Shortages of Critical Goods in a Global Economy: Optimal Trade and Industrial Policy

Fernando Leibovici Federal Reserve Bank of St. Louis

Ana Maria Santacreu Federal Reserve Bank of St. Louis

Trade, Value Chains, and Financial Linkages in the Global Economy Bank of Italy — ECB — World Bank June 16th, 2023

Disclaimer: The following views are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

Pros and Cons of Specialization and Trade

Renewed popularity of protectionist trade and industrial policies in response to recent shocks

- Recent shocks: Geopolitical conflict with China, COVID-19, Ukraine war,...
- Policies: Export controls, industrial policy, sanctions, ...
- e.g., US: Defense Production Act, CHIPS Act, curbs on exports of advanced technologies, ...

Pros and Cons of Specialization and Trade

Renewed popularity of protectionist trade and industrial policies in response to recent shocks

- Recent shocks: Geopolitical conflict with China, COVID-19, Ukraine war,...
- Policies: Export controls, industrial policy, sanctions, ...
- e.g., US: Defense Production Act, CHIPS Act, curbs on exports of advanced technologies, ...

Traditional/textbook view: Trade as beneficial

- Specialization based on comparative advantage \Rightarrow Increased efficiency
- · Broad consensus on positive impact, debate about size and timing of the gains

Pros and Cons of Specialization and Trade

Renewed popularity of protectionist trade and industrial policies in response to recent shocks

- Recent shocks: Geopolitical conflict with China, COVID-19, Ukraine war,...
- Policies: Export controls, industrial policy, sanctions, ...
- e.g., US: Defense Production Act, CHIPS Act, curbs on exports of advanced technologies, ...

Traditional/textbook view: Trade as beneficial

- Specialization based on comparative advantage \Rightarrow Increased efficiency
- Broad consensus on positive impact, debate about size and timing of the gains

Growing unease about the costs of international trade

- High reliance on other countries to access critical goods
 - e.g., medical goods, food, semiconductors, advanced technologies, military equipment, etc.
- Potentially very costly in the face of large global shocks that limit access to these goods

\Rightarrow Tension between efficiency and resiliency

Application: Trade of Essential Medical Goods During COVID-19

Essential medical goods to combat COVID-19:

- e.g., PPE, medical equipment, tests, vaccines, etc.
- High concentration of production, trade key to access these goods
- Global pandemic, increased demand \Rightarrow Shortages + Rationing across countries + Higher prices

Sharp policy response:

[Source: Global Trade Alert]

 \Rightarrow Protectionism?

 \Rightarrow Optimal?

Why Role for Policy? Private Incentives to Increase Access to Essential Goods?

Basic idea...

- 1. Consider a firm that produces goods critical to combat COVID-19:
 - Higher prices provide incentives to scale up production
 - Face standard intertemporal investment tradeoff:
 - Today: Pay investment costs today, lower returns
 - Tomorrow: Higher returns

Why Role for Policy? Private Incentives to Increase Access to Essential Goods?

Basic idea...

- 1. Consider a firm that produces goods critical to combat COVID-19:
 - Higher prices provide incentives to scale up production
 - Face standard intertemporal investment tradeoff:
 - Today: Pay investment costs today, lower returns
 - Tomorrow: Higher returns

2. Tradeoff can be mediated by two salient features:

1 Frictions in financial markets

(Dinlersoz et al. 2019; Leibovici and Wiczer 2023; Buera et al. 2011; Midrigan and Xu 2014)

Prevalence of privately owned firms / imperfect diversification of firm ownership across households (Asker et al. 2015; Dinlersoz et al. 2019; Smith et al. 2019; Guntin and Kochen 2021)

Why Role for Policy? Private Incentives to Increase Access to Essential Goods?

Basic idea...

1. Consider a firm that produces goods critical to combat COVID-19:

- Higher prices provide incentives to scale up production
- Face standard intertemporal investment tradeoff:
 - Today: Pay investment costs today, lower returns
 - Tomorrow: Higher returns

2. Tradeoff can be mediated by two salient features:

1 Frictions in financial markets

(Dinlersoz et al. 2019; Leibovici and Wiczer 2023; Buera et al. 2011; Midrigan and Xu 2014)

Prevalence of privately owned firms / imperfect diversification of firm ownership across households (Asker et al. 2015; Dinlersoz et al. 2019; Smith et al. 2019; Guntin and Kochen 2021)

3. Firms' intertemporal tradeoff \neq Social tradeoff

 \Rightarrow Underinvestment relative to first-best

(Caballero and Lorenzoni 2014; Itskhoki and Moll 2019)

- \Rightarrow Critical goods: Underinvestment is very costly
- \Rightarrow Role for trade and/or industrial policies?

This paper: How to respond once shocks are realized?

This paper: How to respond once shocks are realized?

What we do:

- Set up dynamic trade model with the following key ingredients:
 - > Critical goods modeled via complementarities: Hard to substitute critical goods intra- and inter-temporally
 - ▶ Heterogeneous households: Heterogeneous ownership of critical and non-critical producers
 - ▶ Incomplete financial markets: Bond economy + bond-holding costs
- Quantify impact of critical goods shortages in economy open to trade: Application to COVID-19
- Investigate role for trade and industrial policy interventions
- Contrast with evidence on trade and industrial policy changes during COVID-19

- Small open economy
- Two sectors: Non-essential (n), essential (e)
 - In each sector: Firm that produces domestic varieties
 - In each sector: Sectoral good = aggregate of domestic and imported varieties
- International trade
 - ▶ Goods: Domestic varieties in each sector are exported, foreign varieties imported
 - Financial assets: 1-period bond
- Heterogeneous households, 2 types *i* = {*n*, *e*}:
 - Agent n: Owns producer of non-essential varieties, endowed with κ_n units of labor
 - Agent e: Owns producer of essential varieties, endowed with κ_e units of labor

Preferences

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{\left(c_{it}/\kappa_i\right)^{1-\xi}}{1-\xi}, \quad \text{ where } \quad c_{it} = \left[(1-\gamma) n_{it}^{\frac{\rho-1}{\rho}} + \gamma \left(\frac{e_{it}}{\overline{e}_t}\right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

- Essential goods e_{it} evaluated relative to reference level \overline{e}_{it}
- **Complementarities**: Hard to substitute intra- and inter-temporally (low $1/\xi$ and ρ)

Income

- κ_i units of labor supplied inelastically at wage w_t
- Owns firm that produces domestic varieties *i*, earns π_{it}

Financial markets

- Save or borrow domestically and internationally with 1-period bond at interest r
- Bond-holding cost: Control degree of financial market development

Problem of Household $i \in \{n, e\}$

$$V_{i0} = \max_{\{c_{it}, n_{it}, e_{it}, b_{it+1}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{(c_{it}/\kappa_i)^{1-\xi}}{1-\xi}$$

subject to

$$\begin{aligned} c_{it} &= \left[(1-\gamma)n_{it}^{\frac{\rho-1}{\rho}} + \gamma \left(\frac{e_{it}}{\overline{e}_t}\right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}} \quad \forall t = 0, ..., \infty \\ p_{nt}n_{it} + p_{et}e_{it} + b_{it} + p_{nt}\frac{\Omega_b}{2} \left(b_{it+1} - \overline{b}_i \right)^2 = \kappa_i w_t + \pi_{it} + \frac{b_{it+1}}{1+r} + \mathcal{T}_{it} \quad \forall t = 0, ..., \infty \end{aligned}$$

Households are heteogeneous in:

- Labor supply κ_i
- Firm ownership π_i

Producers of Domestic Variety $i \in \{n, e\}$

Technologies

- Produce varieties: $Y_{it} = A_i \left(L_{it}^{\alpha} K_{it}^{1-\alpha} \right)^{\eta}$
- Accumulate capital: $K_{it+1} = (1 \delta)K_{it} + I_{it}$
- Sectoral adjustment costs on capital and labor \Rightarrow Limit supply response to changes in demand

Market structure

- Domestic: Monopolistic competition, but remove markup distortions
- Exports: Price taken as given from rest of the world

Firm ownership and management

- Owned by household *i*
- Firm operated on behalf of the owner ⇒ Discount profit streams with household i's SDF

Problem of Producer of Domestic Variety $i \in \{n, e\}$

$$\begin{aligned} \max \mathbb{E}_{0} \sum_{t=0}^{\infty} m_{it} \left[q_{it}^{d} y_{it}^{d} + q_{it}^{x} y_{it}^{x} - w_{t} L_{it} - p_{nt} I_{it} - p_{nt} \phi_{k}(K_{it+1}, K_{it}) - p_{nt} \phi_{\ell}(L_{it}, L_{it-1}) \right] \\ \text{subject to} \\ K_{it+1} &= (1-\delta) K_{it} + I_{it} \qquad \forall t = 0, ..., \infty \\ y_{it}^{d} + y_{it}^{x} &= A_{i} \left(L_{it}^{\alpha} K_{it}^{1-\alpha} \right)^{\eta} \qquad \forall t = 0, ..., \infty \\ y_{it}^{d} &= \omega_{i} \left(\frac{q_{it}^{d}}{p_{it}} \right)^{-\sigma} Y_{it} \qquad \forall t = 0, ..., \infty \\ y_{it}^{x} &\geq 0 \qquad \forall t = 0, ..., \infty \end{aligned}$$

where m_{it} is household *i*'s stochastic discount factor

Closing the Model + Application

Producers of composite good $i \in \{n, e\}$

- CES technology to combine domestic and imported varieties
- Imports: Price given from the rest of the world, subject to iceberg trade cost τ_i

Market clearing conditions: Labor, varieties, composite goods

<u>Today's application</u>: Global shortages of essential medical goods to combat COVID-19 Unexpected, transitory, one-time shocks:

Shortages of Critical Goods

Demand: Households cannot substitute away from consuming these goods

- Inter-temporal complementarity: Hard to substitute current consumption with future consumption
- Intra-temporal complementarity: Hard to substitute critical goods with consumption of non-critical goods

$$\frac{e}{n} = \left(\frac{p_e}{p_n}\right)^{-\rho} \left(\frac{\gamma}{1-\gamma}\right)^{\rho} \overline{e}^{1-\rho}$$

 \Rightarrow Need to increase current consumption of these goods

Shortages of Critical Goods

Demand: Households cannot substitute away from consuming these goods

- Inter-temporal complementarity: Hard to substitute current consumption with future consumption
- Intra-temporal complementarity: Hard to substitute critical goods with consumption of non-critical goods

$$\frac{e}{n} = \left(\frac{p_e}{p_n}\right)^{-\rho} \left(\frac{\gamma}{1-\gamma}\right)^{\rho} \overline{e}^{1-\rho}$$

 \Rightarrow Need to increase current consumption of these goods

Shortages of Critical Goods

Demand: Households cannot substitute away from consuming these goods

- Inter-temporal complementarity: Hard to substitute current consumption with future consumption
- Intra-temporal complementarity: Hard to substitute critical goods with consumption of non-critical goods

$$\frac{e}{n} = \left(\frac{p_e}{p_n}\right)^{-\rho} \left(\frac{\gamma}{1-\gamma}\right)^{\rho} \overline{e}^{1-\rho}$$

 \Rightarrow Need to increase current consumption of these goods

Supply: Output increase < First-best

· Firms' investment (and hiring decisions) determined by owners' SDF

$$\mathbb{E}\left\{ \frac{m_{it}}{m_{it}} \left[q_{it+1}^{\times} \eta(1-\alpha) L_{it+1}^{\alpha\eta} K_{it+1}^{\eta(1-\alpha)-1} + (1-\delta) p_{nt+1} \right] \right\} = p_{nt}$$

- Ownership heterogeneity + Incomplete mkts \Rightarrow Heterogeneous SDF dynamics
- Agent *e* better off, but needs to invest to realize gains, at expense of consumption \Rightarrow Lower SDF

 \Rightarrow But supply increases less than socially optimal

Parametrization approach:

- One period = One month
- Estimate model to match salient features of U.S. data during COVID-19
 - 1 Predetermined parameters
 - 2 Parameters chosen to match moments prior to COVID-19 (steady-state)
 - **3** Shocks + Parameters chosen to match dynamics during COVID-19

		•
Parameter	Value	Description
β	$0.96\frac{1}{12}$	Discount factor
$1/\xi$	0.50	Intertemporal elasticity of substitution
σ	4	Armington elasticity
α	0.66	Labor share
η	0.85	Returns to scale
δ	0.01	Capital depreciation rate

Predetermined parameters

Estimated parameters, pre-pandemic steady-state

_		-
Parameter	Value	Description
An	1.591	Sectoral productivity
τ_e	0.138	Trade costs on essential goods
τ_n	0.342	Trade costs on non-essential goods
ē	0.326	Reference level of essential goods
γ	0.001	Utility weight on essential goods
ĸn	0.957	Measure of agents of type n
Бn	-147.89	Steady-state level of debt: Agent n
ĸe	$1 - \kappa_n$	Measure of agents of type e
\overline{b}_e	$\kappa_e\left(\overline{b}_n+\overline{b}_e\right)$	Steady-state level of debt: Agent e
Moment	Target value	Model
NX _e / GDP _e	-0.188	-0.188
GDP _e / GDP	0.043	0.043
M _e /p _e e	0.404	0.404
M _n /p _n n	0.293	0.293
NX / GDP	-0.063	-0.063
Aggregate e/\overline{e}	1.000	1.000
HH n labor share	0.957	0.957

Estimated parameters, pandemic dynamics

Parameter	Parameter Value		Description	
ρ	0.269	Elasticity essenti	ial and non-essential	
$\phi_{k,n} = \phi_{\ell,n}$	46.087	Adjustment cost	s: Non-essential	
$\phi_{k,e} = \phi_{\ell,e} \qquad 4.201$		Adjustment cost	s: Essential	
Ω _b	0.024	Bond-holding co	st	
Moment		Target value	Model	
et : log(Avg. Q2-Q	3 '20 / Pre-pandemic)	0.619	0.663	
nt : log(Avg. Q2-Q	3 '20 / Pre-pandemic)	-0.062	-0.062	
ynt: log(Avg. Q2-Q3	'20 / Pre-pandemic)	-0.070	-0.070	
NX / GDP: Avg. Q2-	Q3 '20 — Pre-pandemic	-0.009	-0.009	

Dynamics Following a Pandemic

Q: What is the impact of a pandemic in an open economy?

Dynamics Following a Pandemic

Q: What is the impact of a pandemic in an open economy?

Production and trade of essential goods...

- Higher price \Rightarrow Incentive to scale up production
- Export price determines domestic price, pinning down domestic sales. The rest is exported
- Domestic sales and imports increase given demand shock, despite large price increase
- Yet, exports increase more than domestic; essentials shipped out!

Dynamics Following a Pandemic

Q: What is the impact of a pandemic in an open economy?

Consumption...

Both households:

- Pandemic pushes e << ē ⇒ Strong incentive to increase e and e/ē
- *e* increases gradually, but by end of pandemic still far from *e*

Heterogeneous outcomes:

- Agent *e* better off throughout
- Heterogeneous SDF dynamics: Agent e becomes more impatient, borrowing to smooth consumption path as production scale increases

Q: Socially optimal dynamics? Or is there a role for policy to improve upon these?

Government's utilitarian population-weighted objective

$$\mathcal{V}_t = \kappa_n V_{nt} + \kappa_e V_{et}$$

Policy instruments

- 1 Trade policy: Import tariff/subsidy, Export tax/subsidy
- 2 Industrial policy: Total sales subsidy

Government's problem

- Choice set: One value per instrument thru pandemic + Only consider policies on essentials
- Choose policies when pandemic shocks realized to maximize V_t (ex-post analysis)

Efficiency vs. redistribution

- Remove markup distortions with domestic subsidy (Gali and Monacelli 2005)
- 2 No direct redistribution: Rebated lump-sum to agents directly affected by these policies
- (3) Decompose role of efficiency vs. redistribution (Benabou 2002, Boar and Midrigan 2022)

Efficiency vs. redistribution

- Remove markup distortions with domestic subsidy (Gali and Monacelli 2005)
- 2 No direct redistribution: Rebated lump-sum to agents directly affected by these policies
- **③** Decompose role of efficiency vs. redistribution (Benabou 2002, Boar and Midrigan 2022)

	No	role	for	policy	in	pre-pandemic	steady-state
--	----	------	-----	--------	----	--------------	--------------

	Export tax	Import tariff	Total sales subsidy
Trade policy	0.00%	0.00%	_
Industrial policy	_	—	0.00%
Trade and industrial policy	0.00%	0.00%	0.00%

Optimal policies following a pandemic

Export tax	Import tariff	Total sales subsidy	Welfare gain vs.	no policy
------------	---------------	---------------------	------------------	-----------

Optimal policies following a pandemic

	Export tax	Import tariff	Total sales subsidy	Welfare gain vs. no policy
Trade policy	14.26%	-9.44%	_	0.011%

Role for trade policy:

- Intra-temporal motive: Reallocate exports toward domestic sales + Mitigate decline of imports
- But lowers incentives to increase production scale

	Export tax	Import tariff	Total sales subsidy	Welfare gain vs. no policy
Trade policy	14.26%	-9.44%	_	0.011%
Industrial policy	_	_	12.23%	0.004%

Optimal policies following a pandemic

Role for industrial policy:

- Inter-temporal motive: Higher incentives to increase production scale
- But marginal units produced are exported

	Export tax	Import tariff	Total sales subsidy	Welfare gain vs. no policy
Trade policy	14.26%	-9.44%	_	0.011%
Industrial policy	_	_	12.23%	0.004%
Trade and industrial policy	25.02%	-18.28%	27.97%	0.033%

Optimal policies following a pandemic

Interaction between trade and industrial policy:

- Industrial policy mitigates disincentives of trade policy to scale up production
- Trade policy allows households to capture larger share of the increased production due to industrial policy

Trade Policy and the Dynamics Following a Pandemic

Q: How does trade policy affect the dynamics following a pandemic?

- Export taxes reduce domestic prices, reallocating sales from exports toward domestic sales
- And reallocating purchases from imports toward domestic ⇒ Import subsidies partially restore consumption across sources
- Consumption of essential goods increases relative to reference level
- But at a cost: Lower returns to investment and hiring, lower output

Industrial Policy and the Dynamics Following a Pandemic

Q: How does industrial policy affect the dynamics following a pandemic?

- Sales subsidies raise returns to capital and labor, increasing output
 - Relative price between exports and domestic sales is not affected \Rightarrow No reallocation
- Given price of essentials is determined by world prices, this pins down domestic demand ⇒ All additional output is exported

Trade and Industrial Policy and the Dynamics Following a Pandemic

Q: How do trade and industrial policy affect the dynamics following a pandemic?

- Trade policy allows policymakers to reallocate sales from export to domestic sales
- Industrial policy allows policymakers to mitigate the cost of reallocating via trade policy, increasing incentives to produce

Weaker/no role for policy if:

- **1** No household heterogeneity: SDF dynamics identical, production decisions aligned with agg. welfare
- @ Weaker intra-temporal complementarities: Can reallocate consumption to non-essentials
- 3 Weaker inter-temporal complementarities: Can reallocate consumption to the future
- @ Weaker financial friction: Milder link between cash-flow and consumption-savings decisions

Weaker/no role for policy if:

- No household heterogeneity: SDF dynamics identical, production decisions aligned with agg. welfare
- 2 Weaker intra-temporal complementarities: Can reallocate consumption to non-essentials
- 3 Weaker inter-temporal complementarities: Can reallocate consumption to the future
- Ø Weaker financial friction: Milder link between cash-flow and consumption-savings decisions

Efficiency vs. redistribution

Follow Benabou (2002), Boar and Midrigan (2022) to decompose relative importance for optimal policies

	Export tax	Import tariff	Total sales subsidy
Efficient	16.65%	-12.42%	19.51%
Utilitarian (baseline)	25.02%	-18.28%	27.97%
Rawlsian	65.20%	-29.62%	40.16%

Evidence: Trade Dependence, Model vs. Data

- 1. Model and data @ intro: Prevalent use of export barriers, import liberalization, industrial policy
- 2. Validation Q: Trade dependent countries more likely to introduce policies?

Evidence: Trade Dependence, Model vs. Data

- 1. Model and data @ intro: Prevalent use of export barriers, import liberalization, industrial policy
- 2. Validation Q: Trade dependent countries more likely to introduce policies?

Model:

	Export tax	Import tariff
Trade deficit of essential goods (NX $_e/{ m GDP}_e=-0.30)$	15.40%	- 9.81%
Trade surplus of essential goods ($NX_e/GDP_e=0.30)$	8.29%	- 5.30%

Evidence: Trade Dependence, Model vs. Data

- 1. Model and data @ intro: Prevalent use of export barriers, import liberalization, industrial policy
- 2. Validation Q: Trade dependent countries more likely to introduce policies?

Model:

	Export tax	Import tariff
Trade deficit of essential goods (NX $_e/{ m GDP}_e=-0.30)$	15.40%	- 9.81%
Trade surplus of essential goods ($NX_e/GDP_e=0.30$)	8.29%	-5.30%

Data:

Q: Global shortages of critical goods, role for trade and industrial policy?

We find:

- Critical goods shortages create incentives to export, making domestic and imported varieties harder to get
- Trade and industrial policy are desirable to realign firms' incentives with social welfare
- Dynamics and policy response consistent with data

Implications broader than COVID-19:

- Other final goods: Food, vaccines, military equipment, etc.
- Production inputs: Semiconductors, other advanced technologies, etc.

Our findings raise several questions...

- Optimal policies ex-ante? Tension between comparative advantage and resilience to shocks
 - \Rightarrow Work in progress: Adamopoulos and Leibovici (2023)
- Strategic policies in a multi-country world? Cooperative solutions?

Appendix

1. Shock to \overline{e}

- Data on estimated needs of essential medical goods by White House COVID-19 Supply Chain Task Force
- One-year increase, median across goods: $\Delta \ln \overline{e} \approx 1.39$
- 2. Shock to export and import prices of essential goods
 - Unit values of critical COVID-19 goods from USITC
 - Peak price change within first year, median across goods: $\Delta \ln q_e^{\scriptscriptstyle X} = \Delta \ln q_e^m = 0.96$

Unexpected, transitory, one-time shocks:

Q: Which features of the model account for optimal trade policy?

	Export tax	Import tariff
Baseline	14.26%	-9.44%

Q: Which features of the model account for optimal trade policy?

	Export tax	Import tariff
Baseline	14.26%	-9.44%
No pandemic (steady-state)	0.00%	0.00%
No household heterogeneity	0.00%	0.00%

No role for policy in two cases:

- Steady-state / no shocks: Welfare weights chosen such that mg. increase in welfare equalized across agents
- No household heterogeneity: SDF dynamics are identical, investment/hiring aligned with agg. welfare

Q: Which features of the model account for optimal trade policy?

	Export tax	Import tariff
Baseline	14.26%	-9.44%
No pandemic (steady-state)	0.00%	0.00%
No household heterogeneity	0.00%	0.00%
Weaker inter-temporal complementarity ($\xi=0.50$ vs. $\xi=2$)	-0.50%	0.50%
Weaker intra-temporal complementarity ($ ho=0.80$ vs. $ ho=0.27$)	0.94%	-0.37%

Complementarities:

- Weaker role for trade policy if households can substitute essential goods more easily
- Trade policy as a way to ensure access to these goods when no alternatives are available

Q: Which features of the model account for optimal trade policy?

	Export tax	Import tariff
Baseline	14.26%	-9.44%
No pandemic (steady-state)	0.00%	0.00%
No household heterogeneity	0.00%	0.00%
Weaker inter-temporal complementarity ($\xi=0.50$ vs. $\xi=2$)	-0.50%	0.50%
Weaker intra-temporal complementarity ($ ho=0.80$ vs. $ ho=0.27$)	0.94%	- 0.37%
No adjustment costs (e)	8.83%	-5.62%
Higher adjustment costs (<i>e</i>)	19.47%	-29.30%

Larger adjustment costs:

• Harder to adjust production, so less room for intertemporal policies, and greater need for intratemporal trade policy that reallocate across markets

Q: Which features of the model account for optimal trade policy?

	Export tax	Import tariff
Baseline	14.26%	-9.44%
No pandemic (steady-state)	0.00%	0.00%
No household heterogeneity	0.00%	0.00%
Weaker inter-temporal complementarity ($\xi=0.50$ vs. $\xi=2$)	-0.50%	0.50%
Weaker intra-temporal complementarity ($ ho=0.80$ vs. $ ho=0.27$)	0.94%	-0.37%
No adjustment costs (<i>e</i>)	8.83%	-5.62%
Higher adjustment costs (e)	19.47%	-29.30%
Financial autarky (no bond)	18.83%	-11.37%

Weaker financial markets:

- Financial markets provide channel to finance investments while mitigating impact on consumption.
- W/o such channel, weaker role for inter-temporal policies, greater need for reallocation

Q: Which features of the model account for optimal industrial policy?

	Total sales subsidy
Baseline	12.23%
No pandemic (steady-state)	0.00%
No household heterogeneity	0.00%
Weaker inter-temporal complementarity ($\xi=0.50$ vs. $\xi=2$)	2.33%
Weaker intra-temporal complementarity ($ ho=$ 0.80 vs. $ ho=$ 0.27)	14.43%
No adjustment costs (e)	16.12%
Higher adjustment costs (<i>e</i>)	45.17%
Financial autarky (no bond)	20.96%

Key difference vs. trade policy: Intra-temporal complementarities

- Not important for role of industrial policy
- Why? Industrial policy affects intertemporal decisions, not intra-temporal allocations across goods

Optimal Policy: Efficiency vs. Redistribution

Q: What is the role of efficiency vs. redistribution in accounting for the optimal policies? Our approach: Decompose their relative importance (Benabou 2002, Boar and Midrigan 2022) Q: What is the role of efficiency vs. redistribution in accounting for the optimal policies? Our approach: Decompose their relative importance (Benabou 2002, Boar and Midrigan 2022)

Efficiency	Export tax	Import tariff	Total sales subsidy
Trade policy	6.56%	-4.34%	—
Industrial policy	_	—	6.02%
Trade and industrial policy	16.65%	-12.42%	19.51%

Utilitarian (baseline)	Export tax	Import tariff	Total sales subsidy
Trade policy	14.26%	-9.44%	—
Industrial policy	—	—	12.23%
Trade and industrial policy	25.02%	-18.28%	27.97%
Rawlsian	Export tax	Import tariff	Total sales subsidy
Trade policy	36.87%	-33.46%	—
Industrial policy	—	—	66.92%
Trade and industrial policy	65.20%	-29.62%	40.16%

Evidence: Trade and Industrial Policy Interventions During COVID-19

Finally, we ask:

- To what extent have countries implemented trade and industrial policy changes?
- @ Validation, model vs. data: Trade dependent countries more likely to introduce policies?

Evidence: Trade and Industrial Policy Interventions During COVID-19

Finally, we ask:

- 1 To what extent have countries implemented trade and industrial policy changes?
- Ø Validation, model vs. data: Trade dependent countries more likely to introduce policies?

How we answer this question:

- Use cross-country data on trade and industrial policy interventions from Global Trade Alert
- Each entry of the database documents a unilateral policy change with information on:
 - Country, policy instrument, date (announcement, implementation, expiry), sectors / products targeted, direction of the change (harmful or liberalising)
- Identify three types of policies:
 - Export barriers
 - 2 Import barriers
 - 3 Industrial policy (e.g., production subsidies, financial aid, state loans, etc.)
- Focus on 24 COVID-related products (prior to vaccines) as classified by WTO

Evidence: Cross-Country Policy Interventions During COVID-19

\Rightarrow Cross-country evidence consistent with implications of the model

- Prevalence of unilateral trade and industrial policies
- Trade dependent countries more likely to introduce policies

Not just broadly across countries, but also specifically in the US:

- **Defense Production Act** as a combination of industrial and trade policies
 - Incentives to increase production
 - Constraints on their destination
- Bown (2022): DPA accounts for rapid initial increase of vaccine production in the U.S. + Subsequent stagnation of vaccine production as firms largely constrained to sell domestically.