Input Sourcing under Supply Chain Risk: Evidence from U.S. Manufacturing Firms

Joaquin Blaum Federico Esposito Sebastian Heise Boston University Tufts University FRB New York

June 2023

Disclaimer: The views expressed in this presentation do not reflect the views or opinions of the U.S. Census Bureau or of the Federal Reserve Bank of New York. All results have been reviewed to ensure that no confidential information is disclosed.

Motivation

• Last decades have seen a dramatic rise in global supply chains (e.g., Antras and Chor, 2021)

Motivation

- Last decades have seen a dramatic rise in global supply chains (e.g., Antras and Chor, 2021)
- Increasing reliance on imported inputs has exposed firms to foreign sources of risk:
 - natural disasters, port backlogs, Covid lockdowns
 - FRBNY survey: >50% of U.S. manufacturers had disruptions in 2020 Survey

Motivation

- Last decades have seen a dramatic rise in global supply chains (e.g., Antras and Chor, 2021)
- Increasing reliance on imported inputs has exposed firms to foreign sources of risk:
 - natural disasters, port backlogs, Covid lockdowns
 - FRBNY survey: >50% of U.S. manufacturers had disruptions in 2020 Survey

• Open questions:

- Measurement: how to measure supply chain risk at the firm level?
- <u>Theory</u>: how to incorporate risk into a quantitative model of input trade?

Measurement

- Specific type of supply chain risk: volatility of ocean shipping times
- Use U.S. transaction-level import data to construct risk measure
- Use variation induced by weather shocks along shipping routes

Measurement

- Specific type of supply chain risk: volatility of ocean shipping times
- Use U.S. transaction-level import data to construct risk measure
- Use variation induced by weather shocks along shipping routes

Empirical results

- Shipping delays \Rightarrow Sales and employment \downarrow
- Higher shipping time volatility \Rightarrow Number suppliers \uparrow , imports \downarrow
- Firms diversify risk across suppliers, routes and modes

Measurement

- Specific type of supply chain risk: volatility of ocean shipping times
- Use U.S. transaction-level import data to construct risk measure
- Use variation induced by weather shocks along shipping routes

• Empirical results

- Shipping delays \Rightarrow Sales and employment \downarrow
- Higher shipping time volatility \Rightarrow Number suppliers \uparrow , imports \downarrow
- Firms diversify risk across suppliers, routes and modes

Model

- Incorporate risky delivery times into standard sourcing model
- Importers would accept up to 25% longer shipping times to avoid risk

Measurement

- Specific type of supply chain risk: volatility of ocean shipping times
- Use U.S. transaction-level import data to construct risk measure
- Use variation induced by weather shocks along shipping routes

• Empirical results

- Shipping delays \Rightarrow Sales and employment \downarrow
- Higher shipping time volatility \Rightarrow Number suppliers \uparrow , imports \downarrow
- Firms diversify risk across suppliers, routes and modes

Model

- Incorporate risky delivery times into standard sourcing model
- Importers would accept up to 25% longer shipping times to avoid risk
- Climate change may worsen weather risk going forward

Outline

- 1. Empirical Framework
- 2. Measurement
- 3. Delays and Firm Outcomes
- 4. Shipping Risk and Import Demand
- 5. Model

Literature

- Risk for final goods trade: Ramondo et al 2013, Fillat and Garetto 2015, Esposito 2022, Baley et al 2020
 → We focus on risk for inputs trade
- Models of input sourcing: Halpern et al 2015, Antras et al 2017, Blaum et al 2018
 - \longrightarrow We add supply chain risk to an otherwise standard model
- Management of supply chain risk: Clark et al 2014, Gervais 2018, Huang 2019, Carreras-Valle 2021
 - \longrightarrow We perform systematic analysis in transaction-level data with weather risk
- **Supply chain disruptions:** Boehm et al. 2019, Carvalho et al 2021, Antras and Chor 2021
 - \longrightarrow We focus on how risk affects sourcing strategy
- **Shipping times:** Evans and Harrigan 2005, Hummels and Schaur 2013, Brancaccio et al 2019
 - \longrightarrow We focus on the uncertainty around timeliness

Empirical Framework

- **Shipping time** = Time between departure abroad until the good has cleared customs in U.S.
- For shipment *s*, it could depend on:
 - Importer (f)
 - Foreign supplier (x)
 - Product (*h*)
 - Shipping route (r)
 - Time period (t)
 - Vessel (v)
 - Related party status (a)
- As well as
 - Shipping charges $(C^s) \longrightarrow$ higher charges could reduce shipping times
 - Weight $(W^s) \longrightarrow$ greater weight could increase shipping times

• Thus:

$$\ln(T^{s}_{xhrtvfa}) = \left(\bar{\pi}_{x} + \bar{\alpha}_{h} + \bar{\gamma}_{r} + \bar{\theta}_{t} + \bar{\xi}_{v} + \bar{\delta}_{f} + \bar{\omega}_{a}\right)$$

- bar = deterministic components known by the importer

$$x =$$
 foreign supplier; $h =$ product; $r =$ route;
 $t =$ time (quarter-year); $v =$ vessel; $f =$ importer;
 $a =$ related party / arm's-length

• Thus:

$$\ln(T_{xhrtvfa}^{s}) = \left(\bar{\pi}_{x} + \bar{\alpha}_{h} + \bar{\gamma}_{r} + \bar{\theta}_{t} + \bar{\xi}_{v} + \bar{\delta}_{f} + \bar{\omega}_{a}\right) \\ + \left(\pi_{x} + \alpha_{h} + \gamma_{r} + \theta_{t} + \xi_{v} + \delta_{f} + \omega_{a}\right)$$

bar = deterministic components known by the importer
non-bar = stochastic components (mean zero, i.i.d)

$$x =$$
 foreign supplier; $h =$ product; $r =$ route;
 $t =$ time (quarter-year); $v =$ vessel; $f =$ importer;
 $a =$ related party / arm's-length

Thus:

$$\ln(T_{xhrtvfa}^{s}) = \left(\bar{\pi}_{x} + \bar{\alpha}_{h} + \bar{\gamma}_{r} + \bar{\theta}_{t} + \bar{\xi}_{v} + \bar{\delta}_{f} + \bar{\omega}_{a}\right) \\ + \left(\pi_{x} + \alpha_{h} + \gamma_{r} + \theta_{t} + \xi_{v} + \delta_{f} + \omega_{a}\right) - \eta \ln(C^{s}) + \rho \ln(W^{s})$$

- $\ensuremath{\text{bar}}$ = deterministic components known by the importer
- **non-bar** = stochastic components (mean zero, i.i.d)
- log-linear effect of charges and weight

$$x =$$
 foreign supplier; $h =$ product; $r =$ route;

- t = time (quarter-year); v = vessel; f = importer;
- a = related party / arm's-length

Thus:

$$\ln(T_{xhrtvfa}^{s}) = \left(\bar{\pi}_{x} + \bar{\alpha}_{h} + \bar{\gamma}_{r} + \bar{\theta}_{t} + \bar{\xi}_{v} + \bar{\delta}_{f} + \bar{\omega}_{a}\right) \\ + \left(\pi_{x} + \alpha_{h} + \gamma_{r} + \theta_{t} + \xi_{v} + \delta_{f} + \omega_{a}\right) - \eta \ln(C^{s}) + \rho \ln(W^{s})$$

- $\ensuremath{\text{bar}}$ = deterministic components known by the importer
- **non-bar** = stochastic components (mean zero, i.i.d)
- log-linear effect of charges and weight

- t = time (quarter-year); v = vessel; f = importer;
- a = related party / arm's-length
- Population variance given charges C^s and weight W^s:

$$\sigma_{xhrtvfa}^{2} = \mathbb{V}(\pi_{x}) + \mathbb{V}(\alpha_{h}) + \mathbb{V}(\gamma_{r}) + \mathbb{V}(\theta_{t}) + \mathbb{V}(\xi_{v}) + \mathbb{V}(\delta_{f}) + \mathbb{V}(\omega_{a})$$

- All deterministic components drop out when computing sample variance

Removing Anticipated Components

- We will measure risk across some of these dimensions, e.g., (f, h, r)
 - Deterministic components $\{\bar{\theta}_t; \bar{\xi}_v; \bar{\pi}_x; \bar{\omega}_a\}$ will not be constant within (f, h, r)
 - These are likely known to the importer beforehand

Removing Anticipated Components

- We will measure risk across some of these dimensions, e.g., (f, h, r)
 - Deterministic components $\{\bar{\theta}_t; \bar{\xi}_v; \bar{\pi}_x; \bar{\omega}_a\}$ will not be constant within (f, h, r)
 - These are likely known to the importer beforehand

- Residualization step by regressing on fixed effects
 - Sample variance of residualized shipping time excludes deterministic components

$$\hat{t}_{\mathsf{xhrtvfa}} = \ln(T^s_{\mathsf{xhrtvfa}}) + \hat{\eta}\ln(C^s) - \hat{\rho}\ln(W^s) - \bar{\theta_t} - \bar{\xi_v} - \bar{\pi_x} - \bar{\omega_a}$$

Removing Anticipated Components

- We will measure risk across some of these dimensions, e.g., (f, h, r)
 - Deterministic components $\{\bar{\theta}_t; \bar{\xi}_v; \bar{\pi}_x; \bar{\omega}_a\}$ will not be constant within (f, h, r)
 - These are likely known to the importer beforehand

- Residualization step by regressing on fixed effects
 - Sample variance of residualized shipping time excludes deterministic components

$$\hat{t}_{\mathsf{xhrtvfa}} = \ln(T^s_{\mathsf{xhrtvfa}}) + \hat{\eta}\ln(C^s) - \hat{\rho}\ln(W^s) - \bar{\theta_t} - \bar{\xi_v} - \bar{\pi_x} - \bar{\omega_a}$$

• Then compute the sample variance of $\hat{t}_{xhrtvfa}$

- No need to residualize w.r.t. $\{\bar{\delta}_f, \bar{\alpha}_h, \bar{\gamma}_r\}$ since these are constant within (f, h, r)

- Residualized shipping time could still contain anticipated components
 - e.g., schedule slower shipping time for route when demand is low

- Residualized shipping time could still contain anticipated components
 - e.g., schedule slower shipping time for route when demand is low
- Isolate variation due to weather: $\epsilon_{xhrtvfa} = \tilde{\epsilon}_{xhrtvfa} + \beta Weather_{rt}$
 - Wave height and direction matter for speed (Filtz et al., 2015)

- Residualized shipping time could still contain anticipated components
 - e.g., schedule slower shipping time for route when demand is low
- Isolate variation due to weather: $\epsilon_{xhrtvfa} = \tilde{\epsilon}_{xhrtvfa} + \beta Weather_{rt}$
 - Wave height and direction matter for speed (Filtz et al., 2015)

• Identifying assumption:

- Realized weather conditions not anticipated (conditional on the season fixed effects)

- Residualized shipping time could still contain anticipated components
 - e.g., schedule slower shipping time for route when demand is low
- Isolate variation due to weather: $\epsilon_{xhrtvfa} = \tilde{\epsilon}_{xhrtvfa} + \beta Weather_{rt}$
 - Wave height and direction matter for speed (Filtz et al., 2015)

• Identifying assumption:

- Realized weather conditions not anticipated (conditional on the season fixed effects)
- Focus on variation in residualized shipping times due to weather

Empirical Measurement

Data

• Longitudinal Firm Trade Transaction Database (LFTTD)

- Transaction-level data for all imports for 1992-2016
- Standard: Importer, exporter, HS10 product, date of import and export abroad
- Not used much so far: port of entry and departure, vessel identity

• Longitudinal Business Database (LBD) / Census of Manufactures

- Employment, industry, sales, cost of materials and labor

• Wave Watch III Model from U Hawaii / NOAA

- Height and direction of significant waves at hourly/three-hourly frequency for geo locations at 0.5 degree distances in the oceans for 2011-2016

Data

• Longitudinal Firm Trade Transaction Database (LFTTD)

- Transaction-level data for all imports for 1992-2016
- Standard: Importer, exporter, HS10 product, date of import and export abroad
- Not used much so far: port of entry and departure, vessel identity

• Longitudinal Business Database (LBD) / Census of Manufactures

- Employment, industry, sales, cost of materials and labor

• Wave Watch III Model from U Hawaii / NOAA

- Height and direction of significant waves at hourly/three-hourly frequency for geo locations at 0.5 degree distances in the oceans for 2011-2016

• We focus on the manufacturing sector

Summary Stats

Shipping Time Statistics

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Avg.	Std.	P5	P25	P50	P75	P95	Total Value
	Time	Time						(\$Bill.)
Vessel	16.38	23.54	3.49	10.00	13.46	20.48	33.32	4,250

Source: LFTTD. Table summarizes the distribution of shipping times. Values are reported in billions of 2009 dollars.

Vessel shipments have high dispersion

- Affected by charges, weight, season, etc. Factors

Shipping Time Statistics

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Avg.	Std.	P5	P25	P50	P75	P95	Total Value
Time	Time						(\$Bill.)
16.38	23.54	3.49	10.00	13.46	20.48	33.32	4,250
4.42	6.256	0.00	0.00	0.00	8.48	16.86	1,450
0.05	0.36	0.00	0.00	0.00	0.00	0.00	2,210
0.49	0.89	0.00	0.00	0.00	1.00	2.298	1,610
11.94	74.70	0.00	0.00	0.00	2.47	24.18	1,020
	Avg. Time 16.38 4.42 0.05 0.49	Avg. Std. Time Time 16.38 23.54 4.42 6.256 0.05 0.36 0.49 0.89	Avg. Std. P5 Time Time 16.38 23.54 3.49 4.42 6.256 0.00 0.05 0.36 0.00 0.49 0.89 0.00 0.00 0.00	Avg. Std. P5 P25 Time Time 10.00 10.00 4.42 6.256 0.00 0.00 0.05 0.36 0.00 0.00 0.49 0.89 0.00 0.00	Avg. Std. P5 P25 P50 Time Time Time 10.00 13.46 4.42 6.256 0.00 0.00 0.00 0.05 0.36 0.00 0.00 0.00 0.49 0.89 0.00 0.00 0.00	Avg. Std. P5 P25 P50 P75 Time Time 10.00 13.46 20.48 4.42 6.256 0.00 0.00 0.00 8.48 0.05 0.36 0.00 0.00 0.00 0.00 0.49 0.89 0.00 0.00 0.00 1.00	Avg. Std. P5 P25 P50 P75 P95 Time Time Time 10.00 13.46 20.48 33.32 4.42 6.256 0.00 0.00 0.00 8.48 16.86 0.05 0.36 0.00 0.00 0.00 0.00 0.00 0.49 0.89 0.00 0.00 0.00 1.00 2.298

Source: LFTTD. Table summarizes the distribution of shipping times. Values are reported in billions of 2009 dollars.

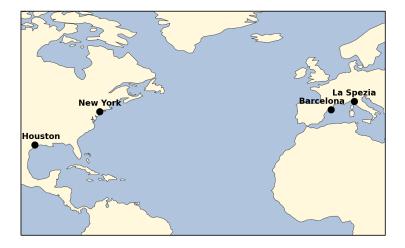
Vessel shipments have high dispersion

- Affected by charges, weight, season, etc. Factors
- Other modes have much less volatility in shipping times

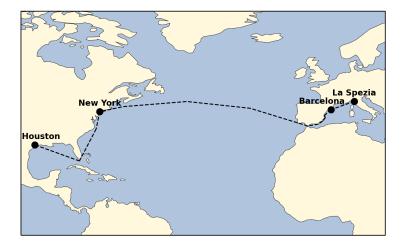
Shipping Time Statistics

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Avg.	Std.	P5	P25	P50	P75	P95	Total Value
	Time	Time						(\$Bill.)
Vessel	16.38	23.54	3.49	10.00	13.46	20.48	33.32	4,250
Train	4.42	6.256	0.00	0.00	0.00	8.48	16.86	1,450
Truck	0.05	0.36	0.00	0.00	0.00	0.00	0.00	2,210
Airplane	0.49	0.89	0.00	0.00	0.00	1.00	2.298	1,610
Other	11.94	74.70	0.00	0.00	0.00	2.47	24.18	1,020

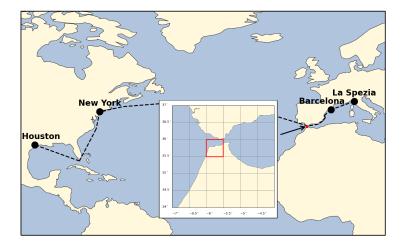
Source: LFTTD. Table summarizes the distribution of shipping times. Values are reported in billions of 2009 dollars.


Vessel shipments have high dispersion

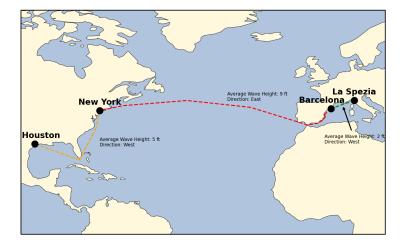
- Affected by charges, weight, season, etc. Factors
- Other modes have much less volatility in shipping times


\Rightarrow Focus on volatility of vessel borne shipments

- will treat the other modes of transportation as riskless


- Using LFTTD, compute route for each transaction from origin port to U.S. port Details
 - customs records include all intermediate stops if vessel loads cargo for the U.S.
 - e.g., La Spezia Barcelona New York Houston

- Using LFTTD, compute route for each transaction from origin port to U.S. port Details
 - customs records include all intermediate stops if vessel loads cargo for the U.S.
 - e.g., La Spezia Barcelona New York Houston
- Find shortest ocean distance for each segment from Eurostat's SeaRoute program
 - about 20,000 segments, e.g., La Spezia Barcelona



- Using LFTTD, compute route for each transaction from origin port to U.S. port Details
 - customs records include all intermediate stops if vessel loads cargo for the U.S.
 - e.g., La Spezia Barcelona New York Houston
- Find shortest ocean distance for each segment from Eurostat's SeaRoute program
 - about 20,000 segments, e.g., La Spezia Barcelona
- Obtain daily average weather for each coordinate on each route
 - Significant wave height and direction, relative to travel direction

- Using LFTTD, compute route for each transaction from origin port to U.S. port Details
 - customs records include all intermediate stops if vessel loads cargo for the U.S.
 - e.g., La Spezia Barcelona New York Houston
- Find shortest ocean distance for each segment from Eurostat's SeaRoute program
 - about 20,000 segments, e.g., La Spezia Barcelona
- Obtain daily average weather for each coordinate on each route - Significant wave height and direction, relative to travel direction
- Compute average weather for each trip segment - e.g., if La Spezia (11/6) and Barcelona (11/11), average over these 6 days

Adding in the Weather Data

Adding in the Weather Data

- Using LFTTD, compute route for each transaction from origin port to U.S. port Details
 - customs records include all intermediate stops if vessel loads cargo for the U.S.
 - e.g., La Spezia Barcelona New York Houston
- Find shortest ocean distance for each segment from Eurostat's SeaRoute program
 - about 20,000 segments, e.g., La Spezia Barcelona
- Obtain daily average weather for each coordinate on each route - Significant wave height and direction, relative to travel direction
- Compute average weather for each trip segment - e.g., if La Spezia (11/6) and Barcelona (11/11), average over these 6 days
- Compute average across all segments of a trip

Delays and Firm Outcomes

Shipping Time Risk

- 1. Do delayed shipments adversely affect importers?
- 2. Do importers actively manage shipping time risk?

Shipping Time Risk

1. Do delayed shipments adversely affect importers?

2. Do importers actively manage shipping time risk?

1. Construct residualized shipping time within product-route (h, r)

$$\hat{t}_{xhrtvfa}^{s} = \ln(T_{xhrtvfa}^{s}) + \hat{\eta}\ln(C^{s}) - \hat{\rho}\ln(W^{s}) - \bar{\theta}_{t} - \bar{\xi}_{v} - \bar{\delta}_{f} - \bar{\omega}_{a} - \bar{\pi}_{x}$$

1. Construct residualized shipping time within product-route (h, r)

$$\hat{t}_{xhrtvfa}^{s} = \ln(T_{xhrtvfa}^{s}) + \hat{\eta}\ln(C^{s}) - \hat{\rho}\ln(W^{s}) - \bar{\theta}_{t} - \bar{\xi}_{v} - \bar{\delta}_{f} - \bar{\omega}_{a} - \bar{\pi}_{x}$$

2. Compute percent deviation from route-product average

1. Construct residualized shipping time within product-route (h, r)

$$\hat{t}^s_{xhrtvfa} = \ln(T^s_{xhrtvfa}) + \hat{\eta}\ln(C^s) - \hat{\rho}\ln(W^s) - \bar{\theta}_t - \bar{\xi}_v - \bar{\delta}_f - \bar{\omega}_a - \bar{\pi}_x$$

- 2. Compute percent deviation from route-product average
- 3. Set delay indicator $\mathbb{D}^{s}_{xhrtvfa} = 1$ if deviation is above 95th percentile

1. Construct residualized shipping time within product-route (h, r)

$$\hat{t}^s_{\mathsf{xhrtvfa}} = \ln(T^s_{\mathsf{xhrtvfa}}) + \hat{\eta}\ln(C^s) - \hat{\rho}\ln(W^s) - \bar{\theta}_t - \bar{\xi}_v - \bar{\delta}_f - \bar{\omega}_a - \bar{\pi}_x$$

- 2. Compute percent deviation from route-product average
- 3. Set delay indicator $\mathbb{D}^{s}_{xhrtvfa} = 1$ if deviation is above 95th percentile
- 4. Scale with total input costs (including domestic):

$$FracDelayed_{ft} = \frac{\sum_{x,h,r,v,a} [\mathbb{D}_{xhrtvfa}^{s} \cdot \text{Imp Value}_{xhrtvfa}]}{\text{Total Input costs}_{ft}}$$

1. Construct residualized shipping time within product-route (h, r)

$$\hat{t}^s_{\mathsf{xhrtvfa}} = \ln(T^s_{\mathsf{xhrtvfa}}) + \hat{\eta}\ln(C^s) - \hat{\rho}\ln(W^s) - \bar{\theta}_t - \bar{\xi}_v - \bar{\delta}_f - \bar{\omega}_a - \bar{\pi}_x$$

- 2. Compute percent deviation from route-product average
- 3. Set delay indicator $\mathbb{D}^{s}_{xhrtvfa} = 1$ if deviation is above 95th percentile
- 4. Scale with total input costs (including domestic):

$$FracDelayed_{ft} = \frac{\sum_{x,h,r,v,a} [\mathbb{D}_{xhrtvfa}^{s} \cdot \text{Imp Value}_{xhrtvfa}]}{\text{Total Input costs}_{ft}}$$

5. Instrument with weather in the IV regressions

Constructing the Weather Instrument

• Regress residualized times on weather conditions and route FE

$$\begin{aligned} \hat{t}_{xhrtvfa}^{s} &= \beta_{1} \cdot \text{WaveHeight}^{s} + \beta_{2} \cdot \text{Direction}^{s} \\ &+ \beta_{3} \cdot \text{WaveHeight}^{s} \cdot \text{Direction}^{s} + \bar{\gamma}_{r} + \epsilon_{xhrtvfa}^{s} \end{aligned}$$

Constructing the Weather Instrument

• Regress residualized times on weather conditions and route FE

$$\begin{aligned} \hat{t}^s_{xhrtvfa} &= \beta_1 \cdot \mathsf{WaveHeight}^s + \beta_2 \cdot \mathsf{Direction}^s \\ &+ \beta_3 \cdot \mathsf{WaveHeight}^s \cdot \mathsf{Direction}^s + \bar{\gamma}_r + \epsilon^s_{xhrtvfa} \end{aligned}$$

• Use predicted variable and construct *FracDelayed*^{*weather*} as before

Table: Effects of Weather on Shipping Time

Dep. Var:	$\hat{t}^s_{xhrtvfa}$
Wave Height ^s	-0.0330***
	(0.0006)
$Direction^{s}$	-0.0002***
	(0.0000)
Wave Height ^s ×	0.00003***
Direction ^s	(0.0000)
Route FE	Y
Observations	5,774,000

- Higher waves increase vessel speed (consistent with Filtz et al., 2015)
- Tail wind marginally increases vessel speed

Effect of Delays on Firm Outcomes

• We estimate the following regression with firms' outcomes:

$$\ln(Y_{ft}) = \beta_1 FracDelayed_{ft} + \gamma_f + \rho_t + \epsilon_{ft}$$

- Y_{ft} = sales, profits (sales - materials - labor costs), or number of employees

• Run OLS and instrumented with FracDelayed^{weather}

Weather Delays Reduce Firm Performance

	(1)	(2)	(3)
	Weather IV		
Dependent Variable:	In(Sales)	In(Profits)	In(Employees)
Frac Delayed	- 6 .131***	-3.307**	-0.816*
	(-2.056)	(-1.651)	(-0.420)
Importer FE	Y	Y	Y
Year FE	Y	Y	Y
F-Stat	19.53	19.53	19.53
Observations	$\boldsymbol{142,000}$	142,000	142,000

- Increasing $FracDelayed_{ft}$ by 1 std (0.024) lowers
 - sales by 15%
 - profits by 8%
 - workers by 2%

OLS Regressions

Weather Delays Reduce Firm Performance

	(1)	(2)	(3)
	Weather IV		
Dependent Variable:	In(Sales)	In(Profits)	In(Employees)
Frac Delayed	-6.131^{***}	-3.307**	-0.816*
	(-2.056)	(-1.651)	(-0.420)
Importer FE	Y	Y	Y
Year FE	Y	Y	Y
F-Stat	19.53	19.53	19.53
Observations	142,000	$\boldsymbol{142,000}$	142,000

- Increasing $FracDelayed_{ft}$ by 1 std (0.024) lowers
 - sales by 15%
 - profits by 8%
 - workers by 2%

OLS Regressions

Weather Delays Reduce Firm Performance

	(1)	(2)	(3)
	Weather IV		
Dependent Variable:	In(Sales)	In(Profits)	In(Employees)
Frac Delayed	-6.131^{***}	-3.307**	-0.816*
	(-2.056)	(-1.651)	(-0.420)
Importer FE	Y	Y	Y
Year FE	Y	Y	Y
F-Stat	19.53	19.53	19.53
Observations	142,000	142,000	$\boldsymbol{142,000}$

- Increasing $FracDelayed_{ft}$ by 1 std (0.024) lowers
 - sales by 15%
 - profits by 8%
 - workers by 2%

OLS Regressions

Negative Effects Without Alternate Suppliers

	(1)	(2)	(3)
	Weather IV		
Dependent Variable:	In(Sales)	In(Profits)	In(Employees)
Frac Delayed (Alt)	-4.024*	-1.579	-0.396
	(-2.062)	(-1.359)	(-0.431)
Frac Delayed (NoAlt)	-8.317**	-5.755*	-1.271**
	(-3.403)	(-3.344)	(-0.623)
Importer FE	Y	Y	Y
Year FE	Y	Y	Y
Observations	142,000	142,000	142,000

• Negative effects are significantly worse for products for which the firm does not have alternative suppliers

Shipping Risk and Import Demand

Shipping Time Risk

- 1. Do delayed shipments adversely affect importers?
- 2. Do importers actively manage shipping time risk?

Strategy:

- Compute risk for each supplier-product-route cell
- Do importers facing riskier supplier-product-routes in the past adjust sourcing today?

1. Construct residualized time within supplier-product-route (x, h, r)

$$\hat{t}^s_{\mathsf{xhrtvfa}} = \ln(T^s_{\mathsf{xhrtvfa}}) + \hat{\eta}\ln(\mathcal{C}^s) - \hat{\rho}\ln(\mathcal{W}^s) - \bar{\theta}_t - \bar{\xi}_v - \bar{\delta}_f - \bar{\omega}_a$$

1. Construct residualized time within supplier-product-route (x, h, r)

$$\hat{t}^s_{xhrtvfa} = \ln(T^s_{xhrtvfa}) + \hat{\eta}\ln(\mathcal{C}^s) - \hat{
ho}\ln(W^s) - ar{ heta}_t - ar{\xi}_v - ar{\delta}_f - ar{\omega}_a$$

2. Regress $\hat{t}_{xhrtvfa}^{s}$ on weather conditions and route FE and get $\hat{t}_{xhrtvfa}^{s,weather}$

1. Construct residualized time within supplier-product-route (x, h, r)

$$\hat{t}_{\mathsf{x}\mathsf{h}\mathsf{r}\mathsf{t}\mathsf{v}\mathsf{f}\mathsf{a}}^{\mathsf{s}} = \ln(T_{\mathsf{x}\mathsf{h}\mathsf{r}\mathsf{t}\mathsf{v}\mathsf{f}\mathsf{a}}^{\mathsf{s}}) + \hat{\eta}\ln(C^{\mathsf{s}}) - \hat{\rho}\ln(W^{\mathsf{s}}) - \bar{\theta}_{t} - \bar{\xi}_{\mathsf{v}} - \bar{\delta}_{\mathsf{f}} - \bar{\omega}_{\mathsf{a}}$$

2. Regress $\hat{t}^{s}_{xhrtvfa}$ on weather conditions and route FE and get $\hat{t}^{s,weather}_{xhrtvfa}$

3. Compute mean and standard deviation of $\hat{t}_{xhrtvfa}^{s,weather}$ for each (x,h,r) cell in each year using three-year rolling windows

1. Construct residualized time within supplier-product-route (x, h, r)

$$\hat{t}_{\mathsf{x}\mathsf{h}\mathsf{r}\mathsf{t}\mathsf{v}\mathsf{f}\mathsf{a}}^{\mathsf{s}} = \ln(T_{\mathsf{x}\mathsf{h}\mathsf{r}\mathsf{t}\mathsf{v}\mathsf{f}\mathsf{a}}^{\mathsf{s}}) + \hat{\eta}\ln(C^{\mathsf{s}}) - \hat{\rho}\ln(W^{\mathsf{s}}) - \bar{\theta}_{t} - \bar{\xi}_{\mathsf{v}} - \bar{\delta}_{\mathsf{f}} - \bar{\omega}_{\mathsf{a}}$$

2. Regress $\hat{t}_{xhrtyfa}^{s}$ on weather conditions and route FE and get $\hat{t}_{xhrtyfa}^{s,weather}$

- 3. Compute mean and standard deviation of $\hat{t}_{xhrtyfa}^{s,weather}$ for each (x,h,r) cell in each year using three-year rolling windows
- 4. Aggregate to the importer-product-year level across all exporters and routes, using all imports over the past three years
 - Non-vessel transactions have zero risk

Risk Exposure and Import Demand

Main specification:

 $\ln(Y_{fht}) = \beta_1 \ln(\widehat{StdTime}_{fht-3,t-1}^{weather}) + \beta_2 X_{fht} + \gamma_h + \gamma_t + \gamma_f + \epsilon_{fht}$

- Y_{fht}: Variable of interest, e.g., number of suppliers
- $StdTime_{fht-3,t-1}$: weighted average of risk across all routes and suppliers
- X_{fht} : Weighted avg. shipping time across suppliers and routes in t 3 to t 1Unit value

Sum of value shipped by suppliers in t - 3 to t - 1Sum of value imported in t - 3 to t - 1

Effect of Risk on Import Demand: Extensive Margin

	(1)	(2)	(3)	(4)
		Weat	ner IV	
Dep. Var.:	In(Number of	In(Number of	In(HHI over	In(HHI over
	Suppliers)	Routes)	Suppliers)	Supplier-Routes)
Std Time	0.077***	0.123***	-0.052***	-0.074***
	(-0.008)	(-0.009)	(-0.003)	(-0.003)
Importer FE	Y	Y	Y	Y
Product FE	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
Controls	Y	Y	Y	Y
Observations	72 , 500	72,500	72,500	72, 500

- Going from 25th to 75th percentile of risk distribution (0.61 log points) increases
 - number of suppliers by 4.7%
 - number of routes by 7.5%

Effect of Risk on Import Demand: Extensive Margin

	(1)	(2)	(3)	(4)
		Weat	her IV	
Dep. Var.:	In(Number of	In(Number of	In(HHI over	In(HHI over
	Suppliers)	Routes)	Suppliers)	Supplier-Routes)
Std Time	0.077***	0.123***	-0.052***	-0.074***
	(-0.008)	(- 0 .009)	(-0.003)	(-0.003)
Importer FE	Y	Y	Y	Y
Product FE	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
Controls	Y	Y	Y	Y
Observations	72,500	72,500	72, 500	72,500

- Going from 25th to 75th percentile of risk distribution (0.61 log points) increases
 - number of suppliers by 4.7%
 - number of routes by 7.5%

Effect of Risk on Import Demand: Intensive Margin

	(1)	(2)	
	Weather IV		
Dep. Var.:	Value per	Value Imported	
	Supplier-Year	per Year	
Std Time	-0.163***	-0.086***	
	(-0.011)	(-0.012)	
Importer FE	Y	Y	
Product FE	Y	Y	
Year FE	Y	Y	
Controls	Y	Y	
Observations	72,500	72,500	

- Going from 25th to 75th percentile of risk distribution (0.61 log points) lowers
 - value imported per supplier by 9.9%
 - total value imported by 5.3%

Effect of Risk on Import Demand: Intensive Margin

	(1)	(2)	
	Weather IV		
Dep. Var.:	Value per	Value Imported	
	Supplier-Year	per Year	
Std Time	-0.163***	-0.086***	
	(-0.011)	(-0.012)	
Importer FE	Y	Y	
Product FE	Y	Y	
Year FE	Y	Y	
Controls	Y	Y	
Observations	72,500	72 , 500	

- Going from 25th to 75th percentile of risk distribution (0.61 log points) lowers
 - value imported per supplier by 9.9%
 - total value imported by 5.3%

DLS Regressions 🕺 Inventories 🔪 Using Air Shipments

• Build on standard models of importing with firm heterogeneity of Halpern et al (2015), Blaum et al (2018), Gopinath and Neiman (2014)

• Build on standard models of importing with firm heterogeneity of Halpern et al (2015), Blaum et al (2018), Gopinath and Neiman (2014)

• Follow Hummels and Schaur (2013) in their treatment of timeliness as measurable component of quality.

• Build on standard models of importing with firm heterogeneity of Halpern et al (2015), Blaum et al (2018), Gopinath and Neiman (2014)

• Follow Hummels and Schaur (2013) in their treatment of timeliness as measurable component of quality.

• Key departure from literature: shipping time and thus input qualities are stochastic.

Input Sourcing With Supply Chain Risk

• Assume production uses labor, domestic input, and a CES aggregator of foreign inputs:

$$\tilde{y} = \varphi l^{1-\gamma} \left(\left(x_{D} \right)^{\frac{\varepsilon-1}{\varepsilon}} + \left(\sum_{i=1}^{N} \left(\alpha_{i} x_{i} \right)^{\frac{\kappa-1}{\kappa}} \right)^{\frac{\kappa}{\kappa-1} \frac{\varepsilon-1}{\varepsilon}} \right)^{\gamma \frac{\varepsilon}{\varepsilon-1}}$$

where φ is productivity, *N* is number of foreign suppliers, α_i is the **stochastic** input quality

Input Sourcing With Supply Chain Risk

• Assume production uses labor, domestic input, and a CES aggregator of foreign inputs:

$$\tilde{y} = \varphi l^{1-\gamma} \left(\left(x_D \right)^{\frac{\varepsilon-1}{\varepsilon}} + \left(\sum_{i=1}^N \left(\alpha_i x_i \right)^{\frac{\kappa-1}{\kappa}} \right)^{\frac{\kappa}{\kappa-1} \frac{\varepsilon-1}{\varepsilon}} \right)^{\gamma \frac{\varepsilon}{\varepsilon-1}}$$

where φ is productivity, *N* is number of foreign suppliers, α_i is the **stochastic** input quality

• Shipping times affects quality (in the spirit of Hummels and Schaur 2013):

$$\alpha_i = days_i^{-\tau}$$

where α_i is stochastic

Input Sourcing With Supply Chain Risk

• Assume production uses labor, domestic input, and a CES aggregator of foreign inputs:

$$\tilde{y} = \varphi l^{1-\gamma} \left(\left(x_{D} \right)^{\frac{\varepsilon-1}{\varepsilon}} + \left(\sum_{i=1}^{N} \left(\alpha_{i} x_{i} \right)^{\frac{\kappa-1}{\kappa}} \right)^{\frac{\kappa}{\kappa-1} \frac{\varepsilon-1}{\varepsilon}} \right)^{\gamma \frac{\varepsilon}{\varepsilon-1}}$$

where φ is productivity, *N* is number of foreign suppliers, α_i is the **stochastic** input quality

• Shipping times affects quality (in the spirit of Hummels and Schaur 2013):

$$\alpha_i = days_i^{-\tau}$$

where α_i is stochastic

- Two stages of production
 - 1. Under uncertainty, firm chooses x, x_D and N
 - 2. After shipments arrive, firm chooses I

Calibration

• Calibrate the model in GE with standard parameters and internal moments

- Calibrate the model in GE with standard parameters and internal moments
- Does the model match the "risk elasticities" we estimate in the data? No:
 - elasticity of number of suppliers: 0.05
 - elasticity of imports per supplier: 0.05
 - elasticity of total imports: 0.1

- Calibrate the model in GE with standard parameters and internal moments
- Does the model match the "risk elasticities" we estimate in the data? No:
 - elasticity of number of suppliers: 0.05
 - elasticity of imports per supplier: 0.05
 - elasticity of total imports: 0.1
- Data suggests risk-averse behavior, so we add risk aversion:

$$\max E(\pi(\varphi)) - \frac{\rho}{2} Var(\pi(\varphi))$$

- Calibrate the model in GE with standard parameters and internal moments
- Does the model match the "risk elasticities" we estimate in the data? No:
 - elasticity of number of suppliers: 0.05
 - elasticity of imports per supplier: 0.05
 - elasticity of total imports: 0.1
- Data suggests risk-averse behavior, so we add risk aversion:

$$\max E(\pi(\varphi)) - \frac{\rho}{2} Var(\pi(\varphi))$$

• Find risk aversion ho that matches the risk elasticities (ho=9)

- Calibrate the model in GE with standard parameters and internal moments
- Does the model match the "risk elasticities" we estimate in the data? No:
 - elasticity of number of suppliers: 0.05
 - elasticity of imports per supplier: 0.05
 - elasticity of total imports: 0.1
- Data suggests risk-averse behavior, so we add risk aversion:

$$\max E(\pi(\varphi)) - \frac{\rho}{2} Var(\pi(\varphi))$$

- Find risk aversion ho that matches the risk elasticities (ho=9)
- Implied Certainty Equivalent ranges between 16-20 days, on average 17
 - U.S. importers would choose, in order to avoid supply chain risk, to increase their shipping times from 16 to 16-20 days (up to 25%)

Conclusion

- We analyze a new measure of supply chain risk: the volatility of ocean shipping times
- We find that firms diversify risk across suppliers, routes and modes
 - Shipping delays \Rightarrow Sales and employment \downarrow
 - Higher shipping time volatility \Rightarrow Number suppliers \uparrow , imports \downarrow
- Incorporate risky delivery times into standard sourcing model
 - We need risk aversion to match the data
 - Importers would accept an increase in shipping times of up to 25% to avoid risk
 - Climate change may worsen the negative effects

Appendix

FRB New York Survey 2021 Return

QUESTION 9

What have you done and/or planned to do to mitigate the effects of supply disruptions?

Please check all that apply

	Business Leaders Survey	Empire State Manufacturing Survey
	Percentage of Respondents	Percentage of Respondents
Build extra inventories	43.1	58.1
Make do without some inputs	35.8	11.0
Switch to existing backup supplier(s)	25.8	41.2
Find new suppliers	42.4	58.8
Source more goods from U.S. as opposed to foreign suppliers	7.3	11.8
Acquire upstream suppliers	0.7	2.2
Other	12.6	10.3

FRB New York Survey 2021 Return

QUESTION 7

Which of these, if any, have contributed to the disruptions in 2020 and thus far in 2021?

Please check all that apply

	Business Leaders Survey		Empire Manufactur	
	Thus Far in 2021	In 2020	Thus Far in 2021	In 2020
Shipping delays (at the ports)	29.1	36.4	34.6	42.7
Trucking delays	39.1	43.1	41.2	47.8
Rail delays	7.3	8.6	2.9	2.9
Air delays	11.3	11.9	10.3	17.7
Domestic suppliers shut down or have limited supplies	50.3	66.2	60.3	76.5
Foreign suppliers shut down or have limited supplies	30.5	46.4	30.9	44.9
Other	7.3	8.6	8.1	6.6

Summary Statistics

Table: Summary Statistics

	All	Vessel Only
Total Imports (\$ <i>Bill</i>)	10,540	4,250
Unique Importers (f)	171,400	92,300
Unique Exporters (x)	815,000	407,400
Number of Transactions (millions)	109	35.8
Number of U.S. Ports of Entry (p_i)		302
Number of Foreign Ports (p_e)		1,795
Number of Origin-Destination Port Pairs		43,080
Unique Vessels (v)		401,700

Return

Factors Affecting Shipping Times

Dep. Var.: Log Shipping Times	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Q2	-0.028***		0.321***	0.362***			
	(0.000)		(0.001)	(0.000)			
Q3	-0.029* ^{***}		0.490***	0.558***			
	(0.000)		(0.001)	(0.000)			
Q4	-0.020***		0.801***	0.894***			
	(0.000)		(0.001)	(0.000)			
Related-Party		0.014**					
		(0.000)					
Log Shipment Weight					0.008***		0.010^{*}
					(0.000)		(0.00
Log Shipping Charges						0.004***	-0.003
						(0.000)	(0.00
R^2	0.616	0.616	0.808	0.824	0.616	0.616	0.61
Route FE	Y	Y	Y	Y	Y	Y	Y
Observations (thousands)	35,480	35,480	1,017	2,844	35,480	35, 480	35,48

- Significant heterogeneity in shipping times across buyers and vessels
- Shipping times are slower in the winter, for related-party transactions, and for heavier shipments

Attributes of Importer-Product-Year Tuples

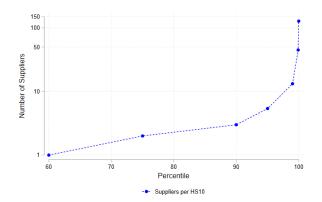
Table: Attributes of Importer-Product-Year Tuples

	All		Ves	sel Only
		Standard		Standard
	Mean	Deviation	Mean	Deviation
Suppliers per Importer-Product-Year	1.90	3.84	1.83	2.81
Suppliers per Importer-Product-Country-Year	1.39	1.56	1.39	1.39
Dep. Port-Entry Port Pairs per Importer-Product-Year			2.18	3.18
Dep. Port-Entry Port Pairs per Importer-Product-Country-Year			1.75	1.91
Vessels per Port Combination-Year			16.78	44.94

Source: LFTTD and authors' calculations. Table reports the mean and standard deviation across importer (f) by product (h) by year or importer (f) by product (h) by country (c) by year tuples during our 1992 to 2016 sample period.

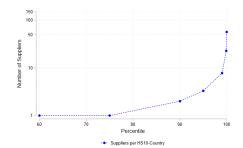
Back

Effect of Extreme Shipping Delays


- Compute for each year the log deviation from the average shipping time for each importer-exporter-HS10-country-port of entry combination.
- Compute the value of transactions whose shipping time is larger than the 99th percentile of deviations in the data ("extreme delays").
- Aggregate this variable at the importer-year level and scale it by the importer's total production costs.

Weather Delays Reduce Firm Performance

	(1)	(2)	(3)
		OLS	
Dependent Variable:	Sales	Profits	Employees
Frac Delayed	-1.982***	-0.869**	-0.371**
	(-0.387)	(-0.351)	(-0.173)
Importer FE	Y	Y	Y
Year FE	Y	Y	Y
Observations	142,000	142,000	142,000



Importers Have Multiple Suppliers

- Average importer has 1.9 suppliers per product-year
 - But firms sourcing from more than one supplier account for 90% of imports
- Could part of the reason be risk diversification?

Importers Have Several Suppliers

Effect of Risk on Import Demand: Extensive Margin

	(1)	(2)	(3)	(4)
Dep. Var.:	Number of	Number of	HHI over	HHI over
	Suppliers	Routes	Suppliers	Supplier-Routes
Std Time	0.053***	0.096***	-0.036***	-0.054***
	(-0.004)	(-0.006)	(-0.002)	(-0.002)
Importer FE	Y	Y	Y	Y
Product FE	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
Controls	Y	Y	Y	Y
Observations	328,000	328,000	328,000	328,000

Back

Effect of Risk on Import Demand: Intensive Margin

	(1)	(2)
Dep. Var.:	In(Value per	In(Value Imported
	Supplier-Year)	per Year)
Std Time	-0.151***	-0.098***
	(-0.006)	(-0.007)
Importer FE	Y	Y
Product FE	Y	Y
Year FE	Y	Y
Controls	Y	Y
Observations	328,000	328,000

Back

Effect of Risk on Intensive Margin with Inventories

	(1)	(2)	(3)	(4)
Dep. Var.:	Number of	Number of	HHI over	HHI over
	Suppliers	Routes	Suppliers	Supplier-Routes
Std Time	0.061***	0.114***	-0.039***	-0.059***
	(0.005)	(0.007)	(0.002)	(0.002)
Inventory-	-0.018	-0.036**	0.000	0.005
Sales Ratio	(0.013)	(0.015)	(0.003)	(0.003)
Importer FE	Y	Y	Y	Y
Product FE	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
Controls	Y	Y	Y	Y
Observations	237,000	237,000	237,000	237,000

Effect of Risk on Extensive Margin with Inventories

	(1)	(2)
Dep. Var.:	In(Value per	In(Value Imported
	Supplier-Year)	per Year)
Std Time	-0.157***	-0.095***
	(0.008)	(0.008)
Inventory-	-0.063	-0.082
Sales Ratio	(0.048)	(0.060)
Importer FE	Y	Y
Product FE	Y	Y
Year FE	Y	Y
Controls	Y	Y
Observations	237,000	237,000

Risk Diversification Using Air Shipments

- Firms could use air shipments as an alternative way to diversify risk
- Run regression:

$$Air_{fht} = \beta_1 \ln(\widehat{StdTime}_{fht-3,t-1}^{weather}) + \beta_2 X_{fht} + \gamma_h + \gamma_t + \epsilon_{fht}$$

- $Air_{fht} = dummy$ if air shipments > 0
- $StudTime_{fht-3,t-1}^{weather}$ = risk measure (based on vessel shipments)
- X_{fht} = same controls as before

Risk Diversification by Air

Dep. Var.:	Air Shipments
Std Time	0.009***
	(0.001)
Importer FE	Y
Product FE	Y
Year FE	Y
Controls	Y
Observations	328,000

• Increasing log risk by 1 std (1.009) increases the likelihood of using air by 1 log point

Back

Construction of Route Measure

Transaction records are noisy, so we iteratively assign transactions to a "trip", which begins with the loading of cargo at a foreign port and ends with unloading of cargo at U.S. port

- 1. Sort each vessel's transactions by foreign departure date and assign to a single trip: "Trip 1"
- 2. Compare foreign departure date to earliest U.S. arrival. If departure date occurs later, assign to "Trip 2"
 - 2.1 Repeat until no further sub-trips can be formed
- 3. Occasionally, arrival dates are misreported. If most recent arrival date is *after* earliest departure date of next trip, recombine two trips into one
- 4. Resulting dataset contains only non-overlapping departure and arrival dates for every vessel

Return

Shipping Time Risk and Import Demand with Additional Controls

	(1)	(2)	(3)	(4)	(5)	(6)
Dep. Var.:	Number of	Number of	HHI over	HHI over	Value per	Value Imported
	Suppliers	Routes	Suppliers	Supplier-Routes	Supplier-Year	per Year
Std Time	0.061***	0.114***	-0.039^{***}	-0.059^{***}	-0.157^{***}	-0.095^{***}
	(0.005)	(0.007)	(0.002)	(0.002)	(0.008)	(0.008)
Inventory-	-0.018	-0.036**	0.000	0.005	-0.063	-0.082
Sales Ratio	(0.013)	(0.015)	(0.003)	(0.003)	(0.048)	(0.060)
Importer FE	Y	Y	Y	Y	Y	Y
Product FE	Y	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y	Y
Controls	Y	Y	Y	Y	Y	Y
Observations	237,000	237,000	237,000	237,000	237,000	237,000

Table: Shipping Time Risk and Import Demand with Inventory-Sales Ratio Control