Discussion of Industrial policies for multi-stage production: The battle for battery-powered vehicles

(Head, Mayer, Melitz, Yang)

### Trade, value chains and financial linkages in the global economy BDI / ECB / WB

### November 2024

Rocco Macchiavello LSE • This paper develops a quantitative method to analyse industrial policies for multi-stage production and applies it to the EV industry

# **Contribution I**

 This paper *develops a quantitative method to analyse industrial policies for multi-stage production* and applies it to the EV industry



# **Contribution II**

• This paper develops a quantitative method to analyse industrial policies for multi-stage production and *applies it to the EV industry* 



My 2 cents on

 This paper *develops a quantitative method to analyse industrial policies for multi-stage production* and applies it to the EV industry

# **Methodological Contribution**

- Impressive. This is front-stage: related literature *only* discusses methodological contribution w/out *any* discussion of IP, EV, and IP for EV literatures.
- There surely is an important contribution but I am not qualified to provide substantial suggestions on the model/algorithm implementation.

# **Methodological Contribution**

- Impressive. This is front-stage: related literature *only* discusses methodological contribution w/out *any* discussion of IP, EV, and IP for EV literatures.
- There surely is an important contribution but I am not qualified to provide substantial suggestions on the model/algorithm implementation.
- Help a(n uninformed) reader in appreciating the contribution Section 4:
  - Discussion of literature in intro refers to *interdependencies*, *sub* and *super* modularity. Is it worth formally defining these concepts in the context of your model?
  - Does your model nest models in the literature? You could be explicit about which dimensions it generalizes existing models. (Maybe even deploy your algorithm to solve those simpler models)

# **Methodological Contribution**

- Impressive. This is front-stage: related literature *only* discusses methodological contribution w/out *any* discussion of IP, EV, and IP for EV literatures.
- There surely is an important contribution but I am not qualified to provide substantial suggestions on the model/algorithm implementation.
- Help a(n uninformed) reader in appreciating the contribution Section 4:
  - Discussion of literature in intro refers to *interdependencies*, *sub* and *super* modularity. Is it worth formally defining these concepts in the context of your model?
  - Does your model nest models in the literature? You could be explicit about which dimensions it generalizes existing models. (Maybe even deploy your algorithm to solve those simpler models)

#### Section 5:

- Currently it shows that the approach is feasible in a demanding environment ("it can be done, but results are complex")
- This invites the reader to be skeptical about policy counterfactuals later on.
- Would exploring a continuum of simulations illustrate how [some] key parameters matter?
  Maybe you could do that with the simpler model you eventually take to the data.
- This would help the reader build [some] intuition and might be cheaper than tackling the robustness of counterfactuals to estimates.

My 2 cents on

• This paper develops a quantitative method to analyse industrial policies for multi-stage production and *applies it to the EV industry* 

- The data are impressive and novel.
  - Under mild assumptions, it allows us to track the supply chain (location, factory) for many EVs across multiple stages and countries. I *really* like this aspect.
  - [More generally: enormous gains from global industry studies in btw IO & Trade]
- It seems an important computational constraint is the sheer number of potential *paths* a firm could choose from to optimize
  - The authors make very sensible choices once they get to estimation
- There is not a lot of discussion of whether the potential sets of paths available to a firm could be more limited in practice
  - MNCs entry & location decisions process
  - Path-dependency
  - ... ?
- (Other data might also be useful for validation/estimation)

## **Estimation**

- There is <u>a lot</u> to absorb here. What I understood:
  - a. Taking entry in market *n* as given, we focus on the choice of path i.e., sourcing choice for the two stages (assembly, battery)
  - b. The probability of a given path can be expressed as the product of the conditional probabilities at each stage.
  - c. In turn, each of those, is a function of variable and fixed costs at that stage.
  - d. In a first step, we can estimate the probability of each stage separately. This yields estimates for the variable costs.
  - e. In the second step, SMM can be used to recover also the fixed costs.
- Assumptions required to go c. → d. not entirely clear to me. It would be helpful perhaps to spend a bit more time there.
  - Is the idea that the bilateral fixed-effects for origin and destination at the relevant stage absorb the fixed costs (?)
- I *really* liked benchmarking of cells' cost share to industry "*estimates*" (even s.t. caveat). Can "insider" knowledge be leveraged more systematically?
  - E.g., as constraints/targets to estimate the model, or for validation.

# Taking the Model to the Industry

- The tool developed in the paper can be applied to (*m*)*any* industry.
- For example, a great fit for the apparel industry:
  - Brands selling in multiple countries, deciding where to do design, and de-localize production,
  - Many buyers, infinitely many suppliers,
  - Industry in stead-state, little technological change & dynamic learning effects
- But is this a good model for the EV industry?
  - Some stylized facts consistent with the model. However ...

| No. | Manufacturer      | # Markets | <b># Models</b> | Sales          | Sales-exCHN  |
|-----|-------------------|-----------|-----------------|----------------|--------------|
|     |                   |           |                 | Cum. Share (%) | Cum. Shr (%) |
| 1   | Tesla             | 23        | 4               | 20.5           | 28.0         |
| 2   | Volkswagen        | 24        | 23              | 30.0           | 42.4         |
| 3   | Hyundai           | 23        | 15              | 35.6           | 54.1         |
| 4   | Stellantis        | 18        | 19              | 40.3           | 63.7         |
| 5   | BMW               | 24        | 7               | 44.0           | 69.7         |
| 6   | Renault           | 19        | 6               | 46.7           | 75.3         |
| 7   | Mercedes-Benz     | 24        | 9               | 49.3           | 80.0         |
| 8   | Geely             | 24        | 15              | 55.6           | 84.4         |
| 9   | Ford              | 22        | 4               | 57.5           | 88.3         |
| 10  | Nissan-Mitsubishi | 23        | 8               | 60.1           | 91.9         |
| 11  | SAIC              | 17        | 21              | 72.8           | 95.0         |
| 12  | General Motors    | 7         | 7               | 74.1           | 96.6         |
| 13  | Toyota            | 23        | 8               | 74.9           | 97.8         |
| 14  | Rivian            | 3         | 3               | 75.3           | 98.6         |
| 15  | BYD               | 10        | 14              | 89.6           | 98.9         |

Table 5: 15 top firms in 2022

Note: Market shares defined over 24 countries used in simulations.

- In-sample global *HHI* ≈1375 (*C4* 63.7)
- In US, *HHI* (used to be) >2500, in EU *HHI* >1000 (*C4* ≈54)
- Concentrated market, with substantial dynamic
- Batteries (and patents on batteries) even more concentrated

# Taking the Model to the Industry

- The tool developed in the paper can be applied to (*m*)*any* industry.
- For example, a great fit for the apparel industry:
  - Brands selling in multiple countries, deciding where to do design, and de-localize production,
  - Many buyers, infinitely many suppliers,
  - Industry in stead-state, little technological change & dynamic learning effects
- But is this a good model for the EV industry?
  - Some stylized facts consistent with the model. However ...
  - EV industry is (quite) highly concentrated at both stages (autos, batteries)  $\rightarrow$  bilateral oligopoly
  - Industry clearly not in steady state: motivating facts confirm this.
  - Massive technological progress on batteries
  - 1. Cost of batteries is rapidly declining
  - 2. Battery quality (milage, charging times, safety) will determine who wins the race!
- Maybe discuss a bit more the trade-offs involved in modelling choices + possibly implications for the evaluation of policy counterfactuals.

### In the end ...

• Impressive paper that brings new tools and applies them to one of the defining IP questions of our time

### In the end ...

- Impressive paper that brings new tools and applies them to one of the defining IP questions of our time
  - Main challenge is that both tool and application need lot of real estate



### In the end ...

- Impressive paper that brings new tools and applies them to one of the defining IP questions of our time
  - Main challenge is that both tool and application need lot of real estate



• We need more work like this at the intersection of trade & IO

R.Macchiavello@lse.ac.uk

Thank you!