# Specialization, Complexity & Resilience in Supply Chains

Alessandro Ferrari

University of Zurich & CEPR

Lorenzo Pesaresi

University of Zurich

# Introduction

• Production is organized around complex supply chains = many firms producing complementary inputs are involved

- Production is organized around complex supply chains = many firms producing complementary inputs are involved
- Complex supply chains grant productivity gains from specialization ... but are subject to costly disruptions [Carvalho et al. (2021)]

- Production is organized around complex supply chains = many firms producing complementary inputs are involved
- Complex supply chains grant productivity gains from specialization ... but are subject to costly disruptions [Carvalho et al. (2021)]
- Policy-makers concerned about **supply chain resilience** = ability of supply chains to recover quickly from disruptions [2022 Economic Report of the President]

- Production is organized around complex supply chains = many firms producing complementary inputs are involved
- Complex supply chains grant productivity gains from specialization ... but are subject to costly disruptions [Carvalho et al. (2021)]
- Policy-makers concerned about **supply chain resilience** = ability of supply chains to recover quickly from disruptions [2022 Economic Report of the President]
- Resilience is related to product design ⇒ more standardized inputs boost resilience as easier to replace [Miroudot (2020)]

- Production is organized around complex supply chains = many firms producing complementary inputs are involved
- Complex supply chains grant productivity gains from specialization ... but are subject to costly disruptions [Carvalho et al. (2021)]
- Policy-makers concerned about **supply chain resilience** = ability of supply chains to recover quickly from disruptions [2022 Economic Report of the President]
- Resilience is related to product design ⇒ more standardized inputs boost resilience as easier to replace [Miroudot (2020)]

#### **Research Question**

How do specialization choices and network complexity shape resilience in supply chains? Should governments promote resilience? If so, how?

Ferrari & Pesaresi

Specialization, Complexity & Resilience in Supply Chains

- 1. Static model of sourcing with endogenous product specialization
  - Input design problem: specialization  $\uparrow \implies$  price  $\uparrow$  but share of compatible buyers  $\downarrow$
  - Complex network: Multiple key inputs needed for final production

- 1. Static model of sourcing with endogenous product specialization
  - Input design problem: specialization  $\uparrow \implies$  price  $\uparrow$  but share of compatible buyers  $\downarrow$
  - Complex network: Multiple key inputs needed for final production
- 2. Dynamic model of supply chain formation
  - Introduce long-term relationships and (stochastic) disruptions of final producers
  - Welfare-relevant notion of resilience = avg time it takes for a final producer to restore production following a disruption
  - Decompose resilience into search efficiency, avg specialization, and complexity

- 3. Normative analysis
  - **Novel network externality in specialization**: intermediate producers do not internalize the cascading effect of halting final production on complementary input producers
  - If network is complex enough, equilibrium displays over- specialization
     ⇒ resilience is inefficiently low
- 4. Normative implications
  - Targeted transaction subsidy decentralizes efficient allocation
  - Planner would like intermediate producers to have more *skin in the* (final production)
     *game* ⇒ align private and social cost of specialization

# • Fragility in production networks

Levine (2012), Elliott et al. (2022), Acemoglu and Tahbaz-Salehi (2023), Carvalho et al. (2023), Grossman et al. (2023a)

 $\Rightarrow$  Separately identify fragility of production ("robustness") from ability to recover quickly from shocks ("resilience").

#### • Product design

Bar-Isaac et al. (2012, 2023), Menzio (2023), Albrecht et al. (2023)

 $\Rightarrow$  Study product design choices with complementary inputs.

#### • Optimal number of varieties

Spence (1976), Dixit and Stiglitz (1977), Zhelobodko et al. (2012), Parenti et al. (2017), Dhingra and Morrow (2019), Grossman et al. (2023b)

 $\Rightarrow$  Endogenous specialization and price posting make appropriability and business-stealing effects perfectly offset each other.

# **Static Model**

# **Key Concepts**

### • Specialization

- Characteristic of intermediate products
- Determines the degree of compatibility with final good production functions
- $\neq$  general quality
- Complexity
  - Characteristic of final good production function
  - Equal the number of key inputs needed to produce
- Resilience
  - Equilibrium sourcing capacity of final producers
  - Equal the **probability that a final producer sources all key inputs**

- Rep household, measure 1 of final producers, measure *m* of intermediate producers
- Ex ante identical final producers, heterogeneous intermediate producers
- Perfectly competitive market for consumption good, **frictional markets for intermediate goods**
- Consumption good (of unit quality) is the numeraire

# **Rep Household**

• Rep household's problem:

$$\max_{C_i,\ell} \mathcal{U} = C + \psi \log (1 - \ell)$$
  
s.t  $C = w\ell + \overline{\Pi}$   
 $C = \int_0^1 \mathcal{Q}_i C_i \, di$ 

- $Q_i$  and  $C_i$  are quality and quantity of the consumption good produced by final producer *i*
- $\bar{\Pi}$  are profits rebated to the rep household

# **Final producers**

• Each final producer needs to source *N* key inputs to produce *Y*<sub>i</sub> = 1 unit of output (consumption good):

$$Y_i = \mathbb{1}\{\min\{y_1,\ldots,y_N\} > 0\}$$

• Output quality  $Q_i$  depends on the value of inputs sourced  $A_i$ :

$$\mathcal{Q}_i = \sum_{j=1}^N A_j$$

• Each final producer makes profits:

$$\pi_i = \left(\mathcal{Q}_i Y_i - \sum_{j=1}^N p_j\right) \mathbb{1}\{Y_i = 1\}$$

Specialization, Complexity & Resilience in Supply Chains

# Sourcing frictions in the real world ...

"At most organizations [...], hunting for new suppliers is a daunting, manual process. On average, it takes about three months to complete a single supplier search, with a sourcing professional logging more than 40 hours of work—and yet able to consider only a few dozen suppliers from a total population of thousands."

McKinsey, Operations Practice, 2021

# Sourcing frictions in the real world ...

"At most organizations [...], hunting for new suppliers is a daunting, manual process. On average, it takes about three months to complete a single supplier search, with a sourcing professional logging more than 40 hours of work—and yet able to consider only a few dozen suppliers from a total population of thousands."

McKinsey, Operations Practice, 2021

"*Finding suitable suppliers and raw materials that fulfill all relevant buying criteria remains one of the most time-consuming activities in procurement. According to studies, buyers spend the majority of their time on search or sample request activities.*"

ChemSquare, Why it's so hard to find the right supplier, 2018

# Sourcing frictions in the real world ...

"At most organizations [...], hunting for new suppliers is a daunting, manual process. On average, it takes about three months to complete a single supplier search, with a sourcing professional logging more than 40 hours of work—and yet able to consider only a few dozen suppliers from a total population of thousands."

#### McKinsey, Operations Practice, 2021

"<u>Finding suitable suppliers</u> and raw materials that fulfill all relevant buying criteria remains one of the <u>most time-consuming activities in procurement</u>. According to studies, buyers spend the majority of their time on search or sample request activities."

ChemSquare, Why it's so hard to find the right supplier, 2018

#### $\implies$ Intermediate market with search and compatibility frictions

# ... and in the model

• Search and compatibility frictions: each final producer meets a finite number *n<sup>c</sup>* of *compatible* intermediate producers

 $n^c \sim \text{Poisson}(\lambda \bar{\phi})$ 

-  $\lambda = \text{exogenous}$  expected number of sellers met  $\implies$  (search frictions)<sup>-1</sup> -  $\bar{\phi} = \text{endogenous}$  average compatibility probability  $\implies$  (compatibility frictions)<sup>-1</sup>

# ... and in the model

• Search and compatibility frictions: each final producer meets a finite number *n<sup>c</sup>* of *compatible* intermediate producers

 $n^c \sim \text{Poisson}(\lambda \bar{\phi})$ 

 $-\lambda = \text{exogenous expected number of sellers met} \implies (\text{search frictions})^{-1}$  $-\bar{\phi} = \text{endogenous average compatibility probability} \implies (\text{compatibility frictions})^{-1}$ 

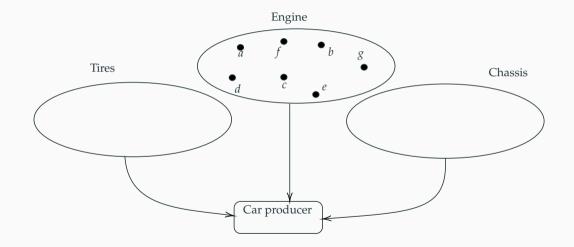
• **Finding probability** = probability that a final producer finds a compatible input:

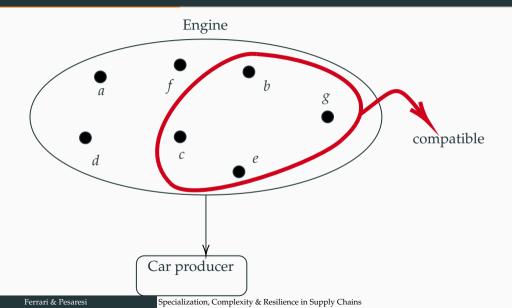
$$f = 1 - \exp\{-\lambda \bar{\phi}\}$$

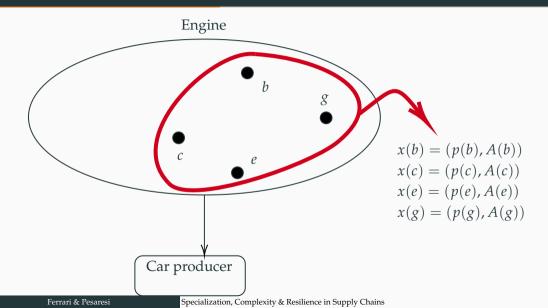
• Final producer trades w/ best compatible seller (= offering highest surplus), if any

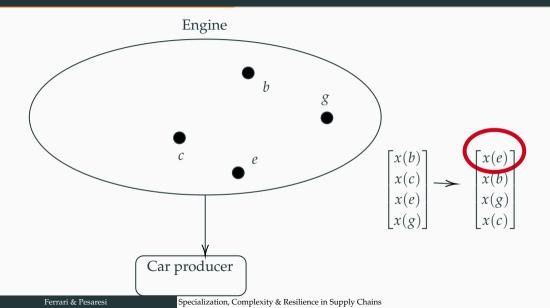


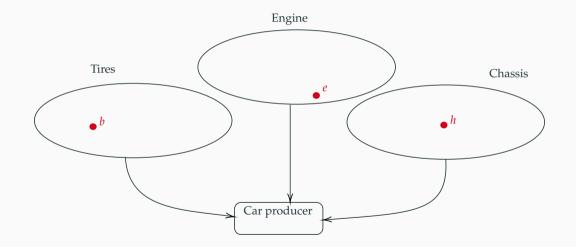
Ferrari & Pesaresi





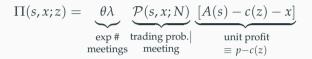




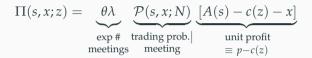


- Intermediate producers differ in marginal cost c(z),  $z \sim \Gamma(z)$
- They choose specialization *s* and offered surplus *x* (  $\iff$  post price *p*)
- Higher specialization increases final good quality  $A'(s) > 0 \dots$
- ... but reduces the share of compatible final producers  $\phi'(s) < 0$

- Intermediate producers differ in marginal cost c(z),  $z \sim \Gamma(z)$
- They choose specialization *s* and offered surplus *x* (  $\iff$  post price *p*)
- Higher specialization increases final good quality  $A'(s) > 0 \dots$
- ... but reduces the share of compatible final producers  $\phi'(s) < 0$
- Key trade-off:  $s \uparrow \implies Pr(match) \downarrow \mathbb{E}[Profits|match] \uparrow$



• Expected operating profits:



• Note that A(s) - c(z) is the **total surplus** from firm *z* choosing *s*.

• Expected operating profits:

$$\Pi(s, x; z) = \underbrace{\theta \lambda}_{\substack{\text{exp } \# \\ \text{meetings}}} \underbrace{\mathcal{P}(s, x; N)}_{\substack{\text{trading prob.} |}} \underbrace{[A(s) - c(z) - x]}_{\substack{\text{unit profit} \\ \equiv p - c(z)}}$$

- Note that A(s) c(z) is the **total surplus** from firm *z* choosing *s*.
- Conditional trading probability:

 $\mathcal{P}(s, x; N) \equiv$ 



$$\Pi(s, x; z) = \underbrace{\theta \lambda}_{\substack{\text{exp } \# \\ \text{meetings}}} \underbrace{\mathcal{P}(s, x; N)}_{\substack{\text{trading prob.} |}} \underbrace{[A(s) - c(z) - x]}_{\substack{\text{unit profit} \\ \equiv p - c(z)}}$$

- Note that A(s) c(z) is the **total surplus** from firm *z* choosing *s*.
- Conditional trading probability:

$$\mathcal{P}(s, x; N) \equiv \underbrace{\phi(s)}_{\text{prob. compatible}}$$



$$\Pi(s, x; z) = \underbrace{\theta \lambda}_{\substack{\exp \# \\ \text{meetings}}} \underbrace{\mathcal{P}(s, x; N)}_{\substack{\text{trading prob.} |}} \underbrace{[A(s) - c(z) - x]}_{\substack{\text{unit profit} \\ \equiv p - c(z)}}$$

- Note that A(s) c(z) is the **total surplus** from firm *z* choosing *s*.
- Conditional trading probability:

$$\mathcal{P}(s, x; N) \equiv \underbrace{\phi(s)}_{\text{prob. compatible prob. best among compatible contacted}} \underbrace{\exp\left\{-\lambda\bar{\phi}\left[1-G(x)\right]\right\}}_{\text{contacted}}$$



$$\Pi(s, x; z) = \underbrace{\theta \lambda}_{\substack{\exp \# \\ \text{meetings}}} \underbrace{\mathcal{P}(s, x; N)}_{\substack{\text{trading prob.} |}} \underbrace{[A(s) - c(z) - x]}_{\substack{\text{unit profit} \\ \equiv p - c(z)}}$$

- Note that A(s) c(z) is the **total surplus** from firm *z* choosing *s*.
- Conditional trading probability:

$$\mathcal{P}(s, x; N) \equiv \underbrace{\phi(s)}_{\text{prob. compatible prob. best among compatible contacted}} \underbrace{\exp\left\{-\lambda\bar{\phi}\left[1-G(x)\right]\right\}}_{\text{prob. other key inputs sourced}} \underbrace{f^{N-1}_{\text{prob. other key inputs sourced}}}_{inputs sourced}$$



# Intermediate producer's problem – Offered Surplus

• Profit maximization problem:

$$V(s, x; z) = \max_{s, x} \Pi(s, x; z) - \underbrace{wq(s)}_{\substack{\text{specialization}\\\text{cost}}}$$

# Intermediate producer's problem – Offered Surplus

• Profit maximization problem:

$$V(s, x; z) = \max_{s, x} \Pi(s, x; z) - \underbrace{wq(s)}_{\substack{\text{specialization}\\\text{cost}}}$$

#### Lemma (Optimal Offered Surplus)

Optimal offered surplus equals the expected outside option of a final producer trading with the intermediate producer:

$$x^{\star}(z) = \mathbb{E}_{\tilde{z}, \tilde{z} < z}[A(s(\tilde{z})) - c(\tilde{z})]$$

• **First-price auction w/ unknown # bidders**  $\implies x^*(z)$  makes buyer indifferent b/w z and the second-best compatible seller in expectation **Derivation** Intuition

Ferrari & Pesaresi

• Optimal specialization (implicit):

$$\theta \lambda \mathcal{P}(z;N) \left[ A'(s(z)) + \frac{\phi'(s(z))}{\phi(s(z))} \left( A(s(z)) - c(z) - x(z) \right) \right] - wq'(s(z)) = 0$$

• Optimal specialization (implicit):

$$\theta\lambda\mathcal{P}(z;N)\left[A'(s(z)) + \frac{\phi'(s(z))}{\phi(s(z))}\left(A(s(z)) - c(z) - x(z)\right)\right] - wq'(s(z)) = 0$$

1.  $\theta \lambda \mathcal{P}(z; N) A'(s(z)) > 0$ : marginal increase in profits conditional on trading

• Optimal specialization (implicit):

$$\theta\lambda\mathcal{P}(z;N)\left[A'(s(z)) + \frac{\phi'(s(z))}{\phi(s(z))}\left(A(s(z)) - c(z) - x(z)\right)\right] - wq'(s(z)) = 0$$

2.  $\theta \lambda \mathcal{P}(z; N) \frac{\phi'(s(z))}{\phi(s(z))} (A(s(z)) - c(z) - x(z)) < 0$ : marginal reduction in trading probability

• Optimal specialization (implicit):

$$\theta\lambda\mathcal{P}(z;N)\left[A'(s(z))+\frac{\phi'(s(z))}{\phi(s(z))}\left(A(s(z))-c(z)-x(z)\right)\right]-wq'(s(z))=0$$

3. -wq'(s(z)) < 0: marginal increase in specialization cost

• Optimal specialization (implicit):

$$\theta \lambda \mathcal{P}(z;N) \left[ A'(s(z)) + \frac{\phi'(s(z))}{\phi(s(z))} \left( A(s(z)) - c(z) - x(z) \right) \right] - wq'(s(z)) = 0$$

#### Lemma (Optimal Specialization)

If  $\lambda \bar{\phi} < 1$ , optimal specialization is increasing in search efficiency  $\lambda$ , and decreasing in complexity N.

## General equilibrium

• Labor market clearing:

$$1 - \frac{\psi}{w} = Nm\bar{q}$$

where  $\bar{q} = \int q(s(z)) d\Gamma(z)$ 

• Final good market clearing:

where 
$$Y = \underbrace{f^{N}}_{\text{prob. active expected surplus | active}} \underbrace{N\mathbb{E}[A-c]/f}_{\text{active}}$$

$$f^N = [1 - \exp\{-\lambda \bar{\phi}\}]^N$$

- 1. Search efficiency  $\lambda \uparrow (ICT, AI, ...)$  increases resilience
- 2. Avg product specialization  $\bar{s} \uparrow \bar{\phi} \downarrow$  reduces resilience
- 3. **Production complexity**  $N \uparrow$  reduces resilience

• Social planner problem

$$\begin{split} \max_{s_i(z)} & \mathcal{W} = C + \psi \log(1 - \ell) \\ \text{s.t.} & \ell = Nm\bar{q} \\ & C = f^N \sum_{i=1}^N \mathbb{E}[A(s_i(z)) - c(z)]/f \\ & \bar{q} = \sum_{i=1}^N \int q(s_i(z)) d\Gamma(z) \end{split}$$

• Social planner problem

$$\begin{split} \max_{s_i(z)} & \mathcal{W} = C + \psi \log(1 - \ell) \\ \text{s.t. } & \ell = Nm\bar{q} \\ & C = f^N \sum_{i=1}^N \mathbb{E}[A(s_i(z)) - c(z)]/f \\ & \bar{q} = \sum_{i=1}^N \int q(s_i(z)) d\Gamma(z) \end{split}$$

#### **Proposition (Efficiency of Static Equilibrium)**

m

The equilibrium is constrained efficient if and only if production is not complex, *i.e.* N = 1. If the production process is complex, *i.e.* N > 1, the equilibrium features over-specialization.

Ferrari & Pesaresi



• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} 
ight|_{s(z) = \mathcal{S}(z)} = 0$$
 Effects

• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} \right|_{s(z) = \mathcal{S}(z)} = 0$$
 (Effects)

• Equilibrium specialization  $s^{\star}(z)$  :

$$\left. \frac{\partial \mathcal{W}}{\partial s(z)} \right|_{s(z) = s^{\star}(z)} \propto$$

• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} 
ight|_{s(z) = \mathcal{S}(z)} = 0$$
 (Effects

• Equilibrium specialization  $s^{\star}(z)$  :

$$\frac{\partial \mathcal{W}}{\partial s(z)}\Big|_{s(z)=s^{\star}(z)} \propto \underbrace{\mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} < z}\left[A(s^{\star}(\tilde{z})) - c(\tilde{z})\right]}_{\text{business-stealing externality}}$$

• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} 
ight|_{s(z) = \mathcal{S}(z)} = 0$$
 (Effects

• Equilibrium specialization  $s^{\star}(z)$  :

$$\frac{\partial \mathcal{W}}{\partial s(z)}\Big|_{s(z)=s^{\star}(z)} \propto \underbrace{\mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\}< z}\left[A(s^{\star}(\tilde{z}))-c(\tilde{z})\right]}_{\text{business-stealing externality}} \underbrace{-x^{\star}(z)}_{\text{appropriability}}$$

• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} 
ight|_{s(z) = \mathcal{S}(z)} = 0$$
 (Effects

• Equilibrium specialization  $s^{\star}(z)$  :

$$\frac{\partial \mathcal{W}}{\partial s(z)}\Big|_{s(z)=s^{\star}(z)} \propto \underbrace{\mathbb{E}_{\max\{\tilde{z}\}\mid\max\{\tilde{z}\}< z}\left[A(s^{\star}(\tilde{z}))-c(\tilde{z})\right]}_{\text{business-stealing externality}} \underbrace{-x^{\star}(z)}_{\text{appropriability}} \\ \underbrace{-(N-1)\exp\{-\lambda\hat{\phi}(z,z)\}\mathbb{E}[A-c]/f}_{\text{network externality}}$$

• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} 
ight|_{s(z) = \mathcal{S}(z)} = 0$$
 (Effects

• Equilibrium specialization  $s^{\star}(z)$  :

$$\frac{\partial \mathcal{W}}{\partial s(z)}\Big|_{s(z)=s^{\star}(z)} \propto \underbrace{\mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\}< z}\left[A(s^{\star}(\tilde{z})) - c(\tilde{z})\right]}_{\text{business-stealing externality}} \underbrace{-x^{\star}(z)}_{\text{appropriability}} = 0 \quad \text{Intuition}$$

$$-\underbrace{(N-1)\exp\{-\lambda\hat{\phi}(z,z)\}\mathbb{E}[A-c]/f}_{\text{network externality}}$$

• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} 
ight|_{s(z) = \mathcal{S}(z)} = 0$$
 (Effects

• Equilibrium specialization  $s^{\star}(z)$  :

$$\frac{\partial \mathcal{W}}{\partial s(z)}\Big|_{s(z)=s^{\star}(z)} \propto \underbrace{\mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\}< z}\left[A(s^{\star}(\tilde{z}))-c(\tilde{z})\right]}_{\text{business-stealing externality}} \underbrace{-x^{\star}(z)}_{\text{appropriability}} = 0 \quad \text{Intuition}$$

$$\underbrace{-(N-1)\exp\{-\lambda\hat{\phi}(z,z)\}\mathbb{E}[A-c]/f}_{\text{network externality}} < 0$$

• Efficient specialization S(z) :

$$\left. rac{\partial \mathcal{W}}{\partial s(z)} 
ight|_{s(z) = \mathcal{S}(z)} = 0$$
 (Effects

• Equilibrium specialization  $s^{\star}(z)$  :

$$\frac{\partial W}{\partial s(z)}\Big|_{s(z)=s^{\star}(z)} \propto \underbrace{\mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\}< z}\left[A(s^{\star}(\tilde{z})) - c(\tilde{z})\right]}_{\text{business-stealing externality}} \underbrace{-x^{\star}(z)}_{\text{appropriability}} = 0 \quad \text{Intuition}$$

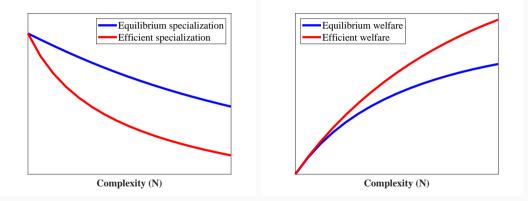
$$-\underbrace{(N-1)\exp\{-\lambda\hat{\phi}(\underline{z},z)\}\mathbb{E}[A-c]/f}_{\text{network externality}} < 0$$

#### $\implies$ equilibrium over-specialization

## **Network Externality**

- 1. Compatibility frictions  $\iff f < 1$
- 2. Endogenous specialization  $\iff f'(s) < 0$
- 3. Complex production  $\iff N > 1$ 
  - $\implies$  Network externality in specialization
- Intermediate producers do not internalize the **cascading effect of halting final production on complementary input producers** 
  - Example: higher specialization of engine makers hurts tire makers because cars are less likely to be produced





• Network externality exacerbates as production becomes more complex

Specialization, Complexity & Resilience in Supply Chains

#### **Remark (CES)**

The model has the same "externalities canceling" effect of CES+monopolistic competition without the parametric restriction on  $\sigma$ .

#### **Remark (CES)**

The model has the same "externalities canceling" effect of CES+monopolistic competition without the parametric restriction on  $\sigma$ .

#### **Remark (Bargaining)**

The equilibrium allocation of our baseline model is the same as that of a general bargaining model where intermediate producers hold all bargaining power. The general bargaining model is also not efficient (network ext. + hold-up problem).

#### **Remark (CES)**

The model has the same "externalities canceling" effect of CES+monopolistic competition without the parametric restriction on  $\sigma$ .

#### **Remark (Bargaining)**

The equilibrium allocation of our baseline model is the same as that of a general bargaining model where intermediate producers hold all bargaining power. The general bargaining model is also not efficient (network ext. + hold-up problem).

#### **Remark (Non-Contingent Contracts)**

Economies with non-contingent contracts feature more equilibrium over-specialization than economies with contingent contracts.

# **Dynamic Model**

- So far: Complex network  $\implies$  over-specialization
- **Now**: Over-specialization  $\implies$  under-resilience
- How: Extend static model to a dynamic setting with long-term relationships
  - Final producers face a disruption each period with probability  $\delta$
  - Resilience  $\equiv$  avg time it takes for a final producer to restore production following a disruption
  - Robustness =  $1/\delta$

• Profit maximization problem:

$$\max_{x,\{s_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} \left[ \mathcal{D}_t(s_{1,t}, x) \left( a(s_t) - x - c(z) \right) - w_t q(s_t) \right]$$
  
s.t.  $\mathcal{D}_t(s_{1,t}, x) = (1 - \delta) \mathcal{D}_{t-1}(s_{1,t-1}, x) + \theta_t \lambda \mathcal{P}(s_t, x; N)$   
 $\mathcal{D}_0 = 0$ 

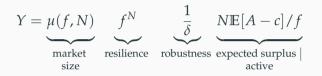
#### **Remark (Customization)**

#### The level of specialization within a match increases over time.

#### **Remark (Customization)**

The level of specialization within a match increases over time.

- Intuition: as intermediate producers "age" they build a customer base ⇒ they are less subject to search frictions
  - $\Rightarrow$  they optimally increase specialization.



- Separately identify output effects of resilience (recovery from disruptions) and robustness (avoiding disruptions)
- Market size  $\equiv$  stationary share of searching final producers

• Marginal welfare effect of equilibrium specialization:

$$\frac{\partial \mathcal{W}}{\partial s(z)}\Big|_{\mathcal{S}(z)=s^{\star}(z)} \propto \underbrace{\mathbb{E}_{\tilde{z},\tilde{z}

$$= 0$$

$$\underbrace{-(N-1)\exp\{-\lambda\hat{\phi}(\underline{z},z)\}\mathbb{E}[A-c]/f}_{\text{network externality}} < 0$$

$$\underbrace{+\frac{\beta(1-\delta)}{1+\beta(1-\delta)}f^{N}Ne^{-\lambda\hat{\phi}(\underline{z},z)}\hat{\mathbb{E}}[a(s^{\star}(\tilde{z})) - c(\tilde{z})]}_{\text{search externality}} > 0$$$$

 If network is complex enough, equilibrium over- specialization ⇒ resilience is inefficiently low

#### **Proposition (Efficiency and Complexity)**

If search efficiency is low enough, the equilibrium allocation features more over-specialization and under-resilience as complexity increases.

#### **Proposition (Efficiency and Complexity)**

If search efficiency is low enough, the equilibrium allocation features more over-specialization and under-resilience as complexity increases.

#### **Proposition (Efficiency and Robustness)**

As the frequency of disruption increases, the equilibrium allocation features more over-specialization and under-resilience.

#### **Proposition (Efficiency and Complexity)**

If search efficiency is low enough, the equilibrium allocation features more over-specialization and under-resilience as complexity increases.

#### **Proposition (Efficiency and Robustness)**

As the frequency of disruption increases, the equilibrium allocation features more over-specialization and under-resilience.

#### **Proposition (Efficiency and Search Frictions)**

If the elasticity of the average compatibility probability to search efficiency exceeds one, the equilibrium allocation features more over-specialization and under-resilience as search frictions decline.

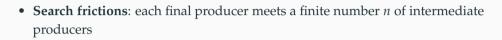
# Conclusions

#### Conclusions

- New model of supply chain formation with endogenous compatibility frictions
  - Heterogeneous intermediate producers solve input design problem: specialization
     ↑ ⇒ price ↑ but share of compatible buyers ↓
  - Complex network: Multiple key inputs needed for final production
- Welfare-relevant notion of resilience = avg time it takes for a final producer to restore production following a disruption
- If network is complex enough, equilibrium displays over-specialization  $\implies$  resilience is inefficiently low
  - Network externality: intermediate producers do not internalize the cascading effect of halting final production on complementary input producers

- Dynamic model with link-specific destruction
- Optimal Policy
  - Targeted transaction subsidy decentralizes efficient allocation
  - Planner would like intermediate producers to have more *skin in the* (final production)
     *game* ⇒ align private and social cost of specialization
- Extensions
  - Endogenize complexity (choose *N*) and robustness (invest to reduce  $\delta$ )

# Appendix



$$n \sim \text{Poisson}(\lambda)$$

where  $n \in \mathbb{N}$  and  $\mathbb{E}[n] = \lambda$ 

• **Compatibility frictions**: each intermediate producer is compatible with final producer's technology with probability

$$\phi \sim \mathcal{F}$$

where the distribution  $\mathcal{F}$  is endogenous and  $\mathbb{E}[\phi] = \bar{\phi}$ 



• Conditional trading probability:

$$\mathcal{P}(s, x; N) \equiv \underbrace{\phi(s)}_{\text{prob. compatible prob. best among compatible prob. other key contacted}} \underbrace{\exp\left\{-\lambda\bar{\phi}\left[1-G(x)\right]\right\}}_{\text{inputs sourced}} \underbrace{f^{N-1}_{\text{inputs sourced}}}_{\text{inputs sourced}}$$

- $x \equiv A(s) p$  is the **offered surplus** (profits granted to final producer)
- G(x) denotes the distribution of offered surplus

## Optimal offered surplus **Back**

• First-order condition (DE)

$$x'(z) = \lambda \phi(s(z))\gamma(z) \left[A(s(z)) - c(z) - x(z)\right]$$
$$x(\underline{z}) = 0$$

• Optimal offered surplus:

$$\begin{aligned} x^{\star}(z) &= \int_{\underline{z}}^{z} [A(s(\tilde{z})) - c(\tilde{z})] \gamma^{\star}(\tilde{z}, z) d\tilde{z} \\ &= \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} \leq z} \left[ A(s(\tilde{z})) - c(\tilde{z}) \right] \end{aligned}$$

where  $\gamma^*(\tilde{z}, z) \equiv \lambda \phi(s(z)) \exp\{-\lambda \hat{\phi}(\tilde{z}, z)\} \gamma(\tilde{z})$  is the final producer's **productivity density of outside option** when trading w/ intermediate of prod. *z* 

# Intermediate producer's problem – Offered Surplus

### Lemma (Optimal Offered Surplus)

Optimal offered surplus equals the expected outside option of a final producer trading with the intermediate producer:

$$x^{\star}(z) = \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} \le z} \left[ A(s(\tilde{z})) - c(\tilde{z}) \right]$$

# Intermediate producer's problem – Offered Surplus

### Lemma (Optimal Offered Surplus)

Optimal offered surplus equals the expected outside option of a final producer trading with the intermediate producer:

$$x^{\star}(z) = \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} \le z} \left[ A(s(\tilde{z})) - c(\tilde{z}) \right]$$

Consider a seller with productivity z

• loses against anybody with productivity z' > z

Optimal offered surplus equals the expected outside option of a final producer trading with the intermediate producer:

Back

$$x^{\star}(z) = \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} \le z} \left[ A(s(\tilde{z})) - c(\tilde{z}) \right]$$

Consider a seller with productivity z

• buyer's outside option is given by the highest possible surplus by the best alternative

Optimal offered surplus equals the expected outside option of a final producer trading with the intermediate producer:

Back

$$x^{\star}(z) = \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} \le z} \left[ A(s(\tilde{z})) - c(\tilde{z}) \right]$$

Consider a seller with productivity z

• buyer's outside option is given by the highest possible surplus by the best alternative

$$x^{\star}(z) = [A(s(\tilde{z})) - c(\tilde{z})]$$

highest possible offered surplus by  $\tilde{z}$ 

Optimal offered surplus equals the expected outside option of a final producer trading with the intermediate producer:

Back

$$x^{\star}(z) = \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} \le z} \left[ A(s(\tilde{z})) - c(\tilde{z}) \right]$$

Consider a seller with productivity z

• buyer's outside option is given by the highest possible surplus by the best alternative

$$x^{\star}(z) = \underbrace{\left[A(s(\tilde{z})) - c(\tilde{z})\right]}_{\text{highest possible}} \underbrace{\lambda\phi(s(\tilde{z}))\exp\{-\lambda\hat{\phi}(\tilde{z},z)\}}_{\text{offered surplus by }\tilde{z}} \underbrace{\lambda\phi(s(\tilde{z}))\exp\{-\lambda\hat{\phi}(\tilde{z},z)\}}_{\text{alternative}|\tilde{z} < z}$$

Optimal offered surplus equals the expected outside option of a final producer trading with the intermediate producer:

Back

$$x^{\star}(z) = \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} \le z} \left[ A(s(\tilde{z})) - c(\tilde{z}) \right]$$

### Consider a seller with productivity z

• buyer's outside option is given by the highest possible surplus by the best alternative

$$x^{\star}(z) = \int_{\underline{z}}^{z} \underbrace{\left[A(s(\tilde{z})) - c(\tilde{z})\right]}_{\text{highest possible}} \underbrace{\lambda\phi(s(\tilde{z}))\exp\{-\lambda\hat{\phi}(\tilde{z},z)\}}_{\text{offered surplus by } \underline{z}} \underbrace{\frac{\lambda\phi(s(\tilde{z}))\exp\{-\lambda\hat{\phi}(\tilde{z},z)\}}_{\text{alternative}|\underline{z} < z}}_{\text{pr} \, \underline{z} \text{ is best}} \underbrace{\frac{\gamma(\underline{z})d\underline{z}}_{\text{weighted across}}}_{\text{all possible } \underline{z}}$$

# Intermediate producer's problem – Specialization

• Optimal specialization (implicit):

$$\theta \lambda \mathcal{P}(z;N) \left[ A'(s(z)) + \frac{\phi'(s(z))}{\phi(s(z))} \left( A(s(z)) - c(z) - x(z) \right) \right] - wq'(s(z)) = 0$$

#### Lemma (Optimal Specialization)

Optimal specialization is decreasing in complexity N and increasing in search efficiency  $\lambda$  (if  $\lambda \bar{\phi} < 1$ ).

# Appropriability & Business-stealing Externalities Back

- In a given product line, product specialization gives rise to two externalities:
- 1.  $x^{\star}(z) > 0 \implies$  appropriability externality
  - Intermediate producers bear specialization cost but do not appropriate its whole return

2. 
$$\mathcal{P}(\hat{z}; N) \propto \exp\left\{-\lambda \int_{\hat{z}}^{\bar{z}} \phi(s^{\star}(\tilde{z}))\gamma(\tilde{z})d\tilde{z}\right\} \implies$$
 business-stealing externality

- Less productive intermediate producers (*ẑ* ≤ *z*) increase their trading prob. if intermediate *z* specializes more (φ(s<sup>\*</sup>(z)) ↓)
- Price posting + compatibility frictions  $\implies$  the two externalities cancel out

# Interpreting the optimal offered surplus Back

- Optimal offered surplus = **expected outside option of a final producer** when intermediate *z* is the best compatible seller contacted:

$$x^{\star}(z) = \Pr(m(z) = 0) \cdot 0 +$$
$$\Pr(m(z) = 1) \cdot \mathbb{E} \left[ \max \left\{ A(s(\tilde{z})) - c(\tilde{z}) \right\} \middle| \max\{\tilde{z}\} \le z, m(z) = 1 \right]$$

where m(z) = 1{final producer contacts at least one firm w/ productivity  $\leq z$ }

• **Innovation** wrt std auction theory: **endogenous distribution of bidders** pinned down by search and compatibility frictions

• Efficient specialization (implicit):

$$\begin{aligned} \theta \lambda \mathcal{P}(z;N) \left[ A'(\mathcal{S}(z)) + \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} \left( \left[ A(\mathcal{S}(z)) - c(z) \right] - \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} < z} \left[ A(\mathcal{S}(\tilde{z})) - c(\tilde{z}) \right] \right. \\ \left. + (N-1) \exp\{-\lambda \hat{\phi}(\underline{z},z)\} \mathbb{E}[A-c]/f \right) \right] - \frac{\psi}{1 - Nm\bar{q}} q'(\mathcal{S}(z)) = 0 \end{aligned}$$

1.  $\theta \lambda \mathcal{P}(z; N) A'(\mathcal{S}(z)) > 0$ : marginal increase in surplus conditional on trading

• Efficient specialization (implicit):

$$\begin{aligned} \theta \lambda \mathcal{P}(z;N) \left[ A'(\mathcal{S}(z)) + \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} \left( \left[ A(\mathcal{S}(z)) - c(z) \right] - \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} < z} \left[ A(\mathcal{S}(\tilde{z})) - c(\tilde{z}) \right] \right. \\ \left. + (N-1) \exp\{-\lambda \hat{\phi}(\underline{z},z)\} \mathbb{E}[A-c]/f \right) \right] - \frac{\psi}{1 - Nm\bar{q}} q'(\mathcal{S}(z)) = 0 \end{aligned}$$

2.  $\theta \lambda \mathcal{P}(z; N) \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} [A(\mathcal{S}(z)) - c(z)] < 0$ : marginal reduction in trading probability

• Efficient specialization (implicit):

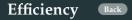
$$\begin{aligned} \theta \lambda \mathcal{P}(z;N) \left[ A'(\mathcal{S}(z)) + \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} \left( \left[ A(\mathcal{S}(z)) - c(z) \right] - \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} < z} \left[ A(\mathcal{S}(\tilde{z})) - c(\tilde{z}) \right] \right. \\ \left. + (N-1) \exp\{-\lambda \hat{\phi}(\underline{z},z)\} \mathbb{E}[A-c] / f \right) \right] - \frac{\psi}{1 - Nm\bar{q}} q'(\mathcal{S}(z)) = 0 \end{aligned}$$

3.  $-\frac{\psi}{1-Nm\bar{q}} q'(\mathcal{S}(z)) < 0$ : marginal increase in specialization cost

• Efficient specialization (implicit):

$$\begin{aligned} \theta \lambda \mathcal{P}(z;N) \left[ A'(\mathcal{S}(z)) + \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} \left( \left[ A(\mathcal{S}(z)) - c(z) \right] - \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} < z} \left[ A(\mathcal{S}(\tilde{z})) - c(\tilde{z}) \right] \right. \\ \left. + (N-1) \exp\{-\lambda \hat{\phi}(\underline{z},z)\} \mathbb{E}[A-c]/f \right) \right] - \frac{\psi}{1 - Nm\bar{q}} q'(\mathcal{S}(z)) = 0 \end{aligned}$$

4.  $-\theta \lambda \mathcal{P}(z; N) \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} < z} \left[A(\mathcal{S}(\tilde{z})) - c(\tilde{z})\right] > 0$ : marginal increase in trading prob. of lower-productivity intermediates



• Efficient specialization (implicit):

$$\begin{aligned} \theta \lambda \mathcal{P}(z;N) \left[ A'(\mathcal{S}(z)) + \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} \left( \left[ A(\mathcal{S}(z)) - c(z) \right] - \mathbb{E}_{\max\{\tilde{z}\}|\max\{\tilde{z}\} < z} \left[ A(\mathcal{S}(\tilde{z})) - c(\tilde{z}) \right] \right. \\ \left. + (N-1) \exp\{-\lambda \hat{\phi}(\underline{z},z)\} \mathbb{E}[A-c]/f \right) \right] - \frac{\psi}{1 - Nm\bar{q}} q'(\mathcal{S}(z)) = 0 \end{aligned}$$

5.  $\theta \lambda \mathcal{P}(z; N) \frac{\phi'(\mathcal{S}(z))}{\phi(\mathcal{S}(z))} (N-1) \exp\{-\lambda \bar{\phi}\} \mathbb{E}[A-c]/f < 0$ : marginal reduction in trading prob. of <u>other</u> inputs' providers

Example: specialization of engine makers affecting tire makers because cars are less likely to be produced

## Network Externality: Simple Example Back

- N = 2, final producers only meet one intermediate at a time (x = 0)
- Intermediate 1 profits:  $\Pi_1 = f(s_1)f(s_2)A(s_1)$
- Social welfare:  $W = f(s_1)f(s_2)[A(s_1) + A(s_2)]$
- Equilibrium specialization:

$$\underbrace{f(s_1^{\star})A'(s_1^{\star})}_{\text{private MB}} = \underbrace{(-f'(s_1^{\star}))A(s_1^{\star})}_{\text{private MC}}$$

• Efficient specialization:

$$\underbrace{f(\mathcal{S}_1)A'(\mathcal{S}_1)}_{\text{social MB}} = \underbrace{(-f'(\mathcal{S}_1))[A(\mathcal{S}_1) + A(\mathcal{S}_2)]}_{\text{social MC}}$$

# Decentralization

#### **Proposition (Decentralization)**

The efficient allocation can be decentralized via a **targeted transaction tax** schedule  $\tau(z)$  such that the price of the transactions is given by  $\rho(z) = p(z) + \tau(z)$ , where:

Back

$$\tau(z) = \exp\{-\lambda \hat{\phi}(\underline{z}, z)\}T$$
$$T \equiv \left(\mu(f; N)N - 1\right) \mathbb{E}[A - c] / f \stackrel{\leq}{\leq} 0 \ (> 0 \text{ if over-specialized eq'm})$$

 $\implies$  price of lower-productivity firms is more distorted