The Bullwhip: time to build and sectoral fluctuations Discussion

Glenn Magerman ULB, CEPR, CESIfo

Banca d'Italia November 14, 2024

Summary

Question

What is the impact of demand shocks on output and volatility of upstream sectors?

Method

- Develop a model of production networks with demand shocks and heterogeneous time to build technology.
- Evaluate the bullwhip effect on long time series of US production.

Results

- Characterize the impact of (i) demand shocks, (ii) network structure of production, (iii) time-to-build heterogeneity on equilibrium output of all sectors.
- Bullwhip effects are sizable for the US economy.

Excellent paper!

Key results

Result 1: Equilibrium sector output $p_{it}y_{it} \equiv \gamma_{it}$ is given by

$$\gamma_{t} = \theta_{t} + \sum_{s=1}^{\infty} \beta^{s} \sum_{\substack{\phi \in \Phi_{t} \\ \phi_{j} \in \phi}} \prod_{\substack{\phi_{j} \in \phi \\ \text{delay+network}}} \Omega_{\phi j} \underbrace{\mathbb{E}\left[\theta_{t+s}\right]}_{\text{future demand}} \text{ with } \Omega_{d} \equiv \left[\omega_{ij} \mathbf{1}_{d_{ij}=d}\right]'$$

I.e.: demand shocks θ_t affect sector output directly; future demand θ_{t+s} indirectly through all sectors j to which i supplies (Ω_d) .

Result 2: If demand follows an $AR(\infty)$ process with AR coefficients δ_s , transitory demand shocks affect output as:

$$\frac{\partial \gamma_t}{\partial e_t} = I + \sum_{s=1}^{\infty} \beta^s \left(\sum_{\phi \in \Phi_t} \prod_{\phi_j \in \phi} \delta_{\phi_j} \Omega_{\phi_j} \right)$$

Key results

Result 3: Further parameterize the $AR(\infty)$ process as AR(2) with $\rho > 0.5$

- Output has transitory component (monotonic decay), and persistent component (hump shaped).
- Impact of a shock to j on output of upstream i can be written as a bilateral upstreamness measure (c.f Alfaro et al., 2019), accounting for time to build.

Result 4: Not only mean output increases, also the variance (the true bullwhip)

Empirics

- Fact 1: Upstream sectors are more volatile than downstream sectors.
- Fact 2: Demand shocks are indeed hump shaped.
- Fact 3: Persistent demand shocks account for large share of sectoral fluctuations.

Automobiles and Light Duty Motor Vehicles

Some thoughts

Question 1: Can you characterize input substitutability?

- Network structure is surely not fixed over the long time period 1972-2023.
- Say input shares adjust in response to shocks, does this dampen or amplify the bullwhip effect?

Question 2: Are there potential induced effects?

- ▶ Positive demand increases output $\theta_{it} = p_{it}c_{it}$ and value added $\alpha_i p_{it}y_{it}$.
- ▶ This additional value added (labor income) will be consumed again.
- ► Cf. Type I vs Type II multipliers in the older IO literature (induced effect).
- > This is not just a scalar, but a heterogeneous feedback loop into the model.

Question 3: Are sector upstreamness/distance and d_{ij} correlated?

- Both are exogenous and time invariant, but are they correlated?
- Is it because sectors are upstream or because they take longer to build that they are more volatile?

Some thoughts

Question 4: Is it sector-specific demand shocks, common, or convoluted shocks?

▶ Say there is 1 macro shock -> what happens?

Minor remarks

- Fig 1 & 5: do not control for other supply shocks, or demand shocks to other sectors.
- Perform analysis on period 1972-2019 (avoid unexpected supply chain bottlenecks of Covid).
- Weird important upstream sectors to car/trailers including "AV equipment" and "electrical household appliances"?
- Figure 7 is inconclusive:
 - no significant difference between IRFs, non-monotonic implications between groups 1-4.
 - Is it too noisy? Too little data? Other mechanisms at play?