Imputing missing data using machine learning methods

Central Bank Business Survey Conference October 29-30, 2024

Emil Mihaylov Quantitative Analysis Specialist Research Department

Federal Reserve Bank *of* Atlanta

- Machine learning can offer a viable alternative to current methods for imputation of missing data in business surveys.
- In the context of decision science, being able to rely on accurate data is crucial for making the best-informed decisions.
- ML models yield significantly superior predictive performance compared to current benchmarks
- Particularly, models that can capture complex relationships in the data, such as Random Forest and Neural Network work exceptionally well.

About the SBU survey

- The Survey of Business Uncertainty (SBU), is a monthly business survey that elicits information from firms about employment, sales revenue, and prices and unit costs.
- The SBU survey is fielded to business executives from a broad range of industries and firm sizes.
- The panel consists of more than 2000 firms, which provide roughly 900 responses per month
- SBU's special questions are instrumental for assessing business activity, economic conditions, and emerging issues.

The issue with missing data in the SBU survey

- Core survey responses are often weighted using activity weights
- Results from special questions are typically weighted by firms' levels of current employment
- Every month, new respondents assigned to the sales or prices and costs questionnaires will not provide information about their level of employment
- The responses of those panelists will not have the corresponding employment weights
- To remediate this issue, we typically impute missing observations using employment data from the data providers, but those data are generally very stale.
- We also use a linear regression model to predict missing weights.

What is machine learning?

- "Machine learning is a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data or other outcomes of interest." - "Deep Learning" by Goodfellow et al. (2016)
- ML models in general have more relaxed assumptions regarding data structures compared to traditional statistical models
- Many ML algorithms are very good at capturing non-linear relationships in the data
- Five supervised-learning regression models are compared in this exercise:
 - K-Nearest Networks (KNN)
 - Support Vector Regression (SVR)
 - Neural Networks
 - Ridge Regression
 - Random Forest

Testing the performance of ML models - framework

- Predictors: the models will utilize a set of firm characteristics (such as size, industry, location, and legacy employment data) and variables related to the date and duration of responses, as well as level of sales revenue.
- All models are first fine-tuned on a subset of the data using five-fold cross validation
- Validation method : Monte Carlo Cross Validation 20 iterations
 - Randomly split the data into 80/20 train/test splits
 - Train the models, make predictions using the test data, and calculate RMSEs
- Performance metric: Root mean squared error (RMSE) will be used to quantify the accuracy of responses.

Firm employment vary across sates and major industries

Levels of sales revenue, time, and duration of responses also appear to be related to firm employment

1e7

Machine Learning models enhance the imputation of missing data compared to the benchmark methods

Results from Monte Carlo Cross-Validation exercise

RMSE	Emp. data from provider	SBU OLS Regression	Ridge Regression	Support Vector Regression	KNN Regression	Neural Network Regression	Random Forest Regression
Average	177.25	107.34					
Standard Dev.	3.67	2.60					
Min	168.0	102.0					
25%	175.3	105.0					
50%	177.2	108.3					
75%	179.3	109.5					
Max	184.6	110.3					

• The benchmark methods are not so very accurate at imputing current employment levels

Machine learning models enhance the imputation of missing data compared to the benchmark methods

Results from Monte Carlo Cross-Validation exercise

RMSE	Emp. data from provider	SBU OLS Regression	Ridge Regression	Support Vector Regression	KNN Regression	Neural Network Regression	Random Forest Regression
Average	177.25	107.34	70.75	57.05	64.59	51.27	48.36
Standard Dev.	3.67	2.60	1.24	1.55	1.66	1.61	1.51
Min	168.0	102.0	68.1	54.3	62.0	48.6	45.8
25%	175.3	105.0	69.9	56.0	63.5	50.2	47.4
50%	177.2	108.3	70.9	57.0	64.2	51.4	48.2
75%	179.3	109.5	71.6	58.0	65.6	52.3	49.1
Max	184.6	110.3	72.6	60.2	68.6	54.3	51.6

- Machine learning models outperform the benchmarks by a long stretch
- Random Forest and Neural Networks are the most accurate models

Machine learning models enhance the imputation of missing data compared to the benchmark methods

• Differences in model performance are highly significant

The random forest model is much better at forecasting observations at the tails of the distribution

Distribution of actual data and predictions

Distribution of prediction errors

Sales revenue and number of employes (historical data provided by the data provider) **are the most important determinants of full employment**

Contributions of individual features	Importance		
to model predictions	score		
Sales revenue	52.7%		
Number of employees (from data provider)	21.0%		
State	12.9%		
Major sector	3.2%		
Year of response	2.0%		
Duration of response	1.9%		
Survey month	1.1%		

- Based on the conducted exercise ML models are significantly better at predicting missing employment data than the existing methods.
- Random Forest and Neural Networks were the two best performing ML models.
- Going forward, as we get more data and add more features to the dataset, these models will become even better at making predictions
- Missing data is a common problem in business surveys, affecting the accuracy and reliability of survey outcomes, and ML models present a viable solution to that problem.