Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

Trade policy on a buyer-seller network

Brian Pustilnik

Central Bank of Chile

June 15, 2023

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

The views and conclusions presented in the papers are exclusively those of the author and do not necessarily reflect the position of the Central Bank of Chile or of the Board members.

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

- What are the allocation and price effects of trade policy?
 - $\,\vartriangleright\,$ Renewed interest due to the US-China trade war
 - $\,\vartriangleright\,$ Tariffs imposed to China \longrightarrow Change source country to avoid tariffs
 - "There is no reason for the U.S. Consumer to pay the Tariffs, [...] if you by buy from a non-Tariffed Country [...]" tweeted by @realDonaldTrump, May 13th 2019
 - Early 2018: Tariffs on US\$ 50 billion. Trade diversion of US\$ 21 billion (Nicita 2019, Beckers and Schroeter 2020)
- This paper studies the importance of the matching structure of importers with suppliers for the magnitude of the reallocation
 - > How ?: Colombia's floor price restrictions on Chinese truck tires imports
 - Importers procure either only from china or simultaneously from many origins
 - Suppliers either multinational or single-country
 - \triangleright Findings: Matches with multinational suppliers significantly boost reallocation

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

Related Literature

- Tariff pass-through: Amiti et al 2019, Fajgelbaum et al 2020, Cavallo et al 2021
- Trade reallocation/Tariff-jumping: Blonigen 2002, Flaaen et al 2019, Blanchard et al 2021, Benguria and Saffie 2023, Fajgelbaum et al 2023

Contributions

- Add variation in multinational production activity
- Shed light on heterogeneity underlying conventional reallocation patterns
 - Stylized facts
 - Model: Reallocation channels' decomposition, counterfactual networks

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000		000	OO	O	00	O	000000000000000000000000000000000000

I use two data sources to conduct my analysis :

- Colombian Customs data which identifies
 - Importing firm
 - Foreign supplier
 - Country of manufacture
 - Quantity
 - Value (inclusive of duty)
- Global tire reports from TIREBUSINESS.COM which contain
 - Worldwide production facilities
 - Ownership
- ▷ Combining these datasets I can identify Colombian importers that source from single-country producers, as well as from multinational producers with plants in different countries.

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	●00	OO	O	00	O	000000000000000000000000000000000000

- Case Study: Enactment and ending of Colombia's antidumping policy against China for truck tires
- Fact 1: The policy materializes as a binding price floor
- Fact 2: This generates reallocation away from china, towards competing countries

Colombian Imports of Truck Tires, by Origin

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	O●O	OO	O	00	O	000000000000000000000000000000000000

<u>Fact 3:</u> Importers that prior to the policy procured from multiple origins (China and Elsewhere) exhibit more reallocation

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	00●	OO	O	00	O	000000000000000000000000000000000000

<u>Fact 4:</u> Imports procured from rest of the world exhibit a larger increase for matches with multinational suppliers

Intro Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000 O	000	●O	O	00	O	000000000000000000000000000000000000

- Nested structure of product differentiation
 - \triangleright Varieties are defined by the tuple *importer* \times *supplier* \times *origin* (indexed *ijo*). Assumptions
 - \triangleright Three CES layers with elasticity parameters σ, ρ, κ

Structure

$$y_{ijo} = a_{ijo} p_{ijo}^{-\kappa} p_{ij}^{\kappa-\rho} P_i^{\rho-\sigma} P^{\sigma-1} YP$$

where

- y_{ijo} and p_{ijo} are import quantity and price of variety ijo
- p_{ij}, P_i, P are price indexes, YP is aggregate expenditure

$$y_{ijo} = a_{ijo} p_{ijo}^{-\kappa} p_{ij}^{\kappa-\rho} P_i^{\rho-\sigma} P^{\sigma-1} YP$$

$$\begin{split} \mathcal{N}_{\omega\omega'} &= (\sigma-1) \, \mathbb{S}_{\omega'} S_{\omega'} s_{\omega'} \\ &+ (\rho-\sigma) \, S_{\omega'} s_{\omega'} \, \mathbb{I}(i=i') \\ &+ (\kappa-\rho) \, s_{\omega'} \, \mathbb{I}(i=i',j=j') \end{split}$$

Substitution from standard trade models importer initially in korea and china supplier initially in korea and china

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	O●	O	00	O	000000000000000000000000000000000000
Mode	el impl	ications for	interna	ational rea	llocatio	n elasticiti	es

$$y_{ijo} = a_{ijo} p_{ijo}^{-\kappa} p_{ij}^{\kappa-\rho} P_i^{\rho-\sigma} P^{\sigma-1} UP$$

$$\begin{split} \mathcal{N}_{\omega\omega'} &= (\sigma-1) \, \mathbb{S}_{\omega'} S_{\omega'} s_{\omega'} \\ &+ (\rho-\sigma) \, S_{\omega'} s_{\omega'} \, \mathbb{I}(i=i') \\ &+ (\kappa-\rho) \, s_{\omega'} \, \mathbb{I}(i=i',j=j') \end{split}$$

Substitution from standard trade models importer initially in korea and china supplier initially in korea and china

$$y_{ijo} = a_{ijo} p_{ijo}^{-\kappa} p_{ij}^{\kappa-\rho} P_i^{\rho-\sigma} P^{\sigma-1} UP$$

$$\begin{split} \mathcal{N}_{\omega\omega'} &= (\sigma-1) \, \mathbb{S}_{\omega'} S_{\omega'} s_{\omega'} \\ &+ (\rho-\sigma) \, S_{\omega'} s_{\omega'} \, \mathbb{I}(i=i') \\ &+ (\kappa-\rho) \, s_{\omega'} \, \mathbb{I}(i=i',j=j') \end{split}$$

Substitution from standard trade models importer initially in korea and china supplier initially in korea and china

$$y_{ijo} = a_{ijo} p_{ijo}^{-\kappa} p_{ij}^{\kappa-\rho} P_i^{\rho-\sigma} P^{\sigma-1} UP$$

$$\begin{split} \mathcal{N}_{\omega\omega'} &= (\sigma-1) \, \mathbb{S}_{\omega'} s_{\omega'} s_{\omega'} \\ &+ (\rho-\sigma) \, S_{\omega'} s_{\omega'} \, \mathbb{I}(i=i') \\ &+ (\kappa-\rho) \, s_{\omega'} \, \mathbb{I}(i=i',j=j') \end{split}$$

Substitution from standard trade models importer initially in korea and china supplier initially in korea and china

Intro 000	Data O	Stylized Facts 000	Model OO	Estimation •	Results 00	Conclusion O	appendix 000000000000000000000000000000000000

Following the model we can write

 $\Delta \ln y_{ijo} = (\sigma - 1)\Delta \ln P + (\rho - \sigma)\Delta \ln P_i + (\kappa - \rho)\Delta \ln p_{ij} - \kappa \Delta \ln p_{ijo} + \Delta \ln PY + \Delta \ln a_{ijo}$

- The policy induces a minimum price jump that every Chinese variety must abide
- I use the GAP between pre-policy prices and price floor as instrument for price changes:

$$GAP = \begin{cases} ln(5.37) - ln(p_{ijo}^{pre}) & \text{for Chinese varieties with } p_{ijo}^{pre} < 5.37. \\ 0 & \text{for other Chinese varieties} \\ 0 & \text{for non-Chinese varieties} \end{cases}$$

• Same instrument as Card and Krueger (1994) for minimum wage in fast food industry in New Jersey vs Pennsyvania

Estimation Details

Intro 000	Data St O O	tylized Facts	Model OO	Estimation O	Results ●O	Conclusion O	appendix 0000000000	0000000000
Chann	els for v	olume i	ncrease in	rest of th	ne world	d		
			Standard substitution	Importer pro from many c	ocures origins i	Supplier is nultinational	Frequency	
	Multina	tional	23%	28%		49%	16	
	Single-C	Country	59%	41%		-	40	

- The baseline results show the reallocation through the observed network.
- Counterfactual 1: Split multinational suppliers into additional single-country suppliers
- Counterfactual 2: CTF 1 + Split importers that procure from many origins

	Relocation Percentage	Change in Average Price
Baseline	75%	9%
Network without Multinational Suppliers (MS)	58.7%	17%
Network w/neither MS nor simultaneous sourcing	47.4%	21%

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	•	000000000000000000000000000000000000
Conc	lusion						

- Policy induces reallocation of imports away from China
- This paper studied the importance of the matching structure of importers with suppliers for the magnitude of the reallocation
- This matching generates heterogeneous degrees of international participation, which are modeled in a quantitative trade model
 - Estimating equation for the international reallocation elasticities
 - Obtain elasticities in a case study with a price floor policy
- Contributions:
 - Shed light on heterogeneous response to policy
 - · Quantify the additional elasticity of reallocation for multinationals
 - Assess policy effects with alternative networks

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	•000000000000000000000000000000000000

Data: Summary Statistics

Type of match	of match China				Rest of the World			
	Freq.	Price	Quantity (MM)	Freq.	Price	Quantity (MM)		
Multinational	16	4.12 (0.54)	0.395 (0.419)	16	4.81 (0.37)	0.994 (1.013)		
Single-Country	79	3.76 (0.36)	0.211 (0.297)	40	4.53 (0.77)	0.602 (1.171)		
Importer procures single origin	42	3.75 (0.53)	0.108 (0.174)	-	-	-		

Passenger car tires prices

FACT 4: Small importers

FACT 4: Small importers total

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000
Mod	el: Firr	ns					

$$\max_{\{y_{ijo}\}} \sum_{j \in J_i} \sum_{o \in O_{ij}} (p_{ijo} - z_{ijo}) y_{ijo}$$

subject to

$$p_{ijo} = PY^{\frac{1}{\sigma}}y_i^{\left(1-\frac{1}{\sigma}\right)}y_{ij}^{\left(\frac{1}{\kappa}-\frac{1}{\rho}\right)}y_{ijo}^{-\frac{1}{\kappa}}a_{ijo}^{\frac{1}{\kappa}}$$

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000€000000000000000000000000000000000

• Within an importer's product mix, the marginal quantities affect profit through its effect on each product:

FOC:

$$\begin{aligned} z_{ijo} &= \underbrace{p_{ijo}\left[\left(1-\frac{1}{k}\right) + \left(\frac{1}{\kappa} - \frac{1}{\rho}\right)s_{ijo} + \left(\frac{1}{\rho} - \frac{1}{\sigma}\right)s_{ijo}S_{ij}\right]}_{\text{Through own product}} \\ &+ \sum_{o' \neq o} \underbrace{p_{ijo}\left[\left(\frac{1}{\kappa} - \frac{1}{\rho}\right)s_{ijo'} + \left(\frac{1}{\rho} - \frac{1}{\sigma}\right)s_{ijo'}S_{ij}\right]}_{\text{Through products from same supplier}} \\ &+ \sum_{j' \neq j} \sum_{l \in O_{ij}} \underbrace{p_{ijo}\left[\left(\frac{1}{\rho} - \frac{1}{\sigma}\right)s_{ij'}S_{ij'}\right]}_{\text{Through products from different supplier}} \end{aligned}$$

$$\iff p_{ijo} = \frac{\sigma}{\sigma - 1} z_{ijo}$$

$$\ln y_{g,ijo,t} = \delta_{g,ijo} + \gamma_{ijo,t} + \beta_1 \textit{Policy}_{g,t} + \beta_2 \textit{Policy}_{g,t} \times \textit{VarType}_{ijo} + \varepsilon_{g,ijo,t}$$

 $\ln y_{g,ijo,t} = \delta_{g,ijo} + \gamma_{ijo,t} + \beta_1 D_{g,t} + \beta_2 D_{g,t} \times VarType_{ijo} + \varepsilon_{g,ijo,t}$

	(1)	(2)
Policy	0.411***	
	(0.117)	
Policy*Type	0.345**	
	(0.139)	
D		1.632***
		(0.464)
D*Type		1.415**
		(0.548)
N	3210	3210
r2	0.8607	0.8612

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000
Mod	el's As	sumptions					

- Importing firms are matched with foreign suppliers and retail a final good in the domestic market
 - ▷ Matches are given. Matching process not modeled.
 - $\triangleright\,$ Consumers do not import. They purchase the imported final good from importers.
 - $\triangleright~$ Competition in the domestic market yield a constant-markup pricing behvior by importers.

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000
Mod	el's As	sumptions					

- Importing firms are matched with foreign suppliers and retail a final good in the domestic market
 - \triangleright Matches are given. Matching process not modeled.
 - \triangleright Consumers do not import. They purchase the imported final good from importers.
 - $\triangleright~$ Competition in the domestic market yield a constant-markup pricing behvior by importers.
- Varieties are differentiated by *importer* \times *supplier* \times *origin*.
 - \triangleright Consumer is aware of all three margins \longrightarrow Autoparts with safety standards
 - $\,\vartriangleright\,$ First importers, then suppliers \longrightarrow importer retails, but also provides a service

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

• Bottom:
$$y_{ij} = \left(\sum_{o \in O_{ij}} a_{ijo}^{\frac{1}{\kappa}} y_{ijo}^{\frac{\kappa-1}{\kappa}}\right)^{\frac{\kappa}{\kappa-1}}$$

- \triangleright y_{ij} nests all varieties with same importer and supplier
- $rac{y_{ijo}}{=}$ Quantity consumed of variety indexed by importer *i*, supplier *j* and origin *o*
- $\triangleright a_{ijo} =$ Taste shock for variety *ijo*
- $\triangleright \quad O_{ij} =$ Set of origins within the match of importer *i* and supplier *j*

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

• Bottom:
$$y_{ij} = \left(\sum_{o \in O_{ij}} a_{ijo}^{\frac{1}{\kappa}} y_{ijo}^{\frac{\kappa-1}{\kappa}}\right)^{\frac{\kappa}{\kappa-1}}$$

- \triangleright y_{ij} nests all varieties with same importer and supplier
- $rac{y_{ijo}}{v_{ijo}} = Quantity$ consumed of variety indexed by importer *i*, supplier *j* and origin *o*
- $\triangleright a_{ijo} =$ Taste shock for variety *ijo*
- $\triangleright O_{ij}$ = Set of origins within the match of importer *i* and supplier *j*

• Middle:
$$y_i = \left(\sum_{j \in J_i} y_{ij}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}$$

\triangleright y_i nests all varieties with same importer \triangleright J_i = Set of suppliers that trade with importer i

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

• Bottom:
$$y_{ij} = \left(\sum_{o \in O_{ij}} a_{ijo}^{\frac{1}{\kappa}} y_{ijo}^{\frac{\kappa-1}{\kappa}}\right)^{\frac{\kappa}{\kappa-1}}$$

- \triangleright y_{ij} nests all varieties with same importer and supplier
- $rac{y_{ijo}}{v_{ijo}} = Quantity$ consumed of variety indexed by importer *i*, supplier *j* and origin *o*
- $\triangleright a_{ijo} =$ Taste shock for variety *ijo*
- $\triangleright O_{ij}$ = Set of origins within the match of importer *i* and supplier *j*

• Middle:
$$y_i = \left(\sum_{j \in J_i} y_{ij}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}$$

\triangleright y_i nests all varieties with same importer \triangleright J_i = Set of suppliers that trade with importer i

• Upper:
$$Y = \left(\sum_{i} y_{i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

• Bottom:
$$y_{ij} = \left(\sum_{o \in O_{ij}} a_{ijo}^{\frac{1}{\kappa}} y_{ijo}^{\frac{\kappa-1}{\kappa}}\right)^{\frac{\kappa}{\kappa-1}}$$

 \triangleright y_{ij} nests all varieties with same importer and supplier

 $rac{y_{ijo}}{v_{ijo}} = Quantity$ consumed of variety indexed by importer *i*, supplier *j* and origin *o*

 $\triangleright a_{ijo} =$ Taste shock for variety *ijo*

 $\triangleright O_{ij}$ = Set of origins within the match of importer *i* and supplier *j*

• Middle:
$$y_i = \left(\sum_{j \in J_i} y_{ij}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}$$

\triangleright y_i nests all varieties with same importer \triangleright J_i = Set of suppliers that trade with importer i

• Upper:
$$Y = \left(\sum_{i} y_{i}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

With the corresponding price indexes and prices, P, P_i , p_{ij} , p_{ijo} , the demand for variety ijo is

$$y_{ijo} = a_{ijo} p_{ijo}^{-\kappa} p_{ij}^{\kappa-\rho} P_i^{\rho-\sigma} P^{\sigma-1} YP$$

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

The main estimating equation derived from the model:

$$\Delta \ln y_{ijo} = (\sigma - 1)\Delta \ln P + (\rho - \sigma)\Delta \ln P_i + (\kappa - \rho)\Delta \ln p_{ij} - \kappa \Delta \ln p_{ijo} + \Delta \ln PY + \Delta \ln a_{ijo}$$

Least squares estimating equation:

$$\Delta \ln y_{ijo} = \alpha + \beta_1 \Delta \ln P_i + \beta_2 \Delta \ln p_{ij} + \beta_3 \Delta \ln p_{ijo} + \varepsilon_{ijo}$$

 \triangleright Ideally one would use fixed effects and the instrument to estimate β_3

 $\,\triangleright\,$ Then recover κ and build $\Delta \ln p_{ij}$ to estimate β_2 and so on

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

 $\Delta \ln y_{ijo} = \alpha + \beta_1 \Delta \ln P_i + \beta_2 \Delta \ln p_{ij} + \beta_3 \Delta \ln p_{ijo} + \varepsilon_{ijo}$

- Missing values for changes in Chinese varieties
- I want to use the changes in RoW quantities AND leverage the shock to Chinese tires
- GMM estimation for continuing varieties and constructing $\Delta \ln p_{ij}$ using Feenstra's correction

Ad-Hoc Least Squares

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

• Entry and exit of varieties accounted for using the variety correction from Feenstra (1994)

$$p_{ij} = \left[\sum_{o \in O_{ij}} a_{ijo} p_{ijo}^{1-\kappa}\right]^{\frac{1}{1-\kappa}}$$
$$= \left[\sum_{o \in C(O_{ij})} a_{ijo} p_{ijo}^{1-\kappa} \frac{1}{S(C(O_{ij}))}\right]^{\frac{1}{1-\kappa}}$$

where

- $C(O_{ij})$ is the set of continuing varieties within the match of importer *i* and supplier *j*
- $S(C(O_{ij}))$ is the share that continuing varieties represent in total imports from the match

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	00	O	00	O	000000000000000000000000000000000000

I write the demand in changes using hat-algebra (i.e. $\hat{x}=dx/x$):

$$\hat{y}_{ijo} = (\sigma-1)\hat{P} + (
ho-\sigma)\hat{P}_i + (\kappa-
ho)\hat{p}_{ij} - \kappa\hat{p}_{ijo} + \hat{PU} + \hat{a}_{ijo}$$

 $\hat{p}_{ijo} = \hat{z}_{ijo}$

$$\hat{
ho}_{ij} = \sum_{o \in C(O_{ij})} s^*_{ijo} \hat{
ho}_{ijo} - rac{1}{1-\kappa} \hat{S}(C(O_{ij})) + rac{1}{1-\kappa} \sum_{o \in C(O_{ij})} s^*_{ijo} \hat{a}_{ijo}$$

$$\hat{P}_i = \sum_{j \in \mathcal{C}(J_i)} S^*_{ij} \hat{p}_{ij} - rac{1}{1-
ho} \hat{S}(\mathcal{C}(J_i))$$

$$\hat{P} = \sum_{i \in C(I)} \mathbb{S}_i^* \hat{P}_i - \frac{1}{1 - \sigma} \hat{S}(C(I))$$

- \hat{z}_{ijo} is the import price
- $\mathbb{S}^*,\ S^*\,$ and s^* are shares within each nest

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	00	O	00	O	000000000000000000000000000000000000

I write the demand in changes using hat-algebra (i.e. $\hat{x} = dx/x$):

$$\hat{y}_{ijo} = (\sigma-1)\hat{P} + (
ho-\sigma)\hat{P}_i + (\kappa-
ho)\hat{p}_{ij} - \kappa\hat{p}_{ijo} + \hat{PU} + \hat{a}_{ijo}$$

 $\hat{p}_{ijo} = \hat{z}_{ijo}$

$$\hat{p}_{ij} = \sum_{o \in \mathcal{C}(\mathcal{O}_{ij})} s^*_{ijo} \hat{p}_{ijo} - rac{1}{1-\kappa} \hat{\mathcal{S}}(\mathcal{C}(\mathcal{O}_{ij})) + rac{1}{1-\kappa} \sum_{o \in \mathcal{C}(\mathcal{O}_{ij})} s^*_{ijo} \hat{a}_{ijo}$$

$$\hat{\mathcal{P}}_i = \sum_{j \in \mathcal{C}(J_i)} S^*_{ij} \hat{p}_{ij} - rac{1}{1-
ho} \hat{\mathcal{S}}(\mathcal{C}(J_i))$$

 $\hat{P} = \sum \mathbb{S}_{i}^{*} \hat{P}_{i} - \frac{1}{1-\sigma} \hat{S}(C(I))$

- price change by continuing varieties in the nest
- change in market share of the continuing varieties in the nest
- turned into units that account for "price change of non-continuing"

• \hat{z}_{ijo} is the import price

 $i \in C(I)$

• \mathbb{S}^* , S^* and s^* are shares within each nest

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

$$\Delta \ln y_{ijo} = \alpha + \beta_1 \Delta \ln P_i + \beta_2 \Delta \ln p_{ij} + \beta_3 \Delta \ln p_{ijo} + \varepsilon_{ijo}$$

• Consider the following example:

Variety	origin	importer	supplier	Status	Pre Price	Post Price	price floor
1	Korea	Serv. Leon	Michelin	Continuing	4.7	4.7	-
2	China	Serv. Leon	Michelin	Dropped	4.1	MISSING	5.3

Intro 000	Data O	Stylized Facts 000	Model OO	Estimation O	Results 00	Conclusion O	appendix 000000000000000000000000000000000000

$$\Delta \ln y_{ijo} = \alpha + \beta_1 \Delta \ln P_i + \beta_2 \Delta \ln p_{ij} + \beta_3 \Delta \ln p_{ijo} + \varepsilon_{ijo}$$

• Consider the following example:

Variety	origin	importer	supplier	Status	Pre Price	Post Price	price floor
-	14	6 I	N 41 1 11	<u> </u>	47	47	
T	Norea	Serv. Leon	Wichelin	Continuing	4.7	4.7	-
2	China	Serv. Leon	Michelin	Dropped	4.1	MISSING	5.3

• The missing price precludes the computation of the regressors for the estimation

Variety	Δln y	∆ln pijo	∆ln pij	In Pi
1	0.7	0	MISSING	MISSING
2	MISSING	MISSING	MISSING	MISSING

• However, I can use the distance to the price floor instead of the missing price change

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

Instruments for prices and price indexes:

- Policy induces a price jump that at least reaches the price floor for chinese varieties.
- The gap between pre-policy prices and the floor introduces exogenous variation.

$$\hat{p}_{ijo}^{IV} = egin{cases} ln(floor) - ln(price_{pre}) & ext{if origin is China.} \\ 0 & ext{otherwise.} \end{cases}$$

$$\hat{p}_{ij}^{IV} = \sum_{o \in C(O_{ij})} s^*_{ijo} \hat{p}_{ijo}^{IV}$$
 $\hat{P}_i^{IV} = \sum_{j \in C(J_i)} S^*_{ij} \hat{p}_{ij}^{IV}$

where

- $C(O_{ij})$ is the set of continuing origins within the GVC of importer i and supplier j
- s_{ijo}^* is the share of continuing origin o in the set $C(O_{ij})$
- $C(J_i)$ is the set of continuing suppliers that trade with importer *i*
- S_{ii}^* is the share of continuing supplier o in the set $C(J_i)$

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000

Instruments for Entry/Exit corrections:

- Use distance to the price floor of chinese varieties in the same nest:
 - Strong within-nest substitution
 - · Cheaper varieties take larger market share
 - Correction is larger when they exit

$$\hat{S}(C(O_{ij}))^{IV} = \sum_{o=china} s_{ijo}(In(floor) - In(price_{ijo}^{pre}))$$
$$\hat{S}(C(J_i))^{IV} = \sum_{j \in J_i} \sum_{o=china} s_{ij}s_{ijo}(In(floor) - In(price_{ijo}^{pre}))$$

where

- $C(O_{ij})$ is the set of continuing origins within the GVC of importer i and supplier j
- sijo is the share of chinese variety o in the set Oij
- $C(J_i)$ is the set of continuing suppliers that trade with importer *i*
- s_{ij} is the share of chinese supplier o in the set J_i

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000
Resu	lts						

$$\Delta \ln y_{ijo} = (\sigma - 1)\Delta \ln P + (\rho - \sigma)\Delta \ln P_i + (\kappa - \rho)\Delta \ln p_{ij} - \kappa \Delta \ln p_{ijo} + \Delta \ln PU + \Delta \ln a_{ijo}$$

	OLS	IV		IV	GMM	Elasticity governs substitution
- <i>ĸ</i>	-6.139***	-6.799***	κ	6.7	8	Varieties with same importer and supplier
	(1.534)	(1.139)				
$\kappa - \rho$	3.513***	4.521***	ρ	2.2	3.3	Varieties with the same importer
	(1.48)	(1.51)				
$\rho-\sigma$	1.587***	1.392	σ	0.88	1.9	All varieties
	(0.743)	(0.773)				

Intro 000	Data O	Stylized Facts 000	Model OO	Estimation O	Results 00	Conclusion O	appendix 000000000000000000000000000000000000
Tran	sition						

Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
000	O	000	OO	O	00	O	000000000000000000000000000000000000
Trans	sition						

AUTOS MARCH 23, 2015 / 1:36 AM / UPDATED 6 YEARS AGO

ChemChina to buy into Italian tire maker Pirelli in \$7.7 billion deal

June 29, 2015 02:00 AM

ZC Rubber opens Thailand manufacturing plant

TIRE BUSINESS REPORT

TIRE	BUSINES	S							
NEWS	SHOP FLOOR	MULTIMEDIA	EVENTS	DATA	RESOURCES	ADVERTISE			
Among Chinese tire companies with off-shore production are:									

· Double Coin Holdings Ltd. - truck and OTR tires in Thailand since 2017;

Automotive News China

Guizhou Tyre — building a truck/bus tire plant in Vietnam;

June 12, 2015 12:00 AM

Linglong begins making truck and bus tires in Thailand

Rubber & Plastics News

Intro 000	Data O	Stylized Facts 000	Model OO	Estimation O	Results 00	Conclusion O	appendix 000000000000000000000000000000000000
-							
Iran	sition						

- For group A there is some substitution, but not complete
- For group B there is a transition that ends up in a complete substitution
- · Group C does not return to China

Transition	Intro	Data	Stylized Facts	Model	Estimation	Results	Conclusion	appendix
	000	O	000	OO	O	00	O	0000000000000000000000000000
	Trans	sition						

Analyzing the policy ending suggests:

- Trading with multinational suppliers is still a driver of rapid switching across origins
- After five years of price control, the organizational structure of the industry changed considerably, including:
 - Internationalization of Chinese suppliers
 - Importers engage in less multi-origin sourcing

Next step: Model that endogenizes such extensive margin.