A Sufficient Statistics Approach for Endogenous Production Networks: Theory and Evidence from Ukraine's War

Vasily Korovkin, CERGE-El Alexey Makarin, MIT Sloan Yuhei Miyauchi, Boston University June 15, 2023 @ Bank of Italy

Motivation: Disruption & Reorganization of Production Networks

- Countries and regions are interconnected through production networks
- These networks propagate localized shocks to surrounding countries and regions
 - Transient shocks: e.g., natural disasters, trade shocks
 - Intense & prolonged shocks: e.g., war & conflict
- Firms endogenously reorganize production networks as a response to shocks, e.g.,
 - Mitigation through substitution
 - Amplification through cascading failures
 - Changes in local factor prices and economic activity
- Need framework to capture many different channels simultaneously

This Paper: Theory of Suff. Stat. and Evidence from 2014 Ukraine Conflict

• Theory: welfare changes in many multi-location endogenous network models follow:

$$\widehat{W}_{i} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$$

- β : labor share, ε : input substitution (trade) elasticity
- $\hat{\Lambda}_{ii}$: change in within-region sourcing share (Arkolakis, Costinot, Rodriguez-Clare; ACR '12)
- \hat{M}_{ii} : change in measures of suppliers per buyer within a region; η : "supplier link elasticity"

This Paper: Theory of Suff. Stat. and Evidence from 2014 Ukraine Conflict

• Theory: welfare changes in many multi-location endogenous network models follow:

$$\widehat{W}_{i} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$$

- β : labor share, ε : input substitution (trade) elasticity
- $\hat{\Lambda}_{ii}$: change in within-region sourcing share (Arkolakis, Costinot, Rodriguez-Clare; ACR '12)
- \hat{M}_{ii} : change in measures of suppliers per buyer within a region; η : "supplier link elasticity"
- Reduced-form evidence using firm-to-firm railroad shipments in 2012-16 within Ukraine
 - Disruption of firm sales depending on supplier & buyer conflict exposure
 - Increase of supplier & buyer linkages strictly outside conflict areas

This Paper: Theory of Suff. Stat. and Evidence from 2014 Ukraine Conflict

• Theory: welfare changes in many multi-location endogenous network models follow:

$$\widehat{W}_{i} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\tau_{i}}$$

- β : labor share, ε : input substitution (trade) elasticity
- $\hat{\Lambda}_{ii}$: change in within-region sourcing share (Arkolakis, Costinot, Rodriguez-Clare; ACR '12)
- \hat{M}_{ii} : change in measures of suppliers per buyer within a region; η : "supplier link elasticity"
- Reduced-form evidence using firm-to-firm railroad shipments in 2012–16 within Ukraine
 - Disruption of firm sales depending on supplier & buyer conflict exposure
 - Increase of supplier & buyer linkages strictly outside conflict areas
- Sufficient-statistics results:
 - Estimate supplier link elasticity ($\eta)$ using variation in exposures to conflict
 - \downarrow 17% for an average region (relative to no conflict exposure regions)
 - Overestimation without $\hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$ (31% instead of 17%)

Contributions to the Literature

- Economic Costs of Conflict: Guidolin & La Ferrara '07; Hjort '14; Amodio & Di Maio '18; Rohner & Thoenig '21; Ksoll, Macchiavello, Morjaria '22; Couttenier, Monnet, Piemontese '22; Korovkin & Makarin '23
- \Rightarrow Show large propagation of localized conflict through disruption & reorganization of production networks
 - Endogenous Production Networks:
 - Relationship-specific fixed cost: Bernard, Moxnes, Ulltveit-Moe '18; Lim '18; Huneeus '18; Bernard, Moxnes, Saito '19; Zou '20; Bernard, Dhyne, Magerman, Manova, Moxnes '22; Dhyne, Kikkawa, Kong, Mogstad, Tintelnot '22
 - Optimal supplier choice: Oberfield '18; Boehm & Oberfield '20; Acemoglu & Azar '20; Taschereau-Dumouchel '20; Eaton, Kortum, Kramarz '22; Antras & de Gortari '20; Miyauchi '23; Panigraphi '21; Lenoir, Martin, Mejean '22
 - Endogenous search intensity: Demir, Fieler, Xu, Yang '21; Arkolakis, Huneeus, Miyauchi '23
 - Sufficient Statistics in Trade and Production Networks: Arkolakis, Costinot, Rodriguez-Clare '12; Blaum, Lelarge, Peters '18; Donaldson '18; Baqaee, Burstein, Duperez, Farhi '23
- \Rightarrow Develop common (ex-post) welfare sufficient statistics and use it to study causal effects of conflicts

Theory

Background and Data of Ukrainian Conflict

Reduced-Form Evidence

Sufficient Statistics Analysis

Conclusion

Theory

- "Locations" $i, u, d \in \mathcal{L}$
- Intermediate goods produced by "firms"; final goods produced by "retailers"
- Ω_i : set of firms in location *i*
 - Use local labor and intermediate inputs for production
- Intermediate goods are traded among connected firms across different locations
 - $S_{ui}(\omega) \subset \Omega_u$: set of suppliers in location u that firm $\omega \in \Omega_i$ in i is connected to
 - Endogenous, but do not model how it is determined

Equilibrium

• Unit cost of firm ω in location *i*:

$$c_{i}(\omega) = \frac{1}{z_{i}(\omega)} w_{i}^{\beta} \left(\sum_{u \in \mathcal{L}} \left(p_{ui}^{\prime}(\omega) \right)^{-\varepsilon} \right)^{\frac{1-\beta}{-\varepsilon}}, \qquad p_{ui}^{\prime}(\omega) = f_{ui,\omega} \left(\{ p_{ui}(\upsilon) \}_{\upsilon \in \mathcal{S}_{ui}(\omega)} \right)$$

- $z_i(\omega)$: productivity; w_i : wage
- β : labor share; ε : input substitution (trade) elasticity
- $p_{ui}(v)$: unit price of supplier v to sell firms in location i

$$p_{ui}(v) = c_u(v) \underbrace{\tau_{ui}(v)}_{\text{iceberg trade cost}} \underbrace{\rho_{ui}(v)}_{\text{(exogenous) markups}}$$

• Final goods produced using local intermediate inputs: $P_i^F = h_i \left(\{ c_i(v) \}_{v \in \Omega_i} \right)$

Assumption (1. Aggregation)

Price index of input bundle can be expressed as:

$$p_{ui}^{I}(\omega) = P_{ui}^{I}g_{i}(\omega),$$

where $g_i(\omega)$ only depends on the exogenous variable and parameters.

- Implies $c_i(\omega) = C_i g_i^C(\omega), \ p_{ui}(\omega) = P_{ui} g_{ui}^P(\omega)$
- Only need to keep track of $\{P_{ui}^{l}, P_{ui}, C_{i}\}$
- High-level assumption satisfied in many parametric production network models

multiple firm types (multiple sectors)

Lemma

Under Assumption 1, the changes in real wages from external shocks are given by 1-6

• Proof: Shephard's Lemma + CES input demand + $(\hat{P}_i^F = \hat{C}_i)$

• Without changes in production networks, $\hat{P}_{ii}^{l}/\hat{C}_{i} = 1$ (ACR '12)

- $\hat{P}_{ii}^{I}/\hat{C}_{i}$ hard to observe / estimate
- In many existing parametric production network models (Assumption 2),

$$\hat{P}_{ii}^{I}/\hat{C}_{i}=\hat{M}_{ii}^{-\eta},$$

- \hat{M}_{ii} : a common change in the measure of suppliers within a region $(\hat{m}_{ii}(\omega) = \hat{M}_{ii})$
- η : supplier link elasticity (elas' of marginal cost w.r.t. measure of supplier linkages)

Proposition

Under Assumption 1 and 2,

$$\widehat{\frac{w_i}{P_i^F}} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$$

Different Endogenous Network Models, Same Welfare Changes detail

- Endogenous search intensity (e.g., Arkolakis, Huneeus, Miyauchi '23)
 - CES production function

•
$$\varepsilon = \sigma - 1$$
, $\eta = \frac{1}{\sigma - 1} (= 1/\varepsilon)$

- Relationship-specific fixed cost (e.g., Bernard, Moxnes, Ulltveit-Moe '18)
 - CES + selection with Pareto productivity dispersion θ

•
$$arepsilon = \sigma - 1, \quad \eta = rac{1}{\sigma - 1} - rac{1}{ heta} (< 1/arepsilon)$$

- Optimal supplier choice (e.g., Eaton, Kortum, Kramarz '22)
 - Homogeneous inputs, Pareto productivity dispersion $\theta,$ biased matching γ

•
$$\varepsilon = \theta(1 - \gamma), \quad \eta = \frac{1}{\theta(1 - \gamma)} (= 1/\varepsilon)$$

- Other examples
 - Separate variety gains from substitution (Benassy '98; Acemoglu, Antras, Helpman '07)
 - Entry into input market (Antras, Fort, Tintelnot '17)
 - Diversifying idiosyncratic supplier risks (Anderson, de Palma, Thisse '92)
 - Network formation under adjustment frictions (Lim '18, Huneeus '19)

Discussion and Extensions

- Firm profit
 - Wage \propto total firm profit under trade balance & constant markup $\rho_{id}(\omega)$ (Assumption 1 & 2 of ACR)
- Firm entry
 - Additional effect arises only from the change in final prices $N_i \uparrow \Rightarrow \hat{P}_i^F / \hat{C}_i \downarrow$
 - Same argument for labor shocks and mobility
- Final goods trade detail
- Multiple sector (i.e., Caliendo & Parro '15) detail
- Multiple firm types detail
- Nonparametric production function detail
- Alternative sufficient statistics using Domar weights detail

Background and Data of Ukrainian Conflict

Background: 2014 Ukraine War

- In February 2014, right after Ukrainian revolution, Russia annexed Crimea and started supporting Donbas separatists
- Intense but localized conflict in Donbas regions (until February 2022)
- Donbas (and Crimea) were economic centers of Ukraine before the war
 - Donbas: extractive industry (coal), metallurgy, manufacturing
 - Crimea: agriculture, tourism, some industry
 - Jointly covered 17.5% of Ukraine's 2013 GDP
- Sudden and large drop in production in Donbas (and Crimea) regions event study
 - Production disruption, disconnected from transportation networks

Q. How did the conflict affect economic activity & welfare outside direct conflict areas?

Background: 2014 Ukraine War

- Universe of firm-to-firm railroad shipments in Ukraine, 2012–2016 map
 - $\bullet~>41$ mln transactions between >7 k firms
 - Sender and receiver firm IDs, dates, weights (kg), freight charges, product codes, origin & destination station codes
 - 80% of all freight in ton-km within Ukraine is through railways (Ukr Stat, 2018)
- Accounting data for Ukrainian firms, 2010-2017
 - Sources: Spark-Interfax database; ORBIS

Reduced-Form Evidence

Sudden and Large Drop of Trade from & to Conflict Areas

- Weighted fraction of suppliers (left) and buyers (right) from/to conflict areas
- Samples: rayons (regions) outside direct conflict areas (\approx 400)

Difference-in-differences specification:

 $Y_{ft} = \alpha_f + \delta_t + \beta_t \times \mathsf{ConflictTradeExposure}_{f,2013} + \varepsilon_{ft}$

- Y_{ft} sales of firm f (in non-conflict area of Ukraine) at year t
- ConflictTradeExposure_{f,2013} whether firm *f* traded with Crimea, DPR, or LPR before the start of the conflict

Identifying assumption: Absent the conflict, firms with varying pre-war ties to Donbas & Crimea would have evolved along parallel trends

Firm-Level Impacts of Conflict Exposure: Results

Firm-Level Impacts of Conflict Exposure: By Supplier and Buyer Exposures

	(1)	(2)	(3)	(4)
	Log Sales	IHS	Log Sales	IHS
		Profits		Profits
Post x High buyer conflict exposure 2013	-0 196***	-0 942*		
	(0.074)	(0.542)		
Post x High seller conflict exposure, 2013	-0.216***	0.192		
G (((((((((((0.074)	(0.519)		
Post × Buyer conflict exposure, 2013	· · · ·	` '	-0.338*	-0.697
			(0.187)	(1.733)
Post × Seller conflict exposure, 2013			-0.301***	-0.017
			(0.101)	(0.727)
Firm FE	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Mean	17.079	6.765	17.079	6.765
SD	2.407	13.124	2.407	13.124
R ²	0.83	0.48	0.83	0.48
Observations	25,491	24,751	25,491	24,751
Number of Firms	3,713	3,677	3,713	3,677

 $Y_{it} = \gamma \times Post_i \times SupplierExposure_i + \beta \times Post_t \times BuyerExposure_i + \alpha_i + \delta_t + \varepsilon_{it}$

- *i*: rayons (excluding conflict areas)
- SupplierExposure_i: Weighted fraction of shipment *from* conflict areas in 2013 in *i*
- BuyerExposure_i: Weighted fraction of shipment to conflict areas in 2013 in i
- Y_{it} : Sales or purchases (weight) of rayon *i* to or from nonconflict areas

Impacts of Conflict Exposure on Trade and Linkages in Nonconflict Areas

- Left: Supplier exposure \uparrow purchases in non-conflict areas: substitution
- Right: Buyer exposure \uparrow sales in non-conflict areas: capacity constraint or GE effect

Sufficient Statistics Analysis

Quantify Welfare Losses from Propagation Effects outside Conflict Areas

$$\widehat{\frac{w_i}{P_i^F}} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta}$$

- 1. Measure time changes in Λ_{ii} and M_{ii} before and after conflict
 - Convert shipment weight to value using product code (in progress)
 - Project on empirical gravity equations for data sparseness (Dingel & Tintelnot '21)
- 2. Calibrate / estimate $\{\beta, \varepsilon, \eta\}$
 - Labor share $\beta = 0.2$; input substitution $\varepsilon = 4$ (Oberfield & Raval '21)
 - Supplier link elasticity $\eta = 1.23/arepsilon$: estimate using conflict exposure variations detail
- 3. Same diff-in-diff design with the sufficient statistics as outcome variables

More Reduction of Welfare in Higher Conflict Exposure Rayons

	Dependent Variables: Sufficient Statistics for Worker Welfare					
	Baseline $(rac{1-eta}{eta}rac{1}{arepsilon}\tilde{\Lambda}_{ii}+rac{1-eta}{eta}\eta ilde{\mathcal{M}}_{ii})$			i)	ACR $\left(\frac{1-\beta}{\beta}\frac{1}{\varepsilon}\tilde{\Lambda}_{ii}\right)$	Supplier Link Margin $(rac{1-eta}{eta}\eta ilde{M}_{ii})$
	(1)	(2)	(3)	(4)	(5)	(6)
Conflict Supplier Exposure (Value)	-1.000*** (0.205)		-0.883*** (0.208)	-0.968*** (0.257)	-0.996*** (0.211)	0.112 (0.204)
Conflict Buyer Exposure (Value)		-0.730*** (0.206)	-0.542*** (0.207)	-0.569*** (0.212)	-1.781*** (0.209)	1.238*** (0.202)
\sum Conflict \times Forward Domar Weights				0.170 (0.302)		
Constant	0.891*** (0.043)	0.851*** (0.042)	0.935*** (0.045)	0.890*** (0.092)	0.681*** (0.046)	0.254*** (0.045)
Observations Adjusted R ²	403 0.054	403 0.028	403 0.067	403 0.066	403 0.222	403 0.088

• Ignoring "supplier link margin" overestimate the relationships (Column 5 and 6)

Projected Welfare Loss outside Conflict Areas

- Predict welfare loss using supplier & buyer conflict exposures using the previous regression
- Welfare \downarrow 17% for an average region (relative to regions with zero exposures)
- Substantial overestimation of welfare loss (\$\$\pm\$ 31%) if we ignore supplier link margin
- Large regional heterogeneity

Regional Heterogeneity in Welfare Loss outside Conflict Areas

Conclusion

- Develop common welfare sufficient statistics under endogenous production networks
- Show large propagation effects of 2014 Ukraine War, beyond Donbas and Crimea
- Highlights a key mechanism in which localized conflict often have far-reaching detrimental consequences for the broader economy (Rohner & Thoenig '21)

Appendix

Different Endogenous Network Models, Same Welfare Changes

- Endogenous search intensity: Demir, Fieler, Xu, Yang '21; Arkolakis, Huneeus, Miyauchi '23
- Relationship-specific fixed cost: Bernard, Moxnes, Ulltveit-Moe '18; Lim '18; Huneeus '18; Bernard, Moxnes, Saito '19; Bernard, Dhyne, Magerman, Manova, Moxnes '22; Dhyne, Kikkawa, Kong, Mogstad, Tintelnot '22
- Optimal supplier choice: Oberfield '18; Boehm & Oberfield '20; Acemoglu & Azar '20; Taschereau-Dumouchel '20; Eaton, Kortum, Kramarz '22; Antras & de Gortari '20; Miyauchi '23; Panigraphi '21; Lenoir, Martin, Mejean '22

Example: Endogenous Search Intensity

- Single-sector version of Arkolakis, Huneeus, Miyauchi '23
- CES production function, common σ within and across regions ($\varepsilon = \sigma 1$)

$$p_{ui}^{\prime}(\omega) = \left(\int_{\upsilon \in \mathcal{S}_{ui}(\omega)} c_u(\upsilon)^{1-\sigma} d\upsilon\right)^{rac{1}{1-\sigma}}$$

- Suppliers and buyers choose endogenous intensity of search, match realizes based on matching technology
- ε , η are given by

$$arepsilon=\sigma-1,\quad \eta=rac{1}{\sigma-1}(=rac{1}{arepsilon}),$$

• Do not depend on matching technology and search decisions (summarized by \hat{M}_{ii})

Example: Relationship-Specific Fixed Cost

- A version of Bernard, Moxnes, Ulltveit-Moe '19 with input-output loops
- CES production function as Arkolakis, Huneeus, Miyauchi '23
- Relationship forms if supplier v is willing to pay fixed cost f_{ui}
- Productivity follows Pareto distribution with dispersion parameter $\boldsymbol{\theta}$
- ε , η are given by

$$arepsilon=\sigma-1,\quad \eta=rac{1}{\sigma-1}-rac{1}{ heta}(<rac{1}{arepsilon})$$

+ $1/\theta$ comes from negative assortative matching

Example: Optimal Supplier Choice

- A version of Eaton, Kortum, Kramarz '22 without in-house production
- Suppliers and buyers randomly match, and buyers choose the best supplier

$$p_{ui}^{\prime}(\omega) = \min_{\upsilon \in \mathcal{S}_{ui}(\omega)} p_{ui}(\upsilon)$$

- Pareto Productivity with dispersion $\theta;$ matching technology is biased toward lower-cost suppliers with weight γ
- ε , η are given by

$$arepsilon = heta(1-\gamma), \quad \eta = rac{1}{ heta(1-\gamma)} (=rac{1}{arepsilon})$$

- Note: $\mathcal{S}_{ui}(\omega)$ is potential (\neq realized) set of suppliers
 - With exogenous matching rates, formula still holds with $\eta = 0$ (Oberfield '20)
 - Otherwise, can use gravity to back out measure of potential suppliers

Examples: Additional Remarks (go back)

- Substantially general than existing models
 - Allow more flexible firm heterogeneity in productivity z_i(·), trade costs τ_{id}(·), (exogenous) markups ρ_{id}(·), depending on models
 - Different elasticity of substitution within and across locations
- Other examples
 - Separate variety gains from substitution (Benassy '98; Acemoglu, Antras, Helpman '07)
 - Entry into input market (Antras, Fort, Tintelnot '17)
 - Expression unchanged if firms always enter own region
 - Diversifying idiosyncratic supplier risks (Anderson, de Palma, Thisse '92)
 - Network formation under adjustment frictions (Lim '18, Huneeus '19)
- Some models imply non-iso-elastic function of \hat{M}_{ii} in welfare sufficient statistics e.g., Miyauchi '21; EKK '22 with in-house production

Final Goods Trade go back

• CES preference for final goods

$$P_{i}^{F} = \left(\sum_{\ell} \left(\tau_{\ell i}^{F} C_{\ell}\right)^{\nu}\right)^{\frac{1}{\nu}}$$

• Real Wages:

$$\hat{W}_{i} = \hat{\Lambda}_{ii}^{-\frac{1-\beta}{\beta}\frac{1}{\varepsilon}} \hat{M}_{ii}^{\frac{1-\beta}{\beta}\eta} \left(\hat{\Lambda}_{ii}^{F}\right)^{-\frac{1}{\nu}}$$

where $\hat{\Lambda}^{\textit{F}}_{\textit{ii}}$ is the within-region expenditure share in final goods

Multiple Sectors go back

- $k, m \in K$: sectors (Caliendo & Parro '15; Costinot & Rodriguez-Clare '14)
- Unit cost

$$c_{i,k}(\omega) = z_{i,k}(\omega) w_i^{\beta_{i,Lk}} \prod_{m \in K} \left(\sum_{u} \left(p_{ui,mk}'(\omega) \right)^{-\varepsilon_m} \right)^{\frac{\beta_{i,mk}}{-\varepsilon_m}}$$

• Cobb-Douglas preference:

$$\hat{P}_i^F = \prod_k \hat{C}_{i,k}^{\alpha_{i,k}}$$

• Real Wages:

$$\log \frac{\hat{w}_i}{\hat{P}_i^F} = \sum_k \alpha_k \sum_{m,h \in K} \tilde{\beta}_{i,hk} \beta_{i,mh} \left(-\frac{1}{\varepsilon_m} \log \hat{\Lambda}_{ii,mk} + \log \frac{\hat{P}_{ii,mk}^I}{\hat{C}_{i,m}} \right)$$

where $\tilde{\beta}_{i,mk}$ is (m, k)-th element of Leontief inverse: $(I - B_i)^{-1}$ with $B_{i,mk} = \beta_{i,mk}$

Multiple Firm Types **Bo back**

• Unit cost of type ϑ firm

$$c_{i,\vartheta}\left(\omega\right) = z_{i,\vartheta}\left(\omega\right) w_{i}^{\beta_{i,\vartheta}}\left(\sum_{u} \left(p_{ui}^{\prime}(\omega)\right)^{-\varepsilon}\right)^{\frac{1-\beta_{i,\vartheta}}{-\varepsilon}}$$

• First-order approximation of external shocks on real wages:

$$d\log\frac{w_i}{P_i^F} = -\sum_{\vartheta} \Lambda_{i,\vartheta}^F \frac{1-\beta_{i,\vartheta}}{\beta_{i,\vartheta}} \left(\frac{1}{\varepsilon} d\log\Lambda_{ii,\vartheta'\vartheta} + d\log\frac{P_{ii,\vartheta'\vartheta}}{C_{i,\vartheta'}}\right)$$

- $\Lambda_{i,\vartheta}^F$: share of final goods expenditure for ϑ
- $\tilde{\Lambda}_{ii,\vartheta'\vartheta}$: type ϑ and location *i* firms' share of intermediate inputs within same type and location

Nonparametric Production Function (go back)

• Nonparametric production function

$$c_i(\omega) = f_i\left(w_i, \left\{p'_{ui}(\omega)\right\}_u\right),$$

• Define elasticity of substitution for inputs sourced within a region:

$$\mathcal{E} \equiv rac{d \log \Lambda_{ii}}{\left(1 - \Lambda_i^L
ight)^{-1} \sum_u \Lambda_{ui} d \log p_{ui}^I - d \log p_{ii}^I}$$

• First-order changes in real wages:

$$d\log\frac{w_i}{c_i} = -\left(\frac{1-\Lambda_i^L}{\Lambda_i^L}\right)d\log\frac{p_{ii}'}{c_i} - \left(\frac{1-\Lambda_i^L}{\Lambda_i^L}\right)\frac{1}{\mathcal{E}}d\log\Lambda_{ii}$$

Alternative Decomposition using Domar Weights (go back)

- For simplicity, consider a change in variable trade costs $\{\tau_{ij}\}$
- Change in production cost is also rewritten as

$$\log C_i = \sum_{u} \psi_{ui}^L \log w_u + \sum_{u} \psi_{uj} \left(d \log \tau_{ij} + d \log \left(\hat{P}_{ui}^I / \hat{P}_{ui} \right) \right)$$

- ψ_{ui}^L, ψ_{ui} : forward Domar weights
- To obtain real wage changes, need to keep track of the changes in the wage vector in all locations {log w_u}_u

Sudden and Large Drop of Total Firm Sales in Conflict Areas (go back)

Ukrainian Railroads with Stations (go back)

Estimation Strategy: η

• Input expenditure share of firms in *d* from *i*:

$$\tilde{\Lambda}_{id} = -\varepsilon \tilde{C}_i + \eta \varepsilon \tilde{M}_{id} - \varepsilon \tilde{\tau}_{id} + \tilde{\xi}_d$$

 $\bullet~$ Shepard's Lemma +~ CES input demand

$$ilde{C}_i = eta ilde{w}_i + (1-eta) \left(ilde{C}_d + \eta ilde{M}_{di} + ilde{ au}_{di} - rac{1}{arepsilon} ilde{\Lambda}_{di}
ight)$$

• Combining, our estimating equation:

$$ilde{\Lambda}_{id} + (1-eta)\, ilde{\Lambda}_{di} + etaarepsilon ilde{w}_i = \etaarepsilon \left(ilde{\mathcal{M}}_{id} + (1-eta)\, ilde{\mathcal{M}}_{di}
ight) + ilde{\xi}^*_d + ilde{ au}^*_{id}$$

- $\tilde{\xi}_{d}^{*}$: destination FE; $\tilde{\tau}_{id}^{*}$: residuals
- Samples: region pairs excluding if i or d are in direct conflict areas
- IV: supplier and buyer conflict exposures of region *i*

Estimation Results of $\eta\times\varepsilon$ go back

	Dependent variable:					
	$ ilde{M}_{id} + (1-eta) ilde{M}_{di}$ OLS	<i>Ñ_{id}</i> OLS	<i>Ñ_{di}</i> OLS	$ ilde{\Lambda}_{id} + (1-eta) ilde{\Lambda}_{di} + eta arepsilon ilde{w}_i \ ext{IV}$		
	(1)	(2)	(3)	(4)		
Conflict Supplier Exposure;	0.729** (0.313)	0.101 (0.276)	0.785*** (0.124)			
Conflict Buyer Exposure;	1.137*** (0.418)	1.177*** (0.362)	-0.050 (0.138)			
$ ilde{ extsf{M}}_{id} + (1-eta) ilde{ extsf{M}}_{di}$				1.231*** (0.296)		
IV				Supplier and Buyer Exposures		
First-Stage F-stat				6.56		
d FE	х	Х	Х	х		
Observations	155,555	155,555	155,555	155,555		
Adjusted R ²	0.480	0.250	0.820	0.357		

Existing models imply $\eta \varepsilon = 1$ (Arkolakis et al '23; Eaton et al '22) or $\eta \varepsilon < 1$ (Bernard et al '18)