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Abstract

New technologies drive productivity growth but the distribution of gains might be
unequal and is mediated by labor market institutions. We study the role that orga-
nized labor plays in shielding incumbent workers from the potential negative conse-
quences of automation. Combining German individual-level administrative records
with information on plant-level robot adoption and the presence of works councils,
a form of shop-floor worker representation, we find positive moderating effects of
works councils on retention for incumbent workers during automation events. Sep-
arations for workers with replaceable task profiles are significantly reduced. When
labor markets are tight and replacement costs are high for firms, incumbent workers
become more valuable and the effects of works councils during automation events
start to disappear. Older workers, who find it more challenging to reallocate to new
employers, benefit the most from organized labor in terms of wages and employment.
We also find that robot-adopting plants with works councils employ not more but
higher quality robots, provide more training during robot adoption, and have higher
productivity growth thereafter.
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1 Introduction

Economists have long acknowledged that technological advances do not necessarily guar-
antee widely shared gains from productivity growth, especially in the short-run (Keynes,
1930; Gordon, 2016). History offers numerous examples of conflict between workers and
capital owners over the distribution of benefits and costs associated with new technolo-
gies (Acemoglu and Johnson, 2023).1 At present, the recent rise of automation through
robotics and artificial intelligence (AI) has sparked fresh debates about strategies for
workers, employers, and governments to navigate labor market disruptions moving for-
ward (Furman and Seamans, 2019; Autor, 2024).

A recent literature studies the effects of industrial robots and automation technologies
on employment and wages, uncovering strong heterogeneity across skill groups, occupa-
tions, industries, and firms (e.g. Graetz and Michaels, 2018; Acemoglu and Restrepo,
2020; Bonfiglioli et al., 2022). Acemoglu and Restrepo (2022) find that rapid automation
in the US can account for the largest share of wage declines of workers specialized in
routine tasks. Dauth et al. (2021) detect that negative employment effects of robotization
are concentrated among regions with low levels of unionization in Germany, providing
a hint for the importance of labor market institutions. However, so far, the literature
has paid no attention to the roles that labor relations and the relative bargaining power
of workers and firms (Stansbury and Summers, 2020) play as mediators of technological
change.

In this paper, we shed new light on the interaction between labor market institutions
and automation with the goal of advancing the debate on and how policy responses could
be deployed in light of ongoing technological disruption. We focus on codetermination,
in the form of work councils, which grant co-decision-making rights to organized labor at
the establishment level (Addison, 2009; Jäger et al., 2022). In Germany, works councils
represent about 40% of the workforce and have potent means to protect workers in terms
of employment and working conditions. Their power ranges from veto rights against
dismissals (that can only be overruled by labor courts) to co-decision rights in matters that
concern, e.g., working hours, pay schemes, or workplace monitoring (Jäger et al., 2022).2

In the literature, the common view is that firms automate as long as it is profitable, not
internalizing the consequences for displaced workers.3 This can lead to only marginally
profitable (’so-so’) automation where the productivity gains from automation are small

1For instance, in Britain in the 18th century, the power loom increased productivity and profits for
machine owners but massively replaced skilled weavers and let workers’ wages deteriorate (Acemoglu and
Johnson, 2024).

2Work councils have been associated with reduced separations of (blue collar) workers (Hirsch et al.,
2010; Budde et al., 2024), reduced workforce adjustment during the Covid19-pandemic (Fackler et al.,
2024), and a shift of bargaining power towards employees (Dobbelaere et al., 2024).

3Beraja and Zorzi (2024) show that under frictional reallocation with unemployment spells and the
presence of borrowing constraints the optimal policy for the government is to slow down automation.
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relative to the employment and earnings losses for some workers (Acemoglu and Restrepo,
2018). As works councils protect the interests of the incumbent workforce, their presence
and rights to be involved in changes in work procedures caused by technology adoption
can change both the process and consequences of automation. This might lead to different
wage and employment outcomes for workers during automation events in establishments
with and without works councils.

In our analysis, we utilize detailed linked employer-employee administrative data com-
bined with establishment surveys. The data and the institutional context in Germany al-
low us to leverage variation in robot usage between and within plants over time (Plümpe
and Stegmaier, 2023), and account for the presence of works councils (across plants).4

We examine the role of works councils during automation events by comparing the effect
of robot adoption on matched incumbent workers using event studies. We compute the
difference between two distinct ’difference-in-differences’ estimators by comparing similar
workers in establishments with the same work council status but different robot adoption
behavior. The survey data allows us to complement the main analysis with an exami-
nation of the mechanisms at the plant level, including training for workers, productivity
changes, as well as the direction and intensity of technology.

Our main finding is that automation events increase retention of incumbent blue-
collar workers by decreasing separation probabilities – but only in plants with active
works councils. Consistent with works councils, as a form of shop-floor representation,
acting in the interest of incumbent workers, we find a positive retention effect of around
4%-points, similar for older (aged 55 and older) and younger workers. However, it is older
workers who are the main beneficiaries of these policies as employment rates increase
by 2%-points in the following years. In the wake of automation events, young displaced
workers, on average, adjust successfully and transition smoothly into new employment,
while older workers are much more likely to remain unemployed after an automation-
induced separation consistent with increasing adjustment costs over the life-cycle.5

Next, we investigate firms’ incentives to shield incumbent workers from layoffs. In
particular, in frictional labor markets, the value of retaining incumbent workers in au-
tomating plants increases in labor market tightness, as replacement and recruitment costs
are higher (Kline et al., 2019; Jäger and Heining, 2022). Difficulties in hiring, thus, align
the incentives of management and incumbent workers, represented by works councils.
Indeed, sample splits by firm-specific labor market tightness reveal that works council
representation only leads to higher retention when firm-specific replacement costs are
low. In contrast, when replacement costs are high, automation is accompanied by similar
retention effects in plants with and without works councils.

4The German economy has one of the highest robot densities in the world, providing rich variation
in adoption events across plants.

5Older workers may have also acquired more task, industry, or firm-specific human capital, which
make transitions across these categories more challenging.
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Works councils might also engage in bargaining and limiting wage cuts for vulnerable
workers who have competing task profiles with automation technologies or who face worse
outside options.6 We test this by studying wages for two groups of workers, namely older
employees, for whom we have documented difficulties in the adjustment process indicating
scarce outside options, and workers with a routine-manual task profile who are confronted
with high automation risk. We show that works councils have a sizeable positive wage
effect of around 3.5% for these vulnerable workers. Compared to not directly affected
production workers and white-collar workers, whose wages are not affected by automation,
routine-manual and older workers experience significant wage reductions – but only in
plants without works councils, highlighting the ability of shop-floor representation to
prevent wage cuts.

In the last part of the paper, we investigate by which means works councils dampen
the negative effects of automation for incumbent workers. When automation-related in-
vestment decisions internalize (part of) the cost of displacement, this raises the threshold
for the marginal investment decision to become profitable. All else being equal, this di-
minishes the incentives to implement ’so-so technologies’ Acemoglu and Restrepo (2018),
which are investments in automation equipment that displace workers but come only
with modest productivity improvements. Consequently, automation events in firms with
worker representation should go along with larger productivity gains, as those must coun-
terbalance the internalized displacement costs. In line with this argumentation, we find
that robot-adopting plants with works councils experience greater productivity growth af-
ter robot adoption compared to their counterparts without entrenched co-decision-making
rights for workers.

We use proxies for robot quality and find evidence that this is primarily driven by
higher investment in the quality, but not the quantity, of robots acquired. Furthermore,
we find that adopters with works councils provide more training for their workers during
robot adoption events. These investments into the human capital of incumbent workers are
plausibly directly related to increased retention. Using the panel dimension of our data, we
can detect ’training spikes’ around adoption, solidifying this interpretation. In the years
before automation events, firms with works councils have a larger share of workers who
participate in training compared to their counterparts. This gap increases from around
5%-points to around 15%-points during automation events while in the years after, it
reverts back to around 5%-points. Since co-determination rights increase job security in
the face of automation, this should make workers more willing to invest in firm-specific
skills and participate in training, as argued in Freeman and Lazear (1995).

Our paper contributes to the literature using data on firms’ and workers’ outcomes
6While works councils do not have an official mandate to negotiate wages, they can influence the pay

groups within a collective agreement that individual workers are classified into. In addition, their powers
in other fields are strong enough to provide incentives for employers to cooperate also in fields that are
not covered by their statutory powers.
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to understand the effects of new automation technologies on the labor market. Robot-
adopting plants typically expand employment (Koch et al., 2021; Hirvonen et al., 2023),
often at the expense of competing firms. On average, directly affected workers with
replaceable task profiles lose out (Bessen et al., 2023), while other workers might see gains
(Acemoglu et al., 2023) with differential effects across age groups (Deng et al., 2023a).
To the best of our knowledge, there are no previous studies that have explored the role
of labor market institutions or leveraged variations in the relative decision-making power
between workers and firms. Similarly, equilibrium studies at the local labor market level,
such as those by Acemoglu and Restrepo (2020) or Adachi et al. (2024), focus on variation
across sectors or skill levels. Dauth et al. (2021) identify a suggestive interaction between
the displacement effect at the local labor market level and local unionization rates. In
contrast, in this paper we are able to leverage detailed micro data on firm adoption
and worker trajectories, utilizing event studies to demonstrate the dynamic interaction
between institutions and automation. In addition, our baseline empirical strategy, using
event studies in combination with matched control group workers, is related to papers in
the literature studying the cost of job loss (Bertheau et al. (2023) and Illing et al. (2024)).

Jäger et al. (2021) show that board-level participation of workers can increase capital
investment rather than decrease it. Consistent with this, our findings indicate that au-
tomation events are associated with greater productivity growth in establishments that
have shop-floor worker representation. Relatedly, Addison et al. (2001) and Mueller (2012)
highlight a positive correlation between plant-level productivity and the presence of works
councils. As noted by Jäger et al. (2022) in their survey on the effects of co-determination
"due to a lack of sharp and exogenous variation, the effects of works councils on worker
and firm outcomes remain an open research question". We contribute to this literature
on shared governance by being able to identify an interaction effect of work councils with
technology adoption.

The paper proceeds as follows. In the next section, we describe the data and briefly
discuss the institutional background. In Section 3, we present the empirical models and
strategy. Section 4 contains the main results. In Section 5, we present underlying mech-
anisms with a focus on technology adoption and worker training. Section 6 concludes.

2 Data

Administrative Labor Market Data. For our main analysis in Section 4, we use
a plant-level survey containing information on the presence of works councils and robot
usage and link it with the employment biographies of the plants’ entire workforce. Our
plant data stem from the IAB Establishment Panel (Bellmann et al., 2021), an annual
survey of around 15,000 establishments in Germany. The survey comprises data on, among
others, general information on the plant, workforce structure and trends, labor relations
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and codetermination, as well as information on the plant’s technical endowment.
We link this survey to the administrative records of all individuals who were ever

employed in one of the plants of the 2019 wave. A detailed description of the data sources
can be found in the Online Appendix. The resulting dataset allows us to examine the
complete employment biographies (employment, wages, occupation, region, industry) and
background characteristics (age, schooling, gender) of all workers who have been exposed
to robot adoption even if they separate from the plant in subsequent years.

We use the occupation code of the current job to merge further information on job
characteristics. First, we classify occupations according to the popular classification by
Blossfeld (1987), which permits us to separate blue-collar production jobs from others.
Second, we merge data from the 1991 BIBB/IAB Employment Survey and follow Spitz-
Oener (2006) to obtain the share of routine-manual tasks performed in each occupation.
We use this additional information on the task profile to identify workers who are most
prone to being directly affected by automation, as their job contains a high share of
potentially replaceable routine tasks (Acemoglu and Restrepo, 2018; Acemoglu et al.,
2023). We also use the occupation codes to quantify each establishment’s occupational
employment structure in order to merge a novel measure of plant-specific labor market
tightness. This measure was provided by Bossler and Popp (2024) and is calculated as
the ratio of the number of job seekers to the number of vacancies, both taken from official
statistics. Since not all vacancies are registered with the employment agency, Bossler and
Popp (2024) use plant-level survey data to correct for varying penetration rates by skill
levels. The result is a measure of labor market tightness that varies by both the local
labor market and detailed 5-digit occupation.

In addition to the worker-level analyses in Section 4, we study the mechanisms of
how codetermination interacts with technology adoption, further training, and increasing
productivity in Section 5. For those analyses, we use the plant-level data of the IAB
establishment survey to construct a sample of first-time robot adopter plants between the
years 2015 and 2018.

Automation and First-Time Robot Adoption Events. The Establishment Panel
is augmented by questions on current topics on a yearly basis. Notably, the wave 2019
contains information on robot usage between 2014 and 2018 which we use to construct
robot adoption events.7 We first distinguish between robot users and plants that have
never used robots up until 2020. Among the set of robot users, we again distinguish
between plants that newly adopted robots between 2015 and 2018 and incumbent users,
i.e. plants that already used robots in 2014. We follow the seminal studies of Graetz and

7Plümpe and Stegmaier (2023) show that the robot density obtained from the survey correlates
strongly with commonly used industry-level data from the International Federation of Robotics (IFR).
Deng et al. (2023b) report that robot adopters are positively selected among firms, e.g. in terms of size
and productivity, as in other periods and countries (e.g. Koch et al., 2021).

5



Michaels (2018) and Acemoglu and Restrepo (2020) and interpret the event of installing
robots for the first time as an event where firms automate routine-manual tasks.

Works Councils. Another advantage of the IAB Establishment Panel is that it provides
information on the presence of a works council. The German Works Constitution Act
(BetrVG) stipulates that workers in plants with at least five permanent employees have
the right to elect a works council (Jäger et al., 2022). Since the establishment of a works
council requires an initiative by the employees, by far not all plants have one. 41 percent
of all German workers in 2015 were employed in a plant that had a works council, but this
share varies from nine percent in plants with between five and 50 employees and 89 percent
in plants with more than 500 employees (Ellguth and Kohaut, 2015). Addison (2009)
and Mohrenweiser (2022) provide extensive overviews of the powers of works councils
in Germany and their economic implications. Those powers range from consultation in
events of technology adoption over veto rights in cases of hirings, dismissals, and internal
transfers (that can only be overruled by labor courts) to co-decision rights in matters
that concern, e.g., working hours, workplace monitoring, or performance pay. While
they have no mandate to bargain over wages directly, they can negotiate in which pay
group an individual worker is classified within a firm’s collective agreement. This might
be particularly important if employers plan to downgrade production workers in routine-
manual occupations who directly compete with robots. Since they can stall or even prevent
dismissals, they can also incentivize employers to pay efficiency wages. However, it is
important to notice that works councils are usually interested in the success of their firms
and may in fact be beneficial since they may raise worker satisfaction and awareness about
the economic state of the firm, raise efficiency by improving the communication on work
processes (Freeman and Lazear, 1995), and identify specific training needs (Stegmaier,
2012).

3 Event-Study Models with Double and Triple Differ-

ences

Our empirical strategy aims to identify the consequences of an event where firms automate
parts of their production on directly affected incumbent workers – and to analyze whether
works councils can moderate these consequences. To this end, we borrow from the current
literature on worker-level effects of job displacement due to mass layoffs (e.g. Lachowska
et al., 2020; Bertheau et al., 2023). Our approach is motivated by recent papers like
Schmieder et al. (2023) and Illing et al. (2024), which use propensity score matching to
identify a control group of comparable never-treated workers prior to running an event-
study analysis. This has the advantage that we obtain pairs consisting of a worker in a
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robot-adopting plant and a matched control worker in a never-adopting plant, who are
both assigned a common event date. Schmieder et al. (2023) point out that this avoids
the problems of two-way fixed effects models when treatment timing varies (as expounded
by Goodman-Bacon, 2021).

To ensure comparability between workers in robot-adopting and non-adopting plants,
we perform a 1-nearest neighbor propensity score matching with a caliper (Stuart and
Rubin, 2008), based both on worker and plant characteristics prior to adoption. These
characteristics are (log) daily wage, job experience, plant size, and pre-estimated AKM
plant fixed effects (Abowd et al., 1999; Bellmann et al., 2020). Additionally, we force
workers from matching pairs to have the same gender, nationality, contract status (full-
time, part-time), are from the same occupation of in-total 4 groups, according to Blossfeld
(1987). Moreover, matched workers are from establishments in the same aggregate indus-
try and with the same work council status. In this way, we can account for the sorting of
workers into firms regarding firm-level institutions, such as co-determination. Appendix
Table A.1 contains additional details regarding the variables used.

To rule out that our results are influenced by workers who have been hired endoge-
nously in the course of implementing the new robot technology (e.g. experts on robot use
or maintenance), we restrict our sample to all incumbent workers employed at the same
plant at least two years prior to robot adoption. Additionally, we restrict our sample
to directly affected production workers (as defined in Blossfeld (1987)) who are aged be-
tween 25 and 60 in the year of robot adoption. This leaves us with yearly observations of
17,721 individuals in 718 plants. Appendix Table A.2 shows descriptive statistics among
matched workers - for all production workers, as well as separately for the subset of older
and routine-manual workers. Reassuringly, the table shows that across groups, workers
in the control and treatment group have similar task and education profiles. Adopting
firms tend to be larger, as noted in Section 2, also in line with previous papers, and rely
on more tenured workers.

In the second step, we quantify the effect of an automation event on incumbent work-
ers. As a starting point, consider a difference-in-differences (DiD) design of the following
form:

Y g
it = αg +

3∑
τ=−4;τ ̸=−1

βg
τ × Iτ ×Rj(i) +X ′

jtϕ
g + ηgτ + ηgt + ηgi + ug

it (1)

for individual i in calendar year t, period τ , and plant j. As outcome variables, we use
an indicator variable that equals 1 if a worker is employed at least one day per calendar
year (either at the initial plant or anywhere) and mean log daily wage. To assess the
differential consequences of the automation event for workers in plants with (g = WC)
and without works councils (g = NWC), one could run separate regressions and compare
the results in a further step. However, to directly quantify the differences between plants

7



with and without works councils, we instead use a triple difference (DiDiD) design (as
discussed by Olden and Møen, 2022). This has the advantage that we obtain point
estimates and confidence intervals for the differential effects of the automation event at
each point in time before and after the event. The estimation equation takes the form:

Yit = α +
3∑

τ=−4;τ ̸=−1

δτ × Iτ ×Rj(i) ×Gj(i) +X ′
jgtξ + ητ + ηt + ηi + ϵit (2)

where Gj(i) indicates whether a plant has a works council. The observation period
spans from four years before to three years after robot adoption, i.e., τ ∈ −4, 3. Rj

indicates robot adoption at τ = 0, and Iτ denotes the relative time to automation. To
account for differences between workers and plants, we include period ητ , calendar year
ηt, and individual fixed effects ηi, plus (age-45) squared as controls (Xjt). In the DiDiD
design, Xjgt also includes all lower-order interaction terms between Iτ , Rj(i), and Gj(i).
δτ shows the causal effect of automation in works council versus non-works council plants
under the assumptions of (i) parallel trends and (ii) no anticipation. (i) requires the trend
between plants with and without works councils to evolve similarly with and without robot
adoption. Although not directly testable, we assess this by visually inspecting if our pre-
trend coefficients are different from zero. By restricting our sample to incumbent workers
with at least two years of tenure, we ensure our estimates do not suffer from bias due to
anticipation and selection into treatment. Further, by restricting matches within works
council groups, we account for the selection into both robot adoption and works council
plants. We follow Abadie and Spiess (2022) and cluster all standard errors at the level of
matched worker pairs.

4 Results

4.1 Works Councils and Retention During Automation Events

We begin by showing how automation – induced by the adoption of robots at the plant
level – affects incumbent workers’ employment prospects. Figure 1 displays the effect of
robot adoption separately estimated for matched workers in plants with (blue) and without
(red) works councils using the difference-in-differences specification in Equation 1.

Panel (a) shows that robot adoption has an, on average, positive effect on retention –
but only in plants with a works council. For all types of plants, separation rates increase
over time: after 3 years, on average 12% of the blue-collar workforce have left their initial
plant. However, workers in automating plants with a works council are around 4%-points
more likely to remain in their initial establishment relative to their matched counterparts
in non-automating plants with a works council. Thus, it seems that works councils actively
prevent the workforce from leaving when plants adopt robots.
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Potentially, this has the aim to ease the consequences of automation, as indeed, the
higher retention translates into a small positive employment effect (Panel (b)). While the
adaptation of robots does not worsen the employment probability of workers in plants
with works councils, it gradually decreases up to around 1%-point for workers from plants
without works councils.

4.2 Effects By Age and Employer-Specific Tightness

Next, we turn to the triple difference (DiDiD) design of Equation 2 to study the het-
erogeneity of the mitigating effect of works councils with respect to worker and firm
characteristics. Panels (a) and (b) in Figure 2 are equivalent to the previous results. The
coefficients now reflect the difference between the separately regressed DiD models.

We start by focusing on older workers, who typically adjust to new technologies less
easily. Employers may prefer to substitute those workers with young ones. Thus, works
councils may focus their efforts on this particular group because older workers also face
stronger barriers to finding new employment. To see whether older employees benefit
more from works councils, we divide the sample of production workers into employees
under 55 years and those 55 and older. Panel (c) in Figure 2 shows that both age groups
are similarly likely to remain in their initial plant, indicating that works councils have no
age bias. However, unlike young workers, who have low adjustment costs of displacement,
works councils increase the probability of being employed for older workers by 2%-points
in the long run. These effects are economically significant given that older workers are, on
average, non-employed with a probability of around 2.5% three years after the adoption
of robots.8

In our main specifications, we focus on production workers (i.e. Blossfeld occupations
2-5). When we instead consider all workers, we find a similar retention effect, see Appendix
Figure A.1. The same is true if we split our sample into routine-manual and all other
production workers, see Appendix Figure A.2. However, the overall employment effect
gets closer to zero as non-production workers are less affected by automation and have
lower adjustment costs of switching across employers and industries. This highlights, that
although works councils matter differently across worker groups, they do not seem to be
biased when negotiating with the management about retaining incumbent workers.

In contrast to the characteristics of the workforce, we expect external circumstances
to lead to differences in the retention effect. For the management, the value of retaining
workers increases as replacement and recruitment costs become higher (Kline et al., 2019;
Jäger and Heining, 2022) – and by that aligning the incentives of the management and the
incumbent workforce regarding retention. To test whether works councils have a higher
retention effect when labor is scarce, we use the novel measure of plant-specific labor

8These effects are not driven by early retirement as we only consider spells of individuals subject to
social security contributions.
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market tightness from Bossler and Popp (2024). We use this measure to categorize plants
based on their specific local labor market tightness, a proxy for replacement costs, in the
year before robot adoption. Indeed, Panel (e) reveals that works councils only have a
positive retention effect during automation when labor markets are not tight, i.e., when
plant-specific replacement costs are low. For the subgroup of workers in plants with the
lowest labor market tightness, we find that works councils increase retention by around
18%-points, translating into a positive employment effect (see Panel (f)). In the Appendix
in Figures A.3 and A.4, we show the corresponding DiD results of this section.

4.3 Wage Effects

Although works councils do not have the right to enter into wage negotiations, they
can exert indirect pressure through their right of codetermination in other areas, thus
redistributing rents from the employer to the employees (Freeman and Lazear, 1995). In
addition, they can indirectly affect wages by negotiations over classifications of workers
into pay grades (Mohrenweiser, 2022) and also prevent workers from slipping into lower
pay grades. As such, in the context of automation, we expect works councils to positively
impact rent-sharing for workers, not by increasing overall wages – as established by a
large body of literature on the rent-sharing effects of firm innovation (Card et al., 2018)
– but by protecting the wages of vulnerable subgroups from falling.

One vulnerable subgroup is production workers with a routine-manual intensive task
profile.9 Another group is older employees. Automation not only replaces but also gen-
erates new tasks, for instance, robot maintenance. Older workers are likely to have more
difficulties learning new (digital) tasks, as argued in Deng et al. (2023a), and, therefore,
may face downward pressure on their wages. Hence, we estimate the same set of event
studies using log wages as the outcome. To be able to capture the evolution of wages
within the establishments, we use only yearly spells of individuals as long as they are
employed at the initial plant. Thus, our results from the triple difference specification
displayed in Figure 3 should be interpreted as the wage impact for establishment stayers.

Both for incumbent production workers (Panel (a)) as well as the entire workforce
(Panel (b)), we find no wage effects of works councils during automation.10 However,
when differentiating by age (Panel (c)) and task profile (Panel (d)), we find that the
positive wage effect of works councils during automation is especially present for workers
aged 55 and above and in routine-manual occupations. For them, works councils increase
wages during automation events by around 3.5% relative to the control group. To gain an

9We classify workers as routine-manual intensive based on whether they are in Blossfeld occupation
group 2 in the year prior to robot adoption. These occupations are characterized by a high share of
routine-manual tasks which are more prone to automation.

10This is in line with a literature which, also not differentiating by firm-level policies, has found only
limited effects of automation on wages at adopting firms for all workers on average (e.g., Koch et al.,
2021; Dixon et al., 2021)
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insight into what drives the effects, we estimate the difference-in-differences specification
as in Equation 1 separately for each of the two vulnerable subgroups. Strikingly, we see
that the positive effect of works councils is driven by preventing wage cuts, as we find
a stark reduction of wages for older (Panel (e)) and routine-manual workers (Panel (f))
in plants without works councils – while they remain relatively constant in plants with
works council.

5 Mechanisms: Technology Direction and Worker

Training

In this section, we investigate the mechanisms through which organized labor interacts
with automation decisions at the plant level. We do so by comparing features of the plants
regarding the direction of technology adoption, productivity, and training of similar first-
time robot-adopting plants that differ in their works council status. This comparison
of plants by works council status does not reveal causal effects but reveals meaningful
patterns that distinguish those two groups of plants.

Data and Estimation, In addition to the information on the presence of works councils
and the number of robots used between 2014 and 2018, the IAB Establishment Panel
contains variables that capture the direction of technology adoption, as well as value-
added measures (as a proxy for productivity) and worker training. For the year 2018, we
have information on the robot density and the type of robot installed. Plants were asked
about the number of robots (i) with a price below 50,000 Euro, which we refer to as ’cheap
robots’, and (ii) that are separated from the workforce with a fence, which we call ’cage
robots’. Cage robots are large, versatile, and highly productive – but need to be separated
from the workforce to prevent hazards (Taesi et al., 2023). Cheap robots, by contrast,
are more likely to be collaborative robots, or ’cobots’, which demand a high degree of
human-machine interaction (Gerbert et al., 2015; Plümpe and Stegmaier, 2023) and are
constructed with a focus on human safety (Gurgul, 2018). By linking administrative
data, we observe changes in employment, productivity, provision of training, and the skill
structure of the plant over time and use information on size, industry, and organization
as control variables.

For every first-time robot-adopting plant j in industry i we estimate the following
regression across different outcomes:

Yj = βWCWCj + Ii(j) +Xj + ej, (3)

The estimand of interest is βWC and captures the difference in features of the au-
tomation process for similar first-time robot adopters depending on their works council
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status. Ii(j) are industry fixed effects, which ensure that βWC is identified only from com-
paring plants within the same aggregate industry, controlling for potentially confounding
industry-specific trends. With Xj we further control for plant size (10 groups), the share
of high-skilled workers, and the year of foundation. For outcomes that we observe repeat-
edly over time, we run this regression in pooled cross-sections around the year of robot
adoption, which are either prior to adoption (τ < −1), during adoption (τ = −1, 0), or
after adoption (τ > 0).11

Results. We start by relating the presence of codetermination to the type of automa-
tion technology adoption. Panel A in Table 1 contains the estimates for βWC from the
cross-sectional regression. Column 1 shows, that there is no difference in robot density,
measured by the number of robots per worker in 2018. In columns 2 and 3, we distinguish
different types of robots. Plants with works councils have a 17%-points higher share of
cage robots, which are commonly associated with higher productivity (Gurgul, 2018) but
also higher investment costs.

Consistent with a mechanism in which automating firms with works councils employ
not more but higher quality robots, they appear to have fewer cheap (collaborative)
robots installed, although this result is not statistically significant. In a standard model
of automation decisions, as the one by Acemoglu and Restrepo (2018), the profitability of
investments are the main concern of firms. Internalizing part of the displacement costs and
weighting the welfare of incumbent workers could create a wedge into the decision, shifting
up the threshold for automation investments with a positive return. Thus, conditional
on robot adoption, plants with works councils should have higher productivity gains. We
test this in Panel B, where we study the log of value added per worker as a measure of
labor productivity, leveraging also the time dimension of the data.

Already prior to robot adoption, plants with works councils are more productive,
which is consistent with the literature on codetermination (Addison et al., 2001; Mueller
and Neuschaeffer, 2021), although the difference is statistically insignificant. This differ-
ence increases in the aftermath of robot adoption and becomes highly statistically and
economically significant. The estimates imply that the difference in productivity increases
from around 0.11 log points to more than 0.26, or 30%. Overall, these findings align with
the idea that works councils drive up the requirement for the returns to automation to
be sufficiently high to offset the higher costs of displacement. However, as we show in the
Appendix, we do not find evidence that works councils change the purpose or even hinder
the adoption of robots, as we do not observe systematic differences in the type (process
vs. product improvement) and the probability of using or newly adopting robots (see

11Pooling years ensures a sufficient number of observations as many plants have missings across years.
We account for plants having multiple observations per year pool by clustering robust standard errors
at the plant level. Additionally, we only include plants that have at least one observation in every year
pool. We use up to 4 years before and up to 2 years after adoption.
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Appendix Table A.3). We also do not detect differences between plants with and without
works council around adoption regarding employment levels or vacancies (see Table A.4
in the Appendix).

Finally, we want to shed light on whether works councils do not only increase retention
during automation events as documented in Section 4 but also increase re-training efforts.
Again, we leverage the time dimension, using periods pre- and post-adoption as well as
contemporaneous to adoption. Column 1 in Panel C of Table 1 demonstrates that firms
with works council have a 5%-points (statistically insignificant) higher share of workers
who receive training in a given year, conditional on the set of controls. This is consistent
with previous findings (Stegmaier, 2012; Mohrenweiser, 2022). However, during automa-
tion events, the gap in the share of trained workers increases sharply to 14.5%-points and
returns approximately to previous levels thereafter. When distinguishing between low-
and high-skilled workers participating in training in Appendix Table A.5, we find that the
spike in training provision in plants with works council is similar across worker groups.
This increase is meaningful given that, pre-adoption and across all plants, only 18% of
low-skilled workers receive training. The patterns are in line with systematic investment
in training during automation events in plants with works councils. It might not only
reflect the willingness of firms to supply training, but also an elevated propensity of work-
ers to take up firm-specific training, as the increased job security makes investments into
firm-specific skills more worthwhile (Freeman and Lazear, 1995).

6 Conclusion

We find that work councils moderate adverse effects from automation events on incumbent
workers by reducing separations. Older workers, with limited adjustment possibilities,
benefit the most in terms of employment. When replacing workers is costly for firms, as
measured by high plant-specific labor market tightness, separation and retention effects in
automating firms with and without work councils converge. A higher value of incumbent
workers for firms, hence, aligns the objectives of work councils and the management.
We further find that works councils prevent negative wage effects from automation for
vulnerable workers.

We observe that robot adoption is associated with larger productivity growth and
increased training efforts in the presence of work councils. Our observation that increas-
ing productivity goes hand in hand with retaining and retraining incumbent workers is
consistent with the view that work councils facilitate cooperative solutions in the wake
of conflicting interests between capital owners and workers (Müller-Jentsch, 1995). Un-
derstanding how other types of labor market institutions might alter the direction and
consequences of new (automation) technologies is an important topic for future research.
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Exhibits

Figure 1: Employment effect of robotization by works council status

(a) Retention probability (b) Employment probability

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the
initial plant (in Panel (a)) or anywhere (in Panel (b)). Employment is measured as the probability of
being employed at least one day per calendar year. All sub-figures display the difference-in-differences
(DiD) estimates obtained from Equation 1, separately for workers in plants with and without works
council. The dashed vertical line marks the event of robot adoption. Vertical bars indicate 90% confidence
intervals based on robust standard errors clustered at the matching pair level. The sample of workers is
restricted to individuals aged 25 to 60 in the year of adoption, being employed at least two years prior
to robot adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To ensure
comparability, workers in robot-adopting plants are matched to similar counterparts in non-adopting
plants. The matching process is described in detail in Section 3.
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Figure 2: Employment effect of automation in plants with vs. without works council

(a) Retention probability (b) Employment probability

(c) Retention probability (by age) (d) Employment probability (by age)

(e) Retention probability (by LMT) (f) Employment probability (by LMT)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ employment outcomes. Employment is measured as the probability of being employed
at least one day per calendar year, either at the initial plant (in Panel (a), (c), and (e)) or anywhere
(in Panel (b), (d), and (f)). All sub-figures display the triple differences (DiDiD) estimates obtained
from Equation 2, either for the whole sample or separately estimated across worker groups. In Panel
(c) and (d), workers are divided into groups based on whether they are below 55 or between 55 and 60
in the year of robot adoption. In Panel (e) and (f), the division is based on plants’ local labor market
tightness (LMT) in the year prior to adoption (cutoff is the 25th percentile). This measure is obtained
from Bossler and Popp (2024) and defined as the ratio of the number of vacancies to job seekers at the
occupation-region level, weighted by plants’ employment shares. The dashed vertical line marks the event
of robot adoption. Vertical bars indicate 90% confidence intervals based on standard errors clustered at
the matching pair level. The sample of workers is restricted to individuals aged 25 to 60 in the year
of adoption, being employed at least two years prior to robot adoption in the plant, and working in
production (i.e. Blossfeld occupations 2-5). To ensure comparability, workers in robot-adopting plants
are matched to similar counterparts in non-adopting plants. The matching process is described in detail in
Section 3. Results from a difference-in-differences (DiD) estimation showing the effect of robot adoption
separately by plant with and without works council can be found in Figures 1, as well as A.3, and A.4 in
the Appendix.
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Figure 3: Wage effect of automation in plants with vs. without works council

(a) Log wage (main sample) (b) Log wage (all workers)

(c) Log wage (by age) (d) Log wage (by routine-manual occupation)

(e) Log wage (for older workers) (f) Log wage (for routine-manual occupations)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption
(in Panel (a) to (d)), and the effect of robot adoption (Panel (e) and (f)) on workers’ log daily wage in
the intial establishment. Panel (a) to (d) display the triple differences (DiDiD) estimates obtained from
Equation 2, separately estimated across worker groups. Panel (e) and (f) display difference-in-differences
(DiD) estimates obtained from Equation 1 for a specific worker group. For Panel (b), the sample of
workers is restricted to individuals aged 25 to 60 in the year of adoption and being employed at least
two years prior to robot adoption in the plant. In all other panels, the sample is restricted to production
workers (i.e. Blossfeld occupations 2-5). For Panel (c), workers are divided into groups based on whether
they are below 55 or between 55 and 60 in the year of robot adoption. For Panel (e), this division is
based on whether workers’ occupation is characterized to be routine-manual (RMW, referring to Blossfeld
occupation 2) in the year prior to the event. For Panel (e) and (f), the sample is restricted to workers
aged 55 and above and in routine-manual occupations in the year prior to the event. The dashed vertical
line marks the event of robot adoption. Vertical bars indicate 90% confidence intervals based on robust
standard errors clustered at the matching pair level. To ensure comparability, workers in robot-adopting
plants are matched to similar counterparts in non-adopting plants. The matching process is described in
detail in Section 3.
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Table 1: Firm-level mechanisms

Panel A: Equipment Robots/worker Share cage Share cheap

Works council 0.006 16.716∗∗ -9.250

(0.008) (8.427) (8.887)

Mean of Y 0.08 67.81 37.05

SD of Y 0.17 45.93 46.53

R-squared 0.66 0.40 0.22

Observations 187 187 187

Panel B: Log value added τ<−1 τ−1,0 τ>0

Works council 0.114 0.151 0.261∗∗∗

(0.155) (0.103) (0.089)

Mean of Y 10.97 10.97 10.93

SD of Y 0.71 0.72 0.69

R-squared 0.37 0.43 0.42

Observations 203 191 171

Panel C: Training τ<−1 τ−1,0 τ>0

Works council 4.922 14.536∗∗∗ 6.960

(5.906) (5.440) (5.539)

Mean of Y 29.16 30.30 26.62

SD of Y 32.19 31.51 32.41

R-squared 0.14 0.15 0.12

Observations 264 266 249

Notes: This table shows results from regressions of various outcome variables on an indicator whether
a plant has a works council. Panel A shows the results for robot density (robots per worker), the
share of cheap (price below 50,000 Euro) and cage robots (separated through a fence) from the total
number of installed robots. All outcome variables in Panel A refer to the year 2018. In Panel B and C,
the outcome variable is the log value added per worker and the share of trained workers around robot
adoption. Columns τ<−1/τ−1,0/τ>0 report results from a pooled regression prior/during/after the event.
In each regression, we control for 10 plant size dummies, the share of highly qualified workers, the year
of foundation, as well as industry fixed effects. Further, we restrict the sample to first-time adopters that
have non-missing values in any of the outcome variables in 2018 (for Panel A) or at least one observation
in all year pools b ∈ {−4, 1;−1, 0; 1, 2} (for Panel B and C). Standard errors are robust and clustered at
the plant level.
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Appendix A: Additional Tables and Figures

Appendix Figure A.1: Employment effect of automation in plants with vs. without works
council – entire workforce

(a) Retention probability (b) Employment probability

(c) Retention probability (by age) (d) Employment probability (by age)

(e) Retention probability (by LMT) (f) Employment probability (by LMT)

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ employment outcomes. Employment is measured as the probability of being employed
at least one day per calendar year, either at the initial plant (in Panel (a), (c), and (e)) or anywhere (in
Panel (b), (d), and (f)). All sub-figures display the triple differences (DiDiD) estimates obtained from
Equation 2, either for the whole sample or separately estimated across worker groups. In Panel (c) and
(d), workers are divided into groups based on whether they are below 55 or between 55 and 60 in the year
of robot adoption. In Panel (e) and (f), the division is based on plants’ local labor market tightness (LMT)
in the year prior to adoption (cutoff is the 25th percentile). This measure is obtained from Bossler and
Popp (2024) and defined as the ratio of the number of vacancies to job seekers at the occupation-region
level, weighted by plants’ employment shares. The dashed vertical line marks the event of robot adoption.
Vertical bars indicate 90% confidence intervals based on standard errors clustered at the matching pair
level. The sample of workers is restricted to individuals aged 25 to 60 in the year of adoption, being
employed at least two years prior to robot adoption in the plant. To ensure comparability, workers in
robot-adopting plants are matched to similar counterparts in non-adopting plants. The matching process
is described in detail in Section 3. 1



Appendix Figure A.2: Employment eeffect of automation in plants with vs. without works
council – routine-manual vs. other production workers

(a) Retention probability (b) Employment probability

Notes: This figure shows the effect of the presence of a works council during the event of robot adoption in
plants on workers’ employment outcomes. Employment is measured as the probability of being employed
at least one day per calendar year, either at the initial plant (in Panel (a)) or anywhere (in Panel
(b)). All sub-figures display the triple differences (DiDiD) estimates obtained from Equation 2, either
for the whole sample or separately estimated across worker groups. Workers are divided into groups
based on whether they are in a routine-manual occupation (Blossfeld occupation 2) or not in the year of
robot adoption. The dashed vertical line marks the event of robot adoption. Vertical bars indicate 90%
confidence intervals based on standard errors clustered at the matching pair level. The sample of workers
is restricted to individuals aged 25 to 60 in the year of adoption, being employed at least two years prior
to robot adoption in the plant, and working in production (i.e. Blossfeld occupations 2-5). To ensure
comparability, workers in robot-adopting plants are matched to similar counterparts in non-adopting
plants. The matching process is described in detail in Section 3.
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Appendix Figure A.3: Employment effect of automation in plants with vs. without works
council – by age

(a) Retention probability (young) (b) Retention probability (old)

(c) Employment probability (young) (d) Employment probability (old)

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the
initial plant (in Panel (a) and (b)) or anywhere (in Panel (c) and (d)). Employment is measured as the
probability of being employed at least one day per calendar year. All sub-figures display the difference-
in-differences estimates obtained from Equation 1, separately for workers in plants with and without
works council. Workers are divided into groups based on whether they are below 55 (Panel (a) and (c))
or between 55 and 60 (Panel (b) and (d)) in the year of robot adoption. Vertical bars indicate 90%
confidence intervals based on robust standard errors clustered at the matching pair level. The sample
of workers is restricted to individuals aged 25 to 60 in the year of adoption, being employed at least
two years prior to robot adoption in the plant, and working in production (i.e. Blossfeld occupations
2-5). To ensure comparability, workers in robot-adopting plants are matched to similar counterparts in
non-adopting plants. The matching process is described in detail in Section 3.
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Appendix Figure A.4: Employment effect of automation in plants with vs. without works
council – by labor market tightness

(a) Retention probability (not tight) (b) Retention probability (tight)

(c) Employment probability (not tight) (d) Employment probability (tight)

Notes: This figure shows the effect of robot adoption in plants on workers’ employment, either at the
initial plant (in Panel (a) and (b)) or anywhere (in Panel (c) and (d)). Employment is measured as the
probability of being employed at least one day per calendar year. All sub-figures display the difference-in-
differences estimates obtained from Equation 1, separately for workers in plants with and without works
council. Workers are divided into groups based on plants’ local labor market tightness (LMT) in the
year prior to adoption (cutoff is the 25th percentile). This measure is obtained from Bossler and Popp
(2024) and defined as the ratio of the number of vacancies to job seekers at the occupation-region level,
weighted by plants’ employment shares. Vertical bars indicate 90% confidence intervals based on robust
standard errors clustered at the matching pair level. The sample of workers is restricted to individuals
aged 25 to 60 in the year of adoption, being employed at least two years prior to robot adoption in the
plant, and working in production (i.e. Blossfeld occupations 2-5). To ensure comparability, workers in
robot-adopting plants are matched to similar counterparts in non-adopting plants. The matching process
is described in detail in Section 3.
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Appendix Table A.1: Matching variables

Matching type Variable Additional description
Propensity score matching (Log) Daily wage Gross wages; Censored top-coded

wages above the contribution ceiling
for the pension insurance are imputed
following Card et al. (2013).

Job experience In years
Plant size Number of regular employees
AKM plant fixed effects Pre-estimated in period 2003-2010 by

Bellmann et al. (2020)
Exact matching Sex Male, female

Nationality German, non-German
Contract type Full-time, part-time
Blossfeld occupation simple manual (2), qualified manual

(3), technicians (4), or engineers (5)
according to Blossfeld (1987)

Aggregate Industry 43 distinct industries (13 manufactur-
ing industries)

Missing AKM plant fixed effect Missing, non-missing
Works council status Works council, no works council

Notes: This table contains variables used for the matching approach described in Section 3. The matching
type refers to whether the variable is used to calculate the propensity score for the 1-nearest neighbor
matching or the subsequent restriction of matches having identical characteristics, for instance, having
the same gender. If not stated otherwise, variables are measured in the year prior to the event of robot
adoption.
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Appendix Table A.2: Summary statistics of matched workers

Production workers Older workers Routine-manual workers
Adopters Non-Adopters Adopters Non-Adopters Adopters Non-Adopters

Age 43.79 45.02 57.29 57.40 44.20 45.83
(9.87) (10.00) (1.67) (1.71) (9.85) (9.66)

No degree 0.05 0.06 0.06 0.08 0.09 0.11
(0.22) (0.24) (0.24) (0.27) (0.28) (0.31)

Vocational degree 0.86 0.85 0.86 0.83 0.89 0.87
(0.35) (0.36) (0.35) (0.37) (0.31) (0.34)

College degree 0.09 0.08 0.08 0.08 0.02 0.02
(0.28) (0.27) (0.27) (0.28) (0.14) (0.15)

Simple manual 0.46 0.46 0.49 0.50 1.00 1.00
(0.50) (0.50) (0.50) (0.50) (0.00) (0.00)

Qualified manual 0.35 0.36 0.33 0.33 0.00 0.00
(0.48) (0.48) (0.47) (0.47) (0.00) (0.00)

High-skilled manual 0.19 0.18 0.17 0.17 0.00 0.00
(0.39) (0.38) (0.38) (0.37) (0.00) (0.00)

Share routine tasks 0.53 0.50 0.56 0.51 0.67 0.62
(0.22) (0.19) (0.24) (0.19) (0.16) (0.12)

Share routine-manual 0.49 0.45 0.52 0.46 0.64 0.59
tasks (0.26) (0.23) (0.27) (0.23) (0.17) (0.14)
Tenure 13.40 15.07 17.87 19.29 12.87 15.17

(8.34) (8.65) (9.26) (8.93) (8.03) (8.47)
Log daily wage 4.68 4.70 4.64 4.69 4.55 4.58

(0.43) (0.45) (0.47) (0.48) (0.35) (0.38)
Number of employees 451.69 361.48 424.42 329.41 519.21 409.91

(367.42) (401.51) (354.72) (353.58) (405.87) (444.49)
Firm-level share 0.76 0.75 0.77 0.76 0.77 0.76
of production workers (0.11) (0.14) (0.11) (0.14) (0.09) (0.12)

Observations 8823 8898 1409 1788 4076 4124

Notes: This table displays means and standard deviations for matched workers in robot adopting and
non-robot adopting plants in the year prior to adoption. The first two columns refer to the entire sample
of production workers aged 25 to 60 in the year of adoption and being employed at least two years prior
to robot adoption in the plant. The middle (last) two columns refer to the sub-sample of workers aged 55
and older (routine-manual workers). The number of observations differs slightly between the treatment
and control group due to the post-matching restrictions on firm attachment. Production workers are
defined as being in Blossfeld occupation 2-5. Routine-manual workers are defined as being in Blossfeld
occupation 2. Simple, qualified, and high-skilled manual refer to Blossfeld occupations 2, 3, and 4+5
respectively. The shares of routine and routine-manual tasks are calculated following Spitz-Oener (2006)
based on the 1991 BIBB/IAB Employment Survey.
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Appendix Table A.3: Works councils and likelihood and purpose of robot adoption

Panel A: Adoption Robot adopter Robot user

Works council -0.409 -0.093
(0.407) (0.579)

Mean of Y 1.60 3.60
SD of Y 12.54 18.64
R-squared 0.05 0.12
Observations 11888 12150

Panel B: Purpose Product improvement New offering New product Process improvement

Works council -1.819 -2.591 -8.951 -14.721
(9.573) (11.009) (10.303) (11.557)

Mean of Y 67.10 34.19 17.42 49.68
SD of Y 47.14 47.59 38.05 50.16
R-squared 0.23 0.12 0.21 0.16
Observations 148 148 148 148

Notes: This table shows results from regressions of various outcome variables on an indicator whether
a plant has a works council. Panel A shows the results for the probability of newly adopting robots
(between 2015 and 2018, Column 1) and having robots installed at any point in time (Column 2). The
outcomes in Panel B refer to the question of whether the plant introduced a certain type of improvement
in the year of robot adoption (answers are not mutually exclusive). In each regression, we control for
10 plant-size dummies, the share of highly qualified workers, the year of foundation, as well as industry
fixed effects. For Panel A, we restrict the sample to all firms in the 2019 wave of the Establishment Panel
with non-missing information, and for Panel B to all first-time robot-adopting plants. Standard errors
are robust and clustered at the plant level.
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Appendix Table A.4: Works councils, robot adoption and employment changes

Panel A: Log employment < τ−1 τ−1,0 > τ0

Works council 0.010 -0.016 -0.056
(0.053) (0.053) (0.051)

Mean of Y 4.48 4.43 4.35
SD of Y 1.48 1.58 1.56
R-squared 0.97 0.97 0.97
Observations 288 271 258

Panel B: Vacancies < τ−1 τ−1,0 > τ0

Works council -11.559 -6.629 -5.767
(9.748) (9.048) (8.801)

Mean of Y 47.37 55.63 47.06
SD of Y 50.01 49.77 50.01
R-squared 0.11 0.11 0.18
Observations 287 271 258

Notes: This table shows results from regressions of log employment (Panel A) and the reporting of unfilled
vacancies (Panel B) on an indicator whether a plant has a works council. Columns τ<−1/τ−1,0/τ>0 report
results from a pooled regression prior/during/after the event of robot adoption. In each regression, we
control for 10 plant-size dummies, the share of highly qualified workers, the year of foundation, as well
as industry fixed effects. Further, we restrict the sample to first-time adopters that have at least one
observation in all year pools b ∈ {−4, 1;−1, 0; 1, 2}. Standard errors are robust and clustered at the plant
level.
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Appendix Table A.5: Works councils, robot adoption and the provision of training

Panel A: Before adoption All workers In simple tasks In qualified tasks

Works council 4.922 12.165 8.070
(5.906) (7.623) (6.365)

Mean of Y 29.16 18.27 37.43
SD of Y 32.19 36.46 41.92
R-squared 0.14 0.19 0.17
Observations 264 198 257

Panel B: During adoption All workers In simple tasks In qualified tasks

Works council 14.536∗∗∗ 15.190∗∗ 13.450∗∗

(5.440) (6.355) (6.074)

Mean of Y 30.30 20.59 37.18
SD of Y 31.51 37.62 36.34
R-squared 0.15 0.17 0.19
Observations 266 199 250

Panel C: After adoption All workers In simple tasks In qualified tasks

Works council 6.960 1.970 9.472
(5.539) (6.390) (6.340)

Mean of Y 26.62 22.79 30.57
SD of Y 32.41 39.20 39.60
R-squared 0.12 0.17 0.13
Observations 249 185 238

Notes: This table shows results from regressions of the share of trained workers (all workers, workers
performing simple/qualified tasks) on an indicator whether a plant has a works council. Simple (qualified)
tasks refer to the requirement of workers performing them having no (at least a) vocational degree. The
panels report results from a pooled regression prior (τ<−1), during (τ−1,0), and after (τ>0)the event of
robot adoption. In each regression, we control for 10 plant-size dummies, the share of highly qualified
workers, the year of foundation, as well as industry fixed effects. Further, we restrict the sample to
first-time adopters that have at least one observation in all year pools b ∈ {−4, 1;−1, 0; 1, 2}. Standard
errors are robust and clustered at the plant level.
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Appendix B: Data Description

Since the IAB Establishment Panel (Bellmann et al., 2021) of the Institute for Employ-
ment Research is based on a random sample of plants with at least one employee subject to
social security contributions, it can be matched with administrative data from the IAB.12

Specifically, we use the Integrated Employment Biographies (IEB v16.01.00) prepared
by the Institute for Employment Research use13, which comprises the full universe of all
individuals who have held a job subject to social security contributions, marginal employ-
ment, or received unemployment benefits. From this data, we identify all individuals who
were ever employed in one of the surveyed plants in the 2019 wave of the Establishment
Panel. This dataset is similar to the longitudinal model of the Linked Employer-Employee
Dataset of the IAB (LIAB LM, DOI: 10.5164/IAB.LIABLM7519.de.en.v1). However, due
to size restrictions, the standard LIAB dataset contains only a subset of all plants from
the original employment panel, the so-called panel cases 2009-2016, which would further
limit the number of observations in the subsequent analyses. The IEB contains spell-level
information on each individual’s jobs, including precise start- and end-dates, occupation,
region, industry, age, schooling. Gross wages, measured in Euro per day, are top-coded at
the contribution ceiling for the pension insurance. We employ the procedure introduced
by Card et al. (2013) to impute those censored wages.

12This link is only available for plants who have either given explicit consent in the 2020 wave of the
survey or have dropped out of the survey earlier.

13Access to this data is regulated by Section 75 of the German Social Code (Book X).
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