Panel (b) depicts

the median evolution of the BAU emissions ( ) and compares it to the RCP8.5 emission predictions

(o). It also shows the corresponding 5% and 95% quantile of BAU emissions ( ). This calibration

implies that the emission intensity νt tends to decline over time although it is exposed to stochastic

shocks.

We thus calibrate the emission intensity such that the pure BAU simulation mimics the modified

RCP8.5 scenario of IPCC (2014). RCP8.5 is characterized by high emissions leading to a tempera-

ture increase of about 4.3˝C relative to the pre-industrial level by the end of this century.44 We slightly

modify the emission data to take account of the lower emissions in reality compared to the RCP8.5 sce-

nario. While the scenario predicts emissions of 12.44 GtC in 2020, emissions were only 10 GtC. Thus,

we calibrate the emission intensity (2.8) to adjusted RCP8.5 emission data that is 20% lower than the

original data.

42Alternative calibrations for when the two energy forms are complements within the brown sector (e.g. the benchmark
calibration of Golosov et al. 2014 with ζ2 “ 0.95 and ρ2 “ ´0.058) or when the brown sector only takes fossil fuel as input
(e.g., Hambel et al. 2024 with κ1,2 “ 0 and κ2,2 “ 1) are discussed in Appendix C.3.With those calibrations, it is not possible to
completely replace fossil fuels with renewable energies within the brown sector. This may cause stranded assets if the carbon
budget is exceeded and the CAP scenario enforced.

43We use world bank data on the share of renewable energy of total final energy consumption, see https://data.
worldbank.org/indicator/EG.FEC.RNEW.ZS.

44The data is available from the RCP database, see http://tntcat.iiasa.ac.at/RcpDb.
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Figure C.1: Calibration of Emission Intensity. Panel (a) shows the simulated data pptq (o) determining
the emission intensity and its cubic fit. Panel (b) depicts the median evolution of the BAU emissions ( ) and
compares it to the adjusted RCP8.5 emission data (o). It also shows the 5% and 95% quantiles of BAU emissions
( ).

Temperature Dynamics Estimates of the transient climate response to cumulative emissions range

from 0.8 to 2.4˝C/TtC (e.g. Allen et al., 2009; Matthews et al., 2009, 2018). We take an initial value

of the TCRE of ϑpX0q “ 1.8˝C/TtC, which is in line with the temperature evolution in DICE-2016R

and other climate-economic models such as Dietz and Venmans (2019) or the econometric approach

in Miftakhova et al. (2020). Moreover, we choose a constant temperature volatility of σT “ 0.033 to

match the temperature range of global mean temperature increase in the RCP scenarios.45 The effect

of climate tipping risk on the transient climate response to cumulative emissions is shown in Panel (a)

of Figure 1.

Climate Tipping Risks Given the initial value of the TCRE in the pre-tip state, ϑpX c
0 “ 1q “ 1.8˝C{TtC,

and the range of estimates up to 2.4˝C{TtC for the TRCE, we choose a TCRE of ϑpX c “ 2q “ 2.1˝C{TtC

for the intermediate state and ϑpX c “ 3q “ 2.4˝C{TtC for the post-tip state (see Figure 1). From the pre-

tip state, the transition intensity to the intermediate and post-tip state is λcpS,1, jq “ λ̂
1, j
c pT ´ 1q with

λ̂
1, j
c “ 0.012 (cf. Cai and Lontzek, 2019).46 This implies an annual initial tipping intensity of 0.324%

at T0 “ 1.27˝C corresponding to an expected duration of 309 years and a tipping intensity of 1.2% at

T “ 2˝C corresponding to an expected duration of 83 years. The transition intensity for the post-tip

state conditional on being in the intermediate state is λcpS,2,3q “ λ̂
2,3
c “ 0.02 corresponding to an av-

erage duration of 50 years between the intermediate and the final climate tipping state. The climate

can also jump directly from state 1 to state 3, so the total tipping intensity at the initial temperature

45The temperature range in the year 2100 of the various RCP scenarios varies between 0.8˝C around its mean in RCP2.6 to
1.1˝C in RCP8.5.

46Climate tipping is only possible if temperature exceeds 1˝C, which given our initial temperature is the case.
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Figure C.2: Calibration of the Marginal Cost Function for NET. The figure shows the averaged data from
the two scenarios in Rebonato et al. (2023) (o). Panel (a) shows the resulting marginal costs function for the year
2050 and Panel (b) for the year 2100, respectively. We fit an exponential function of the form BbdpS,X t“2,D,Kq

BD “

Kra1pSq ` a2pSqa3pSqexppa3pSqDqs to this data as shown by the black line ( ), where a jpSq “ b j maxpζ,Sqc j

are truncated power functions of the share of brown capital.

T0 “ 1.27˝C is 0.648% (cf. van den Bremer et al., 2023). Finally, we have irreversible climate tipping,

so λcpS, i, jq “ 0 for j ă i.

C.2 Negative Emission Technology

For the calibration of the parameters of the marginal cost function for the negative emission technology
BbdpS,X t“2,D,Kq

BD “ Kra1pSq` a2pSqa3pSqexppa3pSqDqs, we first average the data from the two scenarios

described in Rebonato et al. (2023) and shown in their Figure 5. We neglect the very small share with

low but steep marginal costs for removal that is close to zero. The averaged data—expressed in GtC—is

depicted in Figure C.2 for the year 2050 (Panel a) and 2100 (Panel b). Then, we calibrate the truncated

power functions of the form a jpSq “ b j maxpζ,Sqc j , j P t1,2,3u jointly to both curves by assuming that

the time dependencies are only driven by variations in S. In this sense, S models technological progress

towards a low-carbon economy. We simulate S and K for the optimal scenario (PIGOU) and calibrate

the power functions a1,a2,a3 such that the expected marginal costs at τ P t31,81u, i.e., in the years

2050 and 2100, respectively, match the marginal cost curves as closely as possible in a least-squares

sense. The parameters obtained are all strictly positive so that in particular B2bdpS,X t“2,D,Kq

BDBS ą 0, i.e.,

the greater the proportion of brown capital, the greater the marginal removal costs. The fit is visualized

by the black line ( ). The exponential marginal cost function performs very well with an R2 exceeding

99%.
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Benchmark: Substitutes within the brown sector
S0 initial share of brown capital from World Bank data (Footnote 43) 0.876
k0 cost function parameter calibrated in accordance with Swanson’s law 0.5107
κ capital reallocation cost parameter calibrated to modified RCP8.5, see Section 4 2
ζn elasticity of energy substitution Golosov et al. (2014) 2
κ2,2 fossil fuel weight in brown sector Golosov et al. (2014) 0.644
κ1,1 renewable energy weight in green sector assumption 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4 2.08¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4 4.22¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4 1.01¨1012

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4 ´9.76¨109

Alternative I: Brown sector takes fossil fuel only; green sector takes both energy forms
S0 initial share of brown capital from World Bank data (Footnote 43) 0.712
k0 cost function parameter from Swanson’s law (Footnote 41) 0.6586
κ capital reallocation cost parameter from benchmark 2
ζn elasticity of energy substitution from benchmark 2
κ1,1 renewable energy weight in green sector assumption 0.9
κ2,2 fossil fuel weight in brown sector Hambel et al. (2024) 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4 2.10¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4 4.18¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4 1.15¨1012

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4 ´9.34¨109

Alternative II: Both sectors take only one energy type
S0 initial share of brown capital from World Bank data (Footnote 43) 0.726
k0 cost function parameter from Swanson’s law (Footnote 41) 0.6592
κ capital reallocation cost parameter from benchmark 2
ζn elasticity of energy substitution from benchmark / has no influence 2
κ2,2 fossil fuel weight in brown sector Hambel et al. (2024) 1
κ1,1 renewable energy weight in green sector Hambel et al. (2024) 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4 2.09¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4 4.08¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4 8.26¨1011

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4 ´9.08¨109

Alternative III: Complements within the brown sector
S0 initial share of brown capital from benchmark 0.876
k0 cost function parameter from benchmark 0.5107
κ capital reallocation cost parameter calibrated to modified RCP8.5, see Section 4 10
ζn elasticity of energy substitution Golosov et al. (2014) 0.95
κ2,2 fossil fuel weight in brown sector calibrated to World Bank data (Footnote 43) 0.862
κ1,1 renewable energy weight in green sector assumption 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4 2.69¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4 5.18¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4 1.17¨1012

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4 ´9.97¨109

Table C.1: Alternative Calibrations. This table summarizes the three alternative calibrations for stranded
assets.

C.3 Alternative Calibrations for Energy Substitutability

In the benchmark calibration, fossil fuel and renewable energy within the brown sector are substitutes

with a substitution elasticity of ζ2 “ 2 (i.e., ρ2 “ 0.5). This means in particular that the brown sector
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can always operate because it is able to shift its energy demand away from fossil fuel and to renewable

energies. Therefore, this calibration cannot generate stranded assets. We thus offer three alternative

calibrations that address this issue.

First, we consider a calibration, where the brown sector takes only fossil fuel as an input factor, but the

green sector can take both energy forms but with limited substituability and high weight on renewable

energy (Alternative I). In addition, we consider a variant in which both sectors take only one energy

sources as an input factor as in Hambel et al. (2024) (Alternative II). In these cases, the elasticity of

substitution within the brown sector becomes irrelevant. Finally, we offer a calibration in which the

brown sector takes both energy forms complementarily (Alternative III). For this we follow Golosov

et al. (2014) and choose a elasticity of substitution of ζ2 “ 0.95 (i.e., ρ2 “ ´0.058) within this sector.

Notice that with these alternative calibrations, it is not possible to (fully) replace fossil fuels with re-

newables within the brown sector, which is why the transition to a green economy must necessarily take

place through the development of the green sector. If this does not happen quickly enough and the CO2

budget is exceeded when society jumps to CAP, the brown asset may be stranded. This hazard is priced

in by financial markets through higher risk premiums, especially for the brown asset, and by the social

planner, who may implement higher carbon taxes. We discuss the results for Alternative I in detail in

Section 6. Simulations for Alternatives II and III confirm those findings and are available upon request.

The calibration strategy follows the same steps as for the benchmark calibration. However, a number of

parameters have to be recalibrated in order to match the calibration targets outlined in the main text,

i.e. the 19.77% share of green energy in the energy mix in 2020, the initial energy price ratio of 1.5,

and the emissions in the adjusted RCP8.5 scenario. As we sometimes have more degrees of freedom in

the calibration than calibration targets, we choose the parameters so that we have to recalibrate as few

parameters as possible. Table C.1 summarizes the changed parameters. All other parameters are as

in the benchmark calibration shown in Table 1. Variants of Figures C.1 and C.2 for these alternative

calibrations are available upon request.

D Additional Simulation Results

D.1 Additional Material for the Benchmark Simulation

This section provides additional material for the benchmark simulation such as additional tables and

figures.

Optimal Carbon Taxes Table D.2 reports the unconditional moments of the implemented carbon tax

for the years 2025, 2050, 2075, and 2100. Since the carbon tax is implemented in only about 25% of the

A-22



a) Relative Frequency in 2025 [%]

100 200 300 400 500 600 700

Carbon Tax [$/tC]

0 

5 

10

15

20
b) Relative Frequency in 2050 [%]

0 500 1000 1500 2000

Carbon Tax [$/tC]

0

2

4

6

8

c) Relative Frequency in 2075 [%]

0 500 1000 1500 2000 2500

Carbon Tax [$/tC]

0

2

4

6
d) Relative Frequency in 2100 [%]

0 1000 2000 3000

Carbon Tax [$/tC]

0

2

4

6

Figure D.3: Carbon Taxes. The figure shows histograms for the implemented carbon tax, i.e., conditional on
being in the PIGOU or CAP state, in the years a) 2025, b) 2050, b) 2075, and d) 2100.

Unconditional moments

Erτs Medpτq σpτq q5%pτq q95%pτq Skewpτq

2025 85 0 146 0 358 1.19
2050 260 0 311 0 789 0.79
2075 485 521 398 0 1124 0.22
2100 755 756 551 0 1692 0.30

Table D.2: Unconditional Optimal Carbon Tax. The table reports summary statistics of the unconditional
optimal carbon tax for the years 2025, 2050, 2075, and 2100.

paths in 2025, its unconditional distribution is obviously right-skewed. Its skewness tends to decline

over time as carbon taxes are implemented in more and more paths. Figure D.3 shows histograms for

implemented carbon taxes for the years 2025, 2050, 2075, and 2100, respectively, conditional on being

in the TAX or LIM state. Those histograms are generated with 200,000 paths, of which around 25%

have a tax implemented in 2025, 46% in 2050, 69% in 2075, and 79% in 2100. Panel a) illustrates the

negative skewness of the implemented carbon tax, as reported in Table D.3, in the year 2025. This

negative skewness of the conditional distribution can be explained by a negatively skewed distribution

of global output, which is largely generated by the economic disasters. Since the optimal carbon tax is

proportional to the capital stock, see (3.1), this left-skewed distribution carries over to the carbon tax.
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As time progresses and climate risks such as tipping points or climate disasters, as well as political

shocks, increase in intensity, the SCC will be skewed to the right by these risks, gradually transforming

the left-skewed distribution into a right-skewed distribution. This can be seen from Panels b) to d).

Driver of the Carbon and Transition Risk Premiums We now present simulation results con-

ditional on an annual carbon premium of at least 1%. These results are reported in Figure D.4. It is

evident that the model generates a high carbon premium if climate transition risk is most pronounced,

that is if temperatures are close to but slightly below two degrees and society is already in the CAP

state. Under those circumstances, a small temperature shock could make policy makers phase out

fossil fuel use, which has potentially devastating consequences if the stock of brown capital is still rel-

atively large. The high carbon premium is accompanied by a large demand for precautionary savings

leading to negative interest rates. Besides, both risky assets have significantly higher risk premiums

than they would have in the absence of transition risk (cf., Figure D.5 below). These results confirm the

earlier findings on the emergence of transition risk and carbon premiums from Section 5.3. We also find

a sizable carbon premium in some paths where society is still in the PIGOU state, temperatures are

close to two degrees, and the share of brown capital is still sizable. Then, a transition to the CAP state

could lead to the same effect as outlined above explaining the sizable carbon premium and the large

demand for precautionary savings.

D.2 PIGOU Scenario without Policy Transition Risks

Figure D.5 provides the results for the first-best optimal outcomes (the pure PIGOU scenario), which

excludes policy transition to the BAU or CAP state (with the political Markov chain switched off). Com-

pared to the benchmark simulation, the carbon premium is initially small and negative (´0.08%) due to

the absence of political transition risk, and turns positive when physical risks become sizable. Still the

magnitude of the carbon premium is small. Moreover, the carbon taxes are on average slightly higher

in this scenario than in the benchmark scenario with political transition risk. In 2021, the average

carbon tax is 326 $/tC, which is about 6% higher than the average carbon tax in paths of the benchmark

scenario where carbon taxes are implemented or the temperature cap is enforced (308 $/tC). Since there

are many paths where policy makers have not tipped into climate action yet in the benchmark scenario,

the transition towards a low-carbon economy takes place much faster than in the benchmark.

D.3 BAU Scenario with no Negative Emission Technology

Figure D.6 provides the results for a scenario which excludes negative emission technologies (with the

technological Markov chain switched off). Compared to the benchmark scenario, temperatures are a
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Moments conditional on carbon tax being implemented (X p ‰ 1)

(a) Erτ | X p ‰ 1s Medpτ | X p ‰ 1q σpτ | X p ‰ 1q q5%pτ | X p ‰ 1q q95%pτ | X p ‰ 1q Skewpτ | X p ‰ 1q

2025 332 338 39 250 380 -1.01
2050 561 542 199 280 933 1.02
2075 705 683 275 298 1187 0.54
2100 959 905 436 346 1757 0.66

Moments conditional on the political state

(b) Erτ | X p “ 2s Medpτ | X p “ 2q σpτ | X p “ 2q q5%pτ | X p “ 2q q95%pτ | X p “ 2q Skewpτ | X p “ 2q

2025 331 338 38 249 376 -1.29
2050 511 513 146 272 750 0.07
2075 689 671 259 295 1141 0.37
2100 957 901 438 344 1764 0.67

(c) Erτ | X p “ 3s Medpτ | X p “ 3q σpτ | X p “ 3q q5%pτ | X p “ 3q q95%pτ | X p “ 3q Skewpτ | X p “ 3q

2025 336 341 41 254 391 -0.51
2050 667 630 251 312 1138 0.68
2075 726 698 292 302 1244 0.65
2100 961 908 434 347 1751 0.65

Moments conditional on the climate tipping state and on X p ‰ 1

(d) Erτ | X c “ 1s Medpτ | X c “ 1q σpτ | X c “ 1q q5%pτ | X c “ 1q q95%pτ | X c “ 1q Skewpτ | X c “ 1q

2025 331 338 38 250 375 -1.33
2050 531 518 181 272 864 0.98
2075 660 641 254 280 1100 0.51
2100 899 849 402 328 1634 0.61

(e) Erτ | X c “ 2s Medpτ | X c “ 2q σpτ | X c “ 2q q5%pτ | X c “ 2q q95%pτ | X c “ 2q Skewpτ | X c “ 2q

2025 343 349 40 260 398 -1.13
2050 566 552 196 284 937 0.95
2075 664 644 254 289 1098 0.53
2100 882 833 397 320 1609 0.62

(f) Erτ | X c “ 3s Medpτ | X c “ 3q σpτ | X c “ 3q q5%pτ | X c “ 3q q95%pτ | X c “ 3q Skewpτ | X c “ 3q

2025 403 406 50 304 475 -0.63
2050 659 643 227 331 1080 0.85
2075 763 741 290 326 1266 0.46
2100 1003 947 453 364 1834 0.64

Moments conditional on the technological state and on X p ‰ 1

(g) Erτ | X t “ 1s Medpτ | X t “ 1q σpτ | X t “ 1q q5%pτ | X t “ 1q q95%pτ | X t “ 1q Skewpτ | X t “ 1q

2025 333 339 39 251 380 -1.00
2050 564 544 201 281 941 1.01
2075 706 684 275 298 1189 0.53
2100 978 923 442 356 1784 0.66

(h) Erτ | X t “ 1s Medpτ | X t “ 1q σpτ | X t “ 1q q5%pτ | X t “ 1q q95%pτ | X t “ 1q Skewpτ | X t “ 1q

2025 331 337 39 249 379 -1.12
2050 557 539 198 280 923 1.02
2075 705 683 275 298 1186 0.54
2100 955 901 435 344 1752 0.66

Table D.3: Carbon Taxes, U.S. ${tC (starting from BAU with Transition Risks). Summary statistics of the
carbon taxes for the years 2025, 2050, 2075, and 2100 are reported. All reported moments are at least conditional
on being in the PIGOU or CAP state, i.e., on X p ‰ 1. These summary statistics are generated with 200,000 sample
paths, of which around 25% have a carbon tax implemented in 2025, 46% in 2050, 69% in 2075, and 79% in 2100.
Unconditional moments are reported in Table D.2.
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Figure D.4: BAU Scenario with Transition Risks Conditional on a High Carbon Premium. The figure
shows the simulation results conditional on the carbon premium exceeding 1% annually. Average values are
depicted by solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a)
depicts the mean path of the share of fossil fuel in the global energy mix.

bit higher as society cannot curb them with a negative emission technology. The results for the risk-

free rate and the risk premiums are virtually unchanged compared to the benchmark scenario. This
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Figure D.5: PIGOU Scenario with no Transition Risks (Optimal Carbon Taxes). Average values are
depicted by solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a)
depicts the mean path of the share of fossil fuel in the global energy mix. The light (■), dark gray (■), and black
(■) areas in Panel d) depict the proportion of simulations in the pre-tip (X c “ 1), intermediate (X c “ 2), and
post-tip (X c “ 3) climate state, respectively.
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Figure D.6: BAU Scenario with no Negative Emission Technology. Average values are depicted by solid
lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a) depicts the mean
path of the share of fossil fuel in the global energy mix. The light (■), dark gray (■), and black (■) areas in
Panel d) depict the proportion of simulations in the pre-tip (X c “ 1), intermediate (X c “ 2), and post-tip (X c “ 3)
climate state, respectively.

indicates that the transition risk premium and the carbon premium are mainly driven by political
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transition risk rather than technological transition risk. This confirms that our results are robust to

different assumptions about the existence and likelihood of competitive NET technologies. Moreover,

those results support the empirical findings of Engle et al. (2020), whose WSJ Climate Change index

primarily reacts to climate-related political shocks and climate summits.

D.4 BAU Scenario with a Tighter Carbon Budget

Figure D.7 provides the results for a scenario with a significantly tighter carbon budget. For this pur-

pose, we assume that in the CAP state the social planner abolishes fossil fuels if temperature exceeds

Tcap “ 1.5˝C instead of Tcap “ 2˝C. This leads to more ambitions climate policy in the CAP state be-

cause the potentially devastating consequences of exceeding the budget and abolishing fossil fuels are

now more likely to occur. Consequently, the transition risk is more pronounced in this scenario.

D.5 Additional Material for the Risk of Stranded Assets

This section provides additional simulation results for the interplay between climate transition risk

and stranded assets. Figure D.8 is the counterpart to Figure 5 and shows the evolution of the optimal

carbon taxes both unconditional and conditional on being implemented. Figure D.9 is the counterpart

to Figure 3 and depicts the evolution of the three-dimensional Markov chain X.
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Figure D.7: BAU Scenario with a Tighter Carbon Budget. Average values are depicted by solid lines ( )
and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a) depicts the mean path of the
share of fossil fuel in the global energy mix.
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Figure D.8: Carbon Tax Simulation (Stranded Assets). The figure depicts the carbon tax for the benchmark
simulation until the year 2100. Mean paths are depicted by solid lines ( ) and dashed lines ( ) show 5%
and 95% quantiles. Panel a) shows unconditional means and quantiles, and Panel b) shows means and quantiles
conditional on being in the PIGOU or CAP state.
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Figure D.9: Markov Chains and Temperature Scenarios (Stranded Assets). In Panel a) the light area (■)
is the proportion of simulations in the BAU state, the dark gray area (■) the proportion in the PIGOU state, and
the black area (■) the proportion in the CAP state. In Panel b) the light area (■) is the proportion of simulations
in the pre-tip state, the dark gray area (■) the proportion in the intermediate state, and the black area (■)
the proportion in the post-tip state. In Panel c) the light area (■) is the proportion of simulations in the pre-
breakthrough state and the black area (■) the proportion where the negative emission technology has come into
force. In Panel d) the light area (■) is the proportion of simulations with temperature less than 1.8˝C, the gray
area (■) the proportion with temperature between 1.8˝C and 2˝C, the dark gray area (■) the proportion with
temperature between 2˝C and 2.5˝C, and the black area (■) the proportion with temperature above 2.5˝C.
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