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Abstract

This paper studies the effects of automation technologies in economies with labor

market distortions where workers earn rents on their jobs. We show that automa-

tion is targeted at high-rent jobs. This creates rent dissipation, reducing wages for

displaced workers and aggregate TFP beyond their competitive effects. It also im-

plies that automation reduces wage dispersion among equal workers. Using data for

the US from 1980 to 2016, we provide empirical evidence consistent with the rent

dissipation mechanism. We also show how the general equilibrium effects of automa-

tion accounting for rent dissipation can be estimated. Our results suggest that the

baseline (“competitive”) effects of automation account for 44% of the increase in

between-group inequality in the US since 1980, while rent dissipation adds another

16% to this number. We estimate that automation brought a small reduction in TFP

and (utilitarian) welfare gains on net since 1980.
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1 Introduction

US labor markets have experienced epochal changes since 1980: not only did inequality

increase greatly, but the real wages of workers without a college degree declined or stag-

nated.1 While there is no consensus on the causes of this development, the automation of

tasks performed by low-education workers appears to have played an important role (see

Acemoglu and Restrepo, 2022).

This paper contributes to our understanding of these trends by studying the implica-

tions of automation for wages, productivity, and welfare in economies where labor markets

have noncompetitive elements. The distinguishing feature of our framework is that workers

receive rents for certain tasks—meaning they are paid above their outside option.2 Rents

reflect forces or barriers that prevent firms from bidding down wages and expanding em-

ployment. For example, rents can arise in jobs where workers cannot be monitored and

must be paid efficiency wages, jobs where wages are artificially bid up by unions or licenses,

or jobs where workers hold up firms. Rents contribute to within-group inequality, as iden-

tical workers are paid differently across tasks. Rents also distort firms’ hiring decisions,

reducing employment at high-rent jobs below what would be socially optimal.

Our first contribution is to show theoretically that the impacts of automation differ

from what we would see in a competitive labor market. This is because of a novel rent

dissipation mechanism: all else equal, high-rent tasks are more likely to be automated.

Rent dissipation has important implications for within-group wage dispersion, between-

group wage differences, productivity, and welfare:

1. Within-group: By reallocating workers away from high-rent jobs, automation reduces

wage dispersion within groups of equal workers.

2. Between-group: In competitive models, automation affects the relative wage paid to a

group of workers by reducing the share of tasks they perform—the displacement effect.

In our model, the rent dissipation mechanism negatively affects exposed groups’ wages

by pushing displaced workers to lower-rent jobs.

3. Productivity and welfare: In a competitive market, automation always increases TFP

by reducing the cost of producing automated tasks. In our model, automation has an

1See Goldin and Katz (2008), Acemoglu and Autor (2011), and Autor (2019) for overviews.
2We adopt a reduced-form modeling of rents via wedges for ease of exposition and to highlight that

similar insights apply, in general, across a range of noncompetitive models. In a companion paper, Acemoglu
and Restrepo (2023), we build a search and matching model that micro-founds this reduced-form model.
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additional negative effect on productivity, as it reallocates workers away from high-

rent jobs where they have a high marginal revenue product and towards low-rent

jobs where the marginal revenue product of labor is low. This reallocation worsens

allocative efficiency and makes the net impact of automation on TFP and welfare

ambiguous.

Our second contribution is to explore the implications of the new rent dissipation mech-

anism using reduced-form evidence for US workers. We rely on the measure of direct task

displacement from Acemoglu and Restrepo (2022), which summarizes the extent to which

detailed demographic groups of US workers were exposed to automation from 1980 to 2016.

We introduce two different strategies to estimate the importance of rent dissipation. First,

we provide evidence showing that the impact of automation on wages within detailed de-

mographic groups takes the pattern predicted by theory. In particular, we document that

worker groups more exposed to automation saw a reduction in within-group wage disper-

sion relative to others, with a more pronounced wage decline in wages at medium-to-high

quantiles of the within-group distribution. Second, using several proxies for rents, we show

that worker groups exposed to automation have been pushed away from high-rent jobs.

Our reduced-form evidence suggests that rent dissipation explains 20–25% of the reduction

in group relative wages attributed to automation.

Our third contribution is to quantitatively explore the aggregate implications of rent

dissipation for wage levels, TFP, and welfare. We extend the methodology from Acemoglu

and Restrepo (2022) to estimate the general equilibrium effects of automation when labor

markets are distorted. We provide explicit formulas for the change in wages, output, and

productivity in terms of the direct task displacement experienced by demographic groups,

the amount of rent dissipation, and the cost-saving gains from automation. Our formulas

show that, in general equilibrium, the effects of automation (and any other shock) on

one group of workers affects other groups via ripple effects. These ripple effects can be

summarized by two matrices: the propagation matrix encodes information on the strength

of direct and indirect competition for tasks between different groups of workers, and the rent

impact matrix encodes information on how task reallocation changes rents across groups.

We use our formulas to compute the general equilibrium effects of automation on wages

and productivity by combining our measures of direct task displacement across demographic

groups with estimates of the effects of automation on rents, estimates of the propagation

and rent impact matrices, and external estimates of cost savings from automation. Ac-

cording to our estimates, automation can account for 60% of the rise in between-group
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wage inequality since 1980. Of these, 44 percentage points are due to the baseline “com-

petitive”effects of automation.3 The remaining 16 percentage points are due to the rent

dissipation mechanism. Rent dissipation is particularly relevant for explaining the decreas-

ing real wages of US workers without a college degree.

Moreover, we estimate that the effect of automation via cost-saving gains was to in-

crease TFP by 3% between 1980 and 2016. However, the worsening allocative efficiency

brought by rent dissipation implied that on the net, automation reduced aggregate TFP

by 0.7% between 1980 and 2016. In terms of welfare, we estimate a reduction in aggregate

consumption of 1% over this period, as an increased share of the final good is used for

investment in automation equipment.

Related Literature: Our work contributes to the literature exploring the determinants

of the rise in between-group and within-group inequality. Among others, Bound and John-

son (1992), Katz and Murphy (1992) and Card and Lemieux (2001). Our work is closest

to papers exploring the effects of automation and lower equipment prices on inequality and

wages, including Autor et al.’s 2003 work on the effects of computers and automation tech-

nologies on routine tasks, and the literature on capital-skill complementarity, for example,

Krueger (1993), Autor et al. (1998), Krusell et al. (2000), and Burstein et al. (2019). Our

previous work (Acemoglu and Restrepo, 2022) contributed to this literature by quantifying

the effects of automation on the US wage structure but assumed competitive labor markets.

Relative to previous work, this paper emphasizes how the interplay between automation

and labor market distortions affects the wage structure. For example, we show that the

loss of high-rent jobs is important in explaining the lack of wage growth for non-college

men. We also explore the implications of automation for within-group wage inequality,

which, apart from recent work by Kogan et al. (2021), have received little attention. We

show that rent dissipation can reduce wage dispersion within groups of workers exposed

to automation and provide reduced form evidence in line with this prediction. This is

in contrast to a conventional view that emphasizes the fractal nature of the increase in

inequality (meaning that it increases at all levels of aggregation) and concludes from this

that a common set of forces drive the rise in between-group and within-group inequality.

Our theory suggests a more nuanced pattern, where automation can cause an increase in

wage inequality between groups and a decline within groups impacted by automation.

3The 44% number is lower than the general equilibrium estimate in Acemoglu and Restrepo (2022)
of 50%. This is because our framework separates the distinct role of rent dissipation from these baseline
competitive effects.
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Our work also contributes to the literature on worker rents—understood as wages that

exceed their outside option—and the implications of rents for wage dispersion and efficiency.

On the empirical front, Katz and Summers (1989) provide evidence for the existence of rents

at the industry level and argue that these wage differences cannot be explained away as

compensating differentials. On the theoretical front, this literature has proposed several

reasons why workers might earn rents, ranging from efficiency wage considerations (see

Shapiro and Stiglitz, 1984; Bulow and Summers, 1986), to the use of wages to recruit and

retain workers under imperfect information about workers (see Stiglitz, 1985; Lang, 1991).4

Our research recognizes the presence of worker rents and investigates their effects on

automation decisions and their impact on productivity and wages. Instead of emphasizing a

specific micro-foundation for rents, we build on the more recent literature on misallocation

(i.e., Hsieh and Klenow, 2009; Restuccia and Rogerson, 2008; Hsieh et al., 2019, and others)

and use wedges as a reduced-form way of modeling the distortionary effect of rents on labor

markets. Wedges capture the key economic elements common to various micro-foundations

for rents: they generate wage dispersion among equal workers, and they distort firm hiring

decisions, with high-rent high-wage jobs being rationed and understaffed in equilibrium.5

Finally, our work contributes to the growing literature that studies issues of aggregation

and how technology affects productivity and welfare in inefficient economies (see, for exam-

ple, Baqaee and Farhi, 2020; Basu et al., 2022; Dávila and Schaab, 2023). Our contribution

here is to provide formulas for the aggregate effects of automation on wages, output, TFP,

and welfare for economies with labor market distortions and use these formulas to estimate

the impacts of automation on the US economy since 1980.

Organization of the paper: Section 2 provides our theoretical framework. Section 3

presents reduced form evidence in support of the rent dissipation mechanism. Section 4

outlines our approach for estimating the general equilibrium effects of automation.

4Some of these papers also show that rents generate misallocation, with too little employment from an
efficiency point of view in high-rent jobs. Katz and Summers (1989) and Bulow and Summers (1986) argue
that worker rents justify using industrial and trade policies designed to increase employment in the most
distorted sectors or jobs. The flip side of these claims is that trade and globalization can reduce welfare
if they reduce employment at high-rent high-wage jobs. This insight goes back to work on immiserizing
growth in the presence of distortions by Bhagwati (1968) and relates to our finding that automation can
worsen allocative efficiency when it pushes workers away from high-rent jobs.

5In that way, our work differs from recent papers exploring how the threat of automation affects bar-
gaining between firms and workers (see Arnoud, 2019; Leduc and Liu, 2022).
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2 Theory: Automation and Labor Market Distortions

This section presents our conceptual framework and derives our theoretical results. We

first study a one-sector model and then extend our results to a multi-sector economy.6

2.1 Single-Sector Model

Production: A unique final good y is produced combining tasks yx. Tasks are indexed

by x, which summarizes their attributes, and belong to a measurable set T ⊂ Rk of mass

M .7 Tasks are aggregated with a constant elasticity of substitution (CES) λ ≥ 0, so that

y = (
1

M ∫x∈T
(M ⋅ yx)

λ−1
λ ⋅ dx)

λ
λ−1

.

There is a discrete set of labor types or groups indexed by g, where g ∈ G = {1,2, . . . ,G}.

Workers in a given group share the same productivity across tasks. In addition to labor,

tasks can also be produced using task-specific capital, equipment, or software, denoted by

kx. In particular, the total quantity of task x produced equals

yx = ψkx ⋅ kx +∑
g

ψgx ⋅ ℓgx.

Here, ℓgx is the amount of labor of type g allocated to task x, while kx is the amount

of task-specific capital used for this task. Here, ψgx and ψkx represent the productivity

of different factors in the production of task x. We set ψgx = 0 if a labor type g cannot

perform task x.

There is a fixed supply ℓg of workers of type g to be allocated across tasks, so that

∫
x∈T

ℓgx ⋅ dx ≤ ℓg.

On the other hand, we treat the capital used for task x, kx, as a pure intermediate good

and assume it is is produced within the same period using the final good at a constant unit

6The task model used here builds on the literature that studies the effects of technology and trade
using task models, including Zeira (1998), Acemoglu and Zilibotti (2001), Acemoglu and Autor (2011),
and Acemoglu and Restrepo (2018), as well as Grossman and Rossi-Hansberg’s (2008) model of offshoring.

7Throughout, we let “dx” denote the Lebesgue measure over Rk and ∫x∈T mx ⋅ dx denote the Lebesgue
integral of the function mx over T . The set T is assumed measurable.

5



cost 1/qx. This implies that total consumption is equal to net output

c = y − ∫
x∈T
(kx/qx) ⋅ dx.

For some tasks, we let qx = 0, which means there is no technology available to produce

them with capital. We will then consider the effects of advances in automation technologies,

which enable the production of some of these tasks with capital.

The Labor Market: Firms must pay workers from group g a task-specific wage

wgx = µgx ⋅wg

in task x, where wg is the base wage of the group and µgx is an exogenous wedge that might

vary across tasks and groups. We treat wedges µgx as exogenous attributes of tasks, jobs,

or the labor market that force firms to pay workers wages that are artificially high (relative

to what the same worker would earn at other tasks).8 We normalize wedges for all g ∈ G

so that µgx ≥ 1 and assume that there is a positive mass of tasks for which µgx = 1.9 This

normalization implies that base wages can be interpreted as the real wage that workers

from group g earn in jobs that pay no rents.

The labor market works as follows: given task-specific wages, firms decide how many

workers from each group to hire for task x. Workers from group g would prefer to be

employed at high-rent jobs. However, these jobs are rationed in equilibrium: firms hire

workers only until their marginal revenue product of labor equals the wage they must pay

(i.e., firms are on their labor demand curves). The labor market works by assigning workers

from group g randomly to tasks until firms’ labor demands are satisfied. The base wage

wg adjusts to ensure all workers are employed.

Appendix B provides two micro-foundations for worker rents, based on efficiency wage

and bilateral bargaining models. It shows that both forms of labor market distortions can

be mapped to the wedges in our model.

8Our notation is flexible enough to capture multiple dimensions of labor market rents. For example, a
subset of tasks could represent jobs at a given firm that must pay workers rents because they are unionized.
Or a subset of tasks could represent jobs at a given industry or region where wages are artificially high
because of licenses. Finally, a subset of tasks could share technological attributes that make monitoring
workers challenging and create informational rents.

9The assumption that µgx ≥ 1 for some tasks is without loss of generality. Because the supply of labor
is inelastic, only relative rents matter for outcomes.
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Equilibrium and Characterization: A market equilibrium is given by a vector of base

wages {wg}, output y, an allocation of tasks {Tg}g,Tk, task prices px, hiring plans ℓgx, and

capital production plans kx such that:10

E1 Tasks prices equal the minimum unit cost of producing the task:

px =min

⎧⎪⎪
⎨
⎪⎪⎩

1

qx ⋅ ψkx
,

⎧⎪⎪
⎨
⎪⎪⎩

wg ⋅ µgx
ψgx

⎫⎪⎪
⎬
⎪⎪⎭g

⎫⎪⎪
⎬
⎪⎪⎭

.

E2 Tasks are allocated in a cost-minimizing way. The set of tasks

Tg = {x ∶ px =
wg ⋅ µgx
ψgx

}

will be produced by workers of type g, and the set of tasks

Tk = {x ∶ px =
1

qx ⋅ ψkx
}

will be produced by capital.

E3 Quantities of labor and capital are given by

ℓgx = y ⋅
1

M
⋅ ψλ−1gx ⋅ (µgx ⋅wg)

−λ for x ∈ Tg,

kx = y ⋅
1

M
⋅ ψλ−1kx ⋅ q

λ
x for x ∈ Tk.

E4 The labor market clears for all g ∈ G, ∫x∈T ℓgx ⋅ dx = ℓg. Workers from group g are

assigned randomly to tasks in Tg, with ℓgx of them assigned to task x.

E5 The ideal-price index condition holds:

1 = (
1

M ∫x∈T
p1−λx ⋅ dx)

1
1−λ

.

The Appendix provides sufficient conditions for the existence of an equilibrium and

shows that, when these conditions are met, the equilibrium is unique. In the rest of the

paper, we assume there is a unique equilibrium and study its properties.

10 To ensure the uniqueness of the task allocation, we assume that when indifferent, tasks are allocated
to capital or to the group with the highest index g. This tie-breaking rule is unimportant for aggregates.
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Proposition 1 The equilibrium is inefficient. Relative to the efficient allocation, there is

too little employment in high-rent jobs.

The inefficiency arises because rents distort firms’ hiring decisions. Firms hire workers

until their marginal revenue product equals the task-specific wage, ψgx ⋅ px = µgx ⋅wg. As a

result, the marginal product of a worker at high-rent tasks exceeds the marginal product

of the same type of worker at other tasks. The economy would produce more output by

reallocating workers towards high-rent tasks, but worker rents prevent firms from expanding

employment in these jobs.11 This inefficiency will be important when interpreting the effects

of automation on TFP and welfare.

2.2 Automation and Rent Dissipation

This subsection provides a formal definition of advances in automation technology and

shows that these technologies tend to be adopted for high-rent tasks.

We model advances in automation technologies as an increase in qx from zero to a

positive level q′x > 0 for tasks in AT . We also let ATg = A
T ∩ Tg denote the set of tasks

assigned to group g that can now be automated. The sets ATg represents new opportunities

for automation affecting different groups of workers, and we take these sets and the new

productivity of the capital-producing sector q′x as exogenous. For example, advances in

robotics in the 1980s and 1990s made it possible to complete industrial tasks such as welding

or painting with robots, while before, these tasks had to be performed by human workers.

These advances increased qx from zero to a positive level for the subset of industrial tasks

that robots can perform.

Advances in automation technologies are then adopted at some (but not all) tasks in

ATg . Firms will endogenously automate tasks in which the cost of producing with the new

capital is below the cost of producing with labor. We define the set Ag as the set of tasks

11Not all sources of frictional wage dispersion or all forms of rents generate this type of misallocation.
This is only true if rents affect firms’ hiring decisions, which holds in the micro-foundations discussed
above, where firms are on their labor demand curve and cut back hiring in response to rents. This is not
the case in models of efficient rent sharing or in models of wage posting a-la Burdett and Mortensen (1998)
where more productive firms pay higher wages (and so there is frictional wage dispersion) but these play
no allocative role. An alternative notion of rents is that these arise in jobs where wages exceed workers’
marginal revenue product, for example, because of government subsidies. Government subsidies play the
opposite role of rents in our model. They reduce the cost of hiring workers below their competitive level
and generate too much employment in subsidized jobs.
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performed by workers in group g that can be now profitably automated:

Ag = {x ∈ A
T
g ∶

wg ⋅ µgx
ψgx

≥
1

q′x ⋅ ψkx
} .

The definition of Ag highlights that, all else equal, tasks in ATg with high rents are more

likely to be automated. This captures a key economic force in our model: tasks that are

more expensive to produce with labor are more profitable to automate, and hence higher

rents encourage the adoption of automation. As the following proposition shows, if advances

in automation technologies are not biased towards low-rent tasks, this force ensures that

automation will be adopted for tasks that pay high rents on average.

Proposition 2 (Rent Dissipation)

Let F̄g(µ∣B) denote the share of group g employment at tasks in B that pay a rent above µ.

If some tasks in ATg are not automated and:

i. F̄g(µ∣ATg ) ≥ F̄g(µ∣Tg) for µ ≥ 1;

ii. F̄g(µ∣{x ∈ ATg ∶ q
′
x = q̃, ψkx = ψ̃k,{ψgx = ψ̃g}g}) = F̄g(µ∣A

T ) for all q̃, ψ̃k,{ψ̃g}g and

µ ≥ 1,

adoption is targeted at high-rent tasks, in the sense that F̄g(µ∣Ag) > F̄g(µ∣Tg) for µ > 1.

Within a group, the distribution of rents in newly automated tasks first-order stochastically

dominates the distribution of rents at other tasks.

Condition (i) says that advances in automation are not biased towards low-rent tasks.

Condition (ii) says that, among the tasks that can now be automated, rents are orthogonal

to workers’ comparative advantage. These conditions are sufficient to ensure that automa-

tion opportunities do not occur predominantly in low-rent tasks, which would mechanically

lead to the automation of low-rent tasks. One can see the role of the endogenous adoption

margin by considering a case with F̄g(µ∣ATg ) = F̄g(µ∣Tg), so that advances in automation

technology are orthogonal to rents. The proposition shows that, even in this case, adoption

will be endogenously targeted at high-rent tasks.

Proposition 2 provides sufficient conditions for automation to displace workers from

high-rent tasks on average. We refer to this phenomenon as rent dissipation. In the next

sections, we assume that automation generates rent dissipation and work out the implica-

tions of this mechanism for within-group wage dispersion and aggregates. Our empirical

exercise will then provide reduced-form evidence in support of rent dissipation.
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2.3 Within-group Wage Differentials

Rents generate wage dispersion among equally productive workers. In particular, assume

that workers perform a single task on their jobs so that the distribution of wages within

group g is the same as the distribution of rents µgx across tasks in Tg. The following propo-

sition explains how the automation of tasks in Ag affects within-group wage dispersion.

The proposition provides a partial equilibrium characterization that abstracts from how

changes in base wages reallocate tasks in general equilibrium—a force that we study in the

next subsection.

Proposition 3 (Automation and Within-Group Wage Differentials)

Suppose that not all tasks in Tg can be automated and the conditions from Proposition 2

hold so that F̄g(µ∣Ag) > F̄g(µ∣Tg) for µ > 1. Let Mg ∈ (0,1) denote the mass of workers

from group g at jobs that pay no rents before the advancements in automation. Let lnwpg

denote the p-th quantile of the distribution of (log) wages in group g. Automating tasks in

Ag shifts lnwpg as follows:

� d lnwpg = d lnwg for p ∈ [0,Mg];

� d lnwpg < d lnwg for p ∈ (Mg,1);

� d lnwpg = d lnwg for p→ 1.

Figure 1 illustrates the U-shaped pattern of within-group wage changes. The lowest

wage workers in g are employed at non-rent paying jobs and earn the base wage wg. Au-

tomation impacts their wage through the general equilibrium change in the base wage.

Quantiles above Mg are populated by workers at high-rent jobs, who are more likely to see

their jobs automated. This manifests as a more pronounced decline in d lnwpg for p ∈ (Mg,1).

Finally, at the top of the group, there will be some workers at high-rent jobs that cannot

be automated. Automation only affects these top wage earners through the base wage.12

Proposition 3 contrasts the widely-held idea that technological progress increases in-

equality across every dimension, including within groups. Instead, our theory makes the

distinctive prediction that automation can generate rising wage compression within groups

of otherwise equal workers via the rent dissipation mechanism.

12The result that wages at the top quantile only change due to base wages is a consequence of the
assumption that not all tasks in Tg are automated and condition (ii) in Proposition 2. As we will see, there
is support in the data for this pattern.
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d lnwp
g

Within-group wage quantile p

Change of d lnwg
for percentiles

that earn no rents

Loss of high
rent jobs
in Ag

Figure 1: Predicted changes in within-group wage quantiles due to automation.

2.4 Group Wages and Productivity

We now characterize the effects of automation on group-level wages, TFP, and output. We

first provide formulas for group-level wages and then derive the first-order effects of an

automation shock on aggregates accounting for general equilibrium forces.

Given the unique equilibrium allocation, define the task share of worker group g as

Γg =
1

M ∫x∈Tg
ψλ−1gx ⋅ µ

−λ
gx ⋅ dx,

where the integrals are taken over the set of tasks where g (or k) is the lowest-cost producer.

Task shares summarize the economic value of tasks assigned in equilibrium to each group

of workers. Likewise, given the unique equilibrium allocation, define the group g rent as

µg =
1

ℓg
∫
x∈Tg

ℓgx ⋅ µgx ⋅ dx.

Task shares and group rents are endogenous equilibrium objects that summarize how

tasks are allocated and how this assignment shapes group-level wages.

Proposition 4 Given the equilibrium allocation ⟨{Tg}g,Tk⟩ and the resulting task shares

and group rents, base wages by group and average wages by group are

wg =(
y

ℓg
)

1
λ

⋅ Γ
1
λ
g ,(1)

w̄g =(
y

ℓg
)

1
λ

⋅ Γ
1
λ
g ⋅ µg.(2)
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Equation (1) shows that base wages depend on output per worker and task shares. A

higher task share for group g implies that this group contributes more to output, translating

into a higher base wage. Equation (2) shows that group g average wages—denoted by w̄g—

also depend on the rents it earns across tasks. The Appendix shows that other aggregates,

such as GDP, consumption, and investment, can also be computed in terms of task shares

and group rents.

Consider an exogenous advance in automation technologies taking place at a small set

AT (formally of measure ϵ for ϵ small) with ATg in the interior of Tg. Suppose that these

advances lead to the automation of tasks in Ag across different groups. Following Acemoglu

and Restrepo (2022), define the direct task displacement generated by these advances as

d lnΓdg =
∫x∈Ag

ℓgx ⋅ dx

∫x∈Tg ℓgx ⋅ dx
.

This measures the reduction in group g’s task share resulting from the automation of tasks

in Ag. Likewise, denote the average cost-saving gains at automated tasks from group g by

πg =
∫x∈Ag

ℓgx ⋅ µgx ⋅ πgx ⋅ dx

∫x∈Ag
ℓgx ⋅ µgx ⋅ dx

> 0,

where πgx > 0 is the percent cost reduction of automating task x.13 This is positive by

definition, or these tasks would not be automated. Finally, let

µAg =
∫x∈Ag

ℓgx ⋅ µgx ⋅ dx

∫x∈Ag
ℓgx ⋅ dx

denote the average rent in automated tasks Ag for group g.

The objects ⟨{d lnΓg}g,{πg}g,{{µAg}g}⟩ can be computed from the initial allocation of

workers to tasks and contain all the relevant information about the underlying advances in

automation that is needed to compute their effects on aggregates.

In response to the direct task displacement generated by advances in automation across

groups, we will have an endogenous reassignment of tasks across workers. We refer to

the reassignment as ripple effects, since they propagate the effects of automation to other

13Formally, this can be computed as

πgx = 1

λ − 1
⎡⎢⎢⎢⎢⎣
(q
′

x ⋅ ψkx ⋅wg ⋅ µgx

ψgx
)
λ−1

− 1
⎤⎥⎥⎥⎥⎦
≈ ln(wg ⋅ µgx

ψgx
) − ln( 1

q′x ⋅ ψkx
) ≥ 0.
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groups of workers. Figure 2 illustrates this reallocation. The left panel provides an example

of a task space and an equilibrium allocation of tasks to g, g′, and capital. The right

panel shows that, following the displacement of workers of group g from Ag, there is an

endogenous reassignment of tasks. This reassignment determines whether the incidence of

the displacement effects from automation falls on group g or is shared by group g′.

Figure 2: The Task Allocation and the Effects of Automation. The left panel
provides an example of a task space and an equilibrium allocation of tasks to g, g′, and
capital. The right panel illustrates the direct task displacement effect and ripple effects.

We capture the impact of ripple effects on task shares and rents using two matrices.

The first is the propagation matrix (as in Acemoglu and Restrepo, 2022), which summarizes

how the direct task displacement experienced by a group propagates to others:

Θ = (I − 1

λ

∂ lnΓ

∂ lnw
)

−1
.

The entry θgg′ in this matrix is non-negative and captures the extent to which shocks that

reduce group g′ base wages also reduce group g wages via the ripple effects.14 The second

14As discussed in Acemoglu and Restrepo (2022), the propagation matrix plays a similar role to a
Leontief inverse: it accumulates both direct and indirect ripples resulting from subsequent rounds of
reallocation. Acemoglu and Restrepo (2022) show that this Leontief inverse is always well defined and
has all its eigenvalues in [0,1). This means that ripple effects will play an equalizing role and dampen
the direct effects of automation. The propagation matrix also captures the fact that, even though worker
groups are perfect substitutes at the task level, they will not be perfect substitutes on the aggregate. The
entries of the propagation matrix are also informative of how substitutable groups are and relate this to
how much groups compete for tasks, both directly and indirectly.

13



is the rent impact matrix, which captures how task reallocation impact group rents:

M= (
∂ lnµ

∂ lnw
) × (I − 1

λ

∂ lnΓ

∂ lnw
)

−1
.

This matrix is similar to the propagation matrix, but its entries can now be negative and

account for whether the competition between group g′ and g takes place at tasks where

g workers earn above-average rents (in which case the entry is positive) or below-average

rents (in which case it is negative).

In these definitions ∂ lnΓ
∂ lnw is aG×G Jacobian with entry g, g′ given by

d lnΓg

d lnwg′
> 0. Likewise,

∂ lnµ
∂ lnw is a G×G Jacobian with entry g, g′ given by

d lnµg
d lnwg′

. These partial derivatives capture

the change in task allocations and the resulting change in average rents and task shares

following an increase in wg′ holding all other wages constant.

The following proposition provides formulas for the change in all economic aggregates

in terms of the direct effects of automation (summarized by ⟨{d lnΓg}g,{πg}g,{{µAg}g}⟩),

elasticities, the propagation and rent impact matrices, and initial shares. In our formulas,

we let stack(xj) denote the column vector (x1, x2, . . . , xG). This proposition and its exten-

sion to a multi-sector economy in the next subsection provide the basis for our empirical

analysis of the US data.

Proposition 5 Consider an exogenous advance in automation technologies in a small set

AT with direct effects ⟨{d lnΓg}g,{πg}g,{{µAg}g}⟩. These advances change wages by

d lnwg =Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj)(3)

d lnµg =Mg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) − (

µAg

µg
− 1) ⋅ d lnΓdg(4)

d ln w̄g =(Θg +Mg) ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) − (

µAg

µg
− 1) ⋅ d lnΓdg,(5)

where the change in output (and wage levels) is pinned down by the dual Solow formula

∑
g

sg ⋅ d ln w̄g = d ln tfp.(6)

Here, sg = w̄g ⋅ ℓg/y is the share of g in GDP and d ln tfp is the change in aggregate TFP

d ln tfp = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg +∑

g

sg ⋅ d lnµg.(7)

14



Equations (3), (4), and (5) characterize the response of wages to advances in automation.

Wage changes are given in terms of the output d ln y, which is pinned down by equations

(6) and (7). These equations show that average wage changes equal the change in TFP

and provide a formula for computing the effects of automation on TFP. In our model,

d ln tfp = (1− sk) ⋅d ln c, which implies that changes in TFP are also informative of changes

in aggregate consumption and utilitarian social welfare.15

To explain the formulas, let us first consider an economy without ripple effects, where

worker groups can produce disjoint sets of tasks, and capital produces all tasks for which

qx > 0.16 In this economy, the propagation matrix is the identity, and the rent impact

matrix is zero. Equation (5) for average wage changes for group g simplifies to

d ln w̄g =
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
effects in competitive labor market

−(
µAg

µg
− 1) ⋅ d lnΓdg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rent dissipation

.(8)

Equation (8) shows that group g average wages depend on three effects. The first two

already exist in competitive models, such as Acemoglu and Restrepo (2022): a positive

productivity effect—as output expands, all wages increase—and a negative displacement

effect—the decline in group g task share following the automation of tasks in Ag. The

third effect is new and captures the negative contribution of rent dissipation to group g

average wages. When µAg > µg, automation pushes workers away from high-rent tasks

and towards tasks that pay lower rents. This shift in the composition of tasks available to

workers from a given group reduces their average wage.

Turning to the general case with ripples, equation (5) in the Proposition shows similar

forces at play. The difference is that now group g wages also depend on whether other

groups that compete against it for high-rent tasks are being displaced by automation. In

particular, the direct task displacement experienced by other groups affects group g base

wage via the propagation matrix and its rents via the rent impact matrix.

One important difference between the displacement effect and the new rent dissipation

mechanism is in their propagation. Once a group is displaced from their tasks, their

relative base wage declines, and firms substitute for them in marginal tasks, propagating

15We define changes in TFP by the usual Solow residual d ln tfp = d ln y − sk ⋅ d lnk. As equation (6)
shows, changes in the Solow residual continue to be informative of changes in households’ income and
welfare despite the presence of distortions in the labor market (see also Basu et al., 2022).

16Formally, this holds when workers produce non-overlapping sets of tasks (i.e., if ψgx > 0, then ψg′x = 0
for all other g′) and ψkx exceeds a threshold ψ

k
. This corresponds to Assumption 1 in Acemoglu and

Restrepo (2022).
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the incidence of task displacement to other groups. Instead, groups bear the full incidence

of rent dissipation. This is because rent dissipation works by shifting the composition of

tasks assigned to a group toward low-rent tasks without altering its base wage or triggering

further reassignments of tasks across groups. One implication of this result is that rent

dissipation can have sizable impacts on inequality that are not dampened by ripple effects.

Let’s now turn to the implications of automation for productivity and welfare. In the

absence of ripples, equation (7) simplifies to

d ln tfp = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Direct technological gains a-la Hulten

− ∑
g

sg ⋅ (
µAg

µg
− 1) ⋅ d lnΓdg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Changes in allocative efficiency

.(9)

This decomposition for changes in TFP builds on the work of Baqaee and Farhi (2020).

The first term represents the direct technological benefits of automation, and it is always

positive. This term has a logic similar to Hulten’s theorem: reducing the cost of producing

automated tasks increases aggregate TFP by (i) the share of these tasks in output (i.e.,

their Domar weights) and (ii) the cost-saving gains πg > 0. The second term reflects changes

in allocative efficiency induced by automation. This term captures how changes in the al-

location of labor affect output. In a competitive labor market, this term is zero because the

allocation of labor across tasks maximizes output (an implication of the envelope theorem).

However, this is not true more generally when there are labor market distortions.

The important new result in equation (9) is that the rent dissipation effects of automa-

tion worsen allocative efficiency and reduce aggregate TFP. As a result, the cost-saving

gains from automation overstate the true contribution of these technological advances to

TFP. The intuition for this result is as follows. Suppose that µAg > µg so that automation

is targeted at high-rent jobs. The automation of these tasks generates two effects. On

the one hand, it reduces the cost of producing these tasks by πg, which raises aggregate

TFP. On the other hand, it reallocates workers away from high-wage tasks where they also

had a high marginal revenue product to other tasks where their marginal revenue product

is lower. The reallocation of workers towards low marginal revenue product tasks has a

first-order negative impact on output and reduces TFP.

To illustrate this point, consider an example with a single type of worker who can per-

form two tasks: high-rent tasks (“welding”) and no-rent tasks (“delivery driver”). Suppose

welding jobs pay a rent of 20% (µwelding = 1.2) above delivery drivers (µdelivery = 1) and let

w be the base wage of the group. Because firms are on their labor demand curve, they

16



initially hire welders up to the point at which their marginal revenue product at welding

exceeds the marginal revenue product of a delivery driver by 20%. From an efficiency

point of view, we had too many delivery drivers and not enough welders. Imagine now

that advances in robotics allow firms to automate some welding jobs at a cost of κ per

robotic welding system, and to simplify the calculations, assume that all displaced workers

become delivery drivers. The automation of a welding job generates positive cost savings

of π = µwelding ⋅w−κ > 0 per job. However, the marginal revenue product of welders who are

now pushed to become delivery drivers falls by 20%, reducing output per worker and sur-

plus. The change in surplus from automating a welding job is, therefore, π −0.2 ⋅w = w−κ,

which is below π.

The example highlights several important aspects of the economics behind the allocative

efficiency term in equation (9):

1. The result depends on the fact that firms are on their labor demand curve, so they

under-hired welders to begin with. As discussed in the introduction, this requires

rents to distort firms’ hiring decisions.

2. The worsening allocative efficiency due to rent dissipation can dominate cost savings

and reduce TFP on the net. In the example, this is true when µwelding ⋅w > κ > w. In

this case, firms will still automate welding jobs since π = µwelding ⋅w − κ > 0.

3. There is a divergence between private and social incentives to automate. In the

example, a firm automates welding jobs if π = µwelding ⋅ w − κ > 0. Instead, from a

social point of view, automation decisions should be based on a comparison between

the opportunity cost of welders vs. that of the robotic welding system, w − κ. The

allocative efficiency term in the TFP equation (9) can be seen as adjusting for the

divergence between private cost savings internalized by firms and the difference in

opportunity cost between welders and the robotic system.17

Turning to the general case with ripples, the expression for TFP changes in equation (7)

17This divergence is also helpful for understanding why a common counterargument to the logic in equa-
tion (7) is incorrect. The counterargument goes as follows: “rents constrain the production of welding,
making the quantity of welding a bottleneck for productivity. An automated welding system that circum-
vents rents should therefore bring even larger productivity gains; we do not really care if the much-needed
welding is done by machines or humans so long as we do more of it.” This argument is incorrect because
it ignores opportunity costs. We do care if the extra welding is done by machines or humans since they
have different opportunity costs. The opportunity cost of the machine is the extra consumption we gave
up to produce it (κ in the example). The opportunity cost of the welder is their marginal revenue product
working as a delivery driver (w in the example). If the opportunity cost of the worker is lower than the
cost of the machine, we want workers, not machines, to do the welding.
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shows that allocative efficiency changes due to rent dissipation or because ripples reallocate

workers away from high-rent tasks. This is summarized by the term ∑g sg ⋅ d lnµg, where

d lnµg gives the change in group rents coming from rent dissipation or task reallocation.

2.5 Multi-Sector Economy

We conclude the theory by extending Proposition 5 to a multi-sector economy. This exercise

clarifies how automation in one sector generates indirect effects not just via the ripple effects

but also by changing sectoral prices. This can also affect rents if rents vary across sectors

(as in Katz and Summers, 1989). This extension also guides our measurement of the direct

task displacement experienced by workers, which varies significantly across industries.

The setup follows our one-sector model, except that there are multiple sectors indexed

by i with production functions

yi = (
1

Mi
∫
x∈Ti
(Mi ⋅ yx)

λ−1
λ ⋅ dx)

λ
λ−1

.

The sets of tasks in each sector Ti are non-overlapping. The production of task x is the same

as before. The output from these sectors is combined into a final good that can be used

for consumption or to build machinery and equipment. We denote this final good by y so

that the resource constraint of the economy is again y = c+k, where k = ∑i ∫x∈Ti(kx/qx) ⋅dx.

The transformation of sectoral output into the final good is described by a CES production

function with elasticity of substitution η ≥ 0. We denote sectoral prices by pi and normalize

the price of the final good to 1.

The labor market is similar to our one-sector model, with the difference that each worker

group is now allocated to tasks across multiple sectors. In particular, an equilibrium is now

given by an industry-specific allocation of tasks {Tgi}i,g,{Tik}i to workers and capital.

Given this allocation, define group g task share (Γg) and industry i task share (Γgi) as

Γg =∑
i

syi ⋅ p
λ−1
i ⋅ Γgi, Γgi =

1

Mi
∫
x∈Tgi

ψλ−1gx ⋅ µ
−λ
gx ⋅ dx,

where syi denotes the share of sector i in value added. Likewise, define group g rents (µg)

and industry i rents (µgi) by

µg =
1

ℓg
∑
i

ℓgi ⋅ µgi, µgi =
1

ℓgi
∫
x∈Tgi

ℓgx ⋅ µgx ⋅ dx,
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where ℓgi is group employment in industry i.

Proposition A2 in the Appendix shows that, with these definitions in place, group base

and average wages are given by equations (1) and (2).

As before, we introduce several objects that summarize the effects of an exogenous

advance in automation in a small set of tasks AT across groups of workers and industries.

Denote by Agi the set of automated tasks in industry i performed by g:

Agi = {x ∈ A
T ∩ Tgi ∶

wg ⋅ µgx
ψgx

≥
1

q′x ⋅ ψkx
}

Denote the direct task displacement in industry i experienced by group g by

d lnΓdgi =
∫x∈Agi

ℓgx ⋅ dx

∫x∈Tgi ℓgx ⋅ dx
,

and the direct task displacement experienced by group g across all industries by

d lnΓdg = ∑
i

ℓgi
ℓg
⋅ d lnΓdgi.

Denote the cost-saving gains from automating tasks from group g in industry i by

πgi =
∫x∈Agi

ℓgx ⋅ µgx ⋅ πgx ⋅ dx

∫x∈Agi
ℓgx ⋅ µgx ⋅ dx

≥ 0.

Finally, denote the average rent in automated tasks Agi for group g in industry i by

µAgi
=
∫x∈Agi

ℓgx ⋅ µgx ⋅ dx

∫x∈Agi
ℓgx ⋅ dx

,

and the average rent in automated tasks for group g averaged across all industries by

µAg = ∑
i

ℓgi
ℓg
⋅ µAgi.

Proposition 6 Consider an exogenous advance in automation technologies in a small set

AT with direct effects ⟨{d lnΓgi}g,i,{πgi}g,i,{{µAgi
}g,i}⟩ across groups and industries. This
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advance changes wages by

d lnwg =Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓij
ℓj
⋅ d ln ζi)(10)

d lnµg =Mg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓij
ℓj
⋅ d ln ζi)(11)

− (
µAg

µg
− 1) ⋅ d lnΓdg +∑

g

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ d ln ζi

d ln w̄g =(Θg +Mg) ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓij
ℓj
⋅ d ln ζi)(12)

− (
µAg

µg
− 1) ⋅ d lnΓdg +∑

g

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ d ln ζi.

The sectoral shifters satisfy d ln ζi = (λ−η)⋅(∑g sgi ⋅ d lnwg −∑g sgi ⋅
µAgi

µgi
⋅ d lnΓdgi ⋅ πgi), where

sgi is the share of labor g in industry i value added. Average wage changes are then pinned

down by the dual Solow formula

∑
g

sg ⋅ d ln w̄g = d ln tfp,(13)

and the change in aggregate TFP is given by

d ln tfp = ∑
i

syi ⋅ ∑
g

sgi ⋅
µAgi
µgi
⋅ d lnΓdgi ⋅ πgi +∑

g

sg ⋅ d lnµg.(14)

Relative to Proposition 5, the extended formulas capture the possibility that automation

can also affect group wages and rents by shifting the sectoral composition of the economy.

To illustrate this point, consider again an economy with no ripple effects. Equation (5)

shows that average wage changes for group g are given by

d ln w̄g =
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdg +

1

λ
⋅ ∑
i

ℓig
ℓg
⋅ d ln ζi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effects in competitive labor market

(15)

− (
µAg

µg
− 1) ⋅ d lnΓdg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rent dissipation

due to automation

+ ∑
i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ d ln ζi.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rent changes due to

sectoral shifts
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The sectoral shifts induced by automation and captured by the shifters d ln ζi’s affect wages

via two channels: by changing the demand for labor (the third term in (15)) and by

reallocating workers across sectors with different rent levels (the last term).18

Proposition 6 provides formulas for the effects of advances in automation on wages,

sectoral prices, output, and welfare in terms of the direct effects summarizing the shock

⟨{d lnΓgi}g,i,{πgi}g,i,{{µAgi
}g,i}⟩, elasticities, the propagation and rent impact matrices,

and initial shares. These formulas form the basis for our quantitative analysis in Section 4.

3 Reduced-Form Evidence

This section presents reduced-form evidence on the impact of automation on US worker

groups between 1980 and 2016. Our analysis examines various outcomes, including average

group wages, wage dispersion within groups, and rents, measured using various proxies.

We build on the empirical work in Acemoglu and Restrepo (2022) and draw on their data

sources.19 We conduct our analysis for 500 detailed demographic groups in the US, defined

by education (5 categories), gender (2 categories), age (5 categories), race or ethnicity

(5 categories), and immigrant status (2 categories). For each of these groups, we obtain

average real hourly wages in 1980 and 2016 from the Census and the American Community

Survey. In addition, for each group we compute the p-th percentile of real (log) hourly

wages d lnwpg for p = 5,10, . . . ,95,99 both in 1980 and in 2016 among employed workers.

We first focus on the effects of automation on groups directly exposed to it, disregarding

ripple and general equilibrium effects, which we explore in Section 4. Equation (15) shows

that with no ripples the outcomes of group g depend on the direct task displacement it

experiences. Motivated by this equation, we estimate specifications of the form

Change in group g outcome 1980–2016 = β ⋅ task displacementdg +Xg ⋅ γ + ug,(16)

where task displacementdg is a measure of the direct task displacement experienced by group

g between 1980 and 2016 (the empirical analog of d lnΓdg in the theory) and Xg is a vector of

group-level covariates. We interpret β as the reduced-form relationship between the direct

18In the multi-sector economy, the propagation and rent impact matrices capture the change in task
allocations and the resulting change in average rents and task shares following an increase in wg′ holding
sectoral prices constant. The new terms in equation (15) capture the role of changing sectoral prices.

19Because our data sources are the same as in Acemoglu and Restrepo (2022), we refer the reader to
that paper for more details on data sources and construction.
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task displacement from automation experienced by a group and its outcomes.20

3.1 Measuring direct task displacement

Our first objective is measuring the direct task displacement created by automation on

US demographic groups between 1980 and 2016. We follow the strategy in Acemoglu and

Restrepo (2022), which relies on the following assumption:

Assumption 1 (Measurement Assumption) During 1980–2016, only routine tasks were

automated and, within an industry, different groups of workers were displaced by automa-

tion from routine tasks at a common rate.

Appendix C shows that under this assumption, the direct task displacement experienced

by a group can be estimated as

tddg = ∑
i

ℓgi
ℓg
⋅RCAroutine

gi ⋅
−d ln sdℓi

1 + sℓi ⋅ (λ − 1) ⋅ πi
⋅
µgi
µAgi

.(17)

This formula expresses the direct task displacement experienced by a group as a sum across

industries of three terms:

� ℓgi/ℓg represents group g’s exposure to industry i, which captures how important this

industry is for the group’s employment.

� RCAroutine
gi is a measure of the revealed comparative advantage of group g at routine

jobs in industry i. This term apportions the incidence of automation in the industry

across groups of workers based on who performs more routine tasks. This apportion-

ing rule follows from Assumption 1, which we see as a reasonable description of the

capabilities of automation technologies during this period.

� −d ln sdℓi is a summary measure of automation at the industry level. It is the percent

reduction of the labor share in industry i due to advances in automation from 1980

to 2016, which in our model is tightly linked to the task displacement generated

by automation in the industry. The labor share decline is re-scaled by two terms:

1+sℓi ⋅(λ−1)⋅πi, which captures the effects of automation on the industry labor share

working through substitution across tasks (and not due to the direct displacement

20We provide weighted OLS estimates, with groups weighted by their 1980 share in the US workforce.
We also report robust standard errors that account for heteroskedasticity in ug.
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of workers at automated tasks); and the term µAgi
/µgi, which gives the average rent

dissipation in industry i and accounts for the fact that part of the decline in the labor

share is due to rent dissipation.

In our reduced-form analysis we construct our measure of direct task displacement by

setting λ = 0.5, µAgi
/µgi = 1.5, and πi = 30% for all industries. These choices are explained

in our quantitative analysis in the next section.

We measure direct task displacement using data for 49 industries that we can trace

consistently in the US Census and the BEA Integrated Industry-Level Production Accounts.

We obtain employment shares by industry ℓgi/ℓg from the 1980 US Census. We also obtain

RCAroutine
gi from the 1980 Census and after defining routine jobs as the top 33% occupations

with the highest routine content according to ONET. Finally, following Acemoglu and

Restrepo (2022), we estimate d ln sdℓi from a cross-industry regression of percent changes in

the labor share by industry (from the BEA, from 1987 to 2016 and re-scaled to a 36-year

change) against three proxies for automation: the adjusted penetration of industrial robots

(from Acemoglu and Restrepo, 2020), the increase in the share of specialized software

services in value added, and the increase in the share of dedicated machinery in value

added (from BLS Total Multifactor Productivity tables).

The left panel of Figure 3 summarizes the industry-level data. The black bars show the

observed reduction in industry’s labor shares in percent terms. The orange bars show the

component attributed to our three proxies of automation, which jointly explain 50% of the

cross-industry changes in labor shares since 1987.21

The right panel of Figure 3 provides our measure of direct task displacement from

automation for all US demographic groups, sorted against their baseline hourly wages in

1980 in the horizontal axis. Groups with post-college degrees experienced almost no direct

task displacement between 1980–2016. Direct task displacement concentrates on groups of

workers at the middle and lower middle of the wage distribution, where some groups are

estimated to have lost 15% to 20% of the tasks they performed in 1980 to automation.22

21As shown in Acemoglu and Restrepo (2022), our proxies for automation continue to explain near 50%
of the cross-industry variation after controlling for other determinants of the labor share decline, including
declining unionization rates, estimates of changes in markups, and changes in industry concentration.

22The measure of direct task displacement in (17) is the same as the one in Acemoglu and Restrepo
(2022), except for the term µAgi/µgi, since our previous work did not consider the role of rents. There are
also minor differences in weights that are explained in Appendix C.
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Figure 3: Direct task displacement due to automation across industries and
groups. the left panel plots the observed labor share decline from 1987 to 2016 in percent
terms across US industries. The orange bars denote the component attributed to our three
proxies of automation. The right panel plots our measure of direct task displacement from
equation (17) across 500 detailed demographic groups of US workers between 1980–2016.

3.2 Automation and average group wages

As a starting point, we inspect the relationship between the change in average group wages

and the direct task displacement experienced by US demographic groups. We estimate

equation (16) using the change in the log of average group wages between 1980 and 2016

as the outcome variable. This specification essentially reproduces the analysis in Acemoglu

and Restrepo (2022) and is helpful for bench-marking our new reduced-form findings.

The left panel in Figure 4 plots the bivariate relation between change in average group

wages and direct task displacement. We see a sizable and robust negative relationship. A

10 percentage point increase in direct task displacement is associated with a 24% reduction

in group relative wages. In a reduced-form sense, our measure of task displacement explains

66% of the variation in wages between demographic groups in the US since 1980.

The right panel in Figure 4 plots the relation between change in average group wages
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β̂ = −2.43
(s.e= 0.14)

β̂ = −1.98
(s.e= 0.31)

Figure 4: Reduced-form relationship between average group-level wage
changes and task displacement. The left panel plots the bivariate relationship be-
tween change in group average wages and task displacement. The right panel partials out
covariates, including gender and education dummies, sectoral demand and rent shifters,
and the manufacturing employment share of groups in 1980.

and direct task displacement controlling for covariates. We control for gender and education

dummies, which account for other forms of skill biased technical change favoring college

educated workers. Motivated by equation (15), we control for two measures that summarize

the influence of changes in the sectoral composition of the economy (presumably due to

forces other than automation) on the wage structure. These include a measure of groups’

exposure to expanding industries, constructed as

sectoral demand shiftersg = ∑
i

ℓgi
ℓg
⋅∆ln(pi ⋅ yi),

which proxies for the term ∑i(ℓgi/ℓg) ⋅ d ln ζi in (15), and a measure of groups’ change in

rents due to sectoral shifts, constructed as

sectoral rent shiftersg = ∑
i

ℓgi
ℓg
⋅ (
w̄gi
w̄g
− 1) ⋅∆ln(pi ⋅ yi),

where w̄gi/w̄g denotes the ratio between the average wage earned by the group in industry

i and the average group wage.23 This proxies for the term ∑i (
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ d ln ζi in (15).

23For the sectoral shifters, we measure ℓgi/ℓg as the share of hours worked in each industry by the group
in 1980, and the change in value added in the industry ∆ ln(pi ⋅ yi) using the BEA industry accounts for
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We also control for the employment share of each group in manufacturing in 1980, just to

show that we are not simply capturing common shocks hitting that sector.

We continue to estimate a negative relationship between group wages and direct task

displacement. The point estimate of β̂ = −1.98 implies that a 10 percentage point increase

in task displacement from automation is associated with a 20% reduction in groups’ relative

wages. In a reduced-form sense, our measure of direct task displacement now explains 53%

of the wage variation across US demographic groups since 1980.24

The evidence in Figure 4 supports the idea that automation reduces the (relative)

wages of directly exposed groups. This can be due to its displacement effect or the new

rent dissipation mechanism. We now provide evidence in support of a significant role for

rent dissipation. First, we show that automation creates a decline in wage dispersion within

exposed groups of workers, as predicted by Proposition 3. Second, we construct different

proxies for group rents and show that automation is associated with a decline in rents.

3.3 Automation and declining within-group wage dispersion

This section documents a novel reduced-form relationship between groups’ exposure to

automation and reductions in within-group wage dispersion. Motivated by Proposition 3,

we estimate a version of equation (16) where the outcome variable is the change in log

wages at the p-th percentile of the within-group wage distribution between 1980 and 2016,

∆d lnwpg , for a range of percentiles.25

Figure 5 reports the estimated change in log wages at the 5th,10th, . . . ,95th,99th per-

centiles of the within-group wage distribution associated with the direct task displacement

experienced by the group. To facilitate the interpretation, we report all estimates relative

to the change at the 30th percentile. The black line reports estimates from a specification

that controls for sectoral demand shifters. The remaining lines report estimates that con-

trol for sectoral rent shifters (orange line), gender and education dummies (blue line), and

groups’ exposure to manufacturing (pink line)

1987–2016. As with our measures of direct task displacement, this is then converted to a 36-year equivalent
change. For the sectoral rent shifter, wages are measured using the 1980 Census so that they reflect the
initial distribution of rents.

24Table A1 in Appendix C summarizes our empirical findings and provides additional specifications.
25This is equivalent to an unconditional group-quantile regression, as in Chetverikov et al. (2016). It is

important to clarify here that the estimates obtained with this approach are informative of where wage
reductions take place at the interior of an exposed group (i.e., is automation reducing within-group wage
dispersion). They are not indicative of where in the national wage distribution automation is displacing
workers (i.e., is automation reducing overall wage inequality).
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Figure 5: Reduced-form relationship between wage changes across per-
centiles of the within-group wage distribution and task displacement. The
figure plots estimates from a group quantile regression of changes in d lnwpg against task
displacement for percentiles p ranging from the 5th to the 99th relative to the 30th per-
centile. The lines provide estimates for different specifications. The confidence intervals
test for a difference in effects relative to the 30th percentile.

Our estimates show that groups directly exposed to automation saw a more pronounced

decline in wages among workers in the 70th to 95th percentile of the within-group wage

distribution. A 10 percentage point increase in direct task displacement is associated

with a 5% to 15% reduction in wages earned by workers in the 70th to 95th percentile

of the within-group distribution relative to the 30th percentile. Instead, we estimate less

pronounced declines at the bottom and very top of the within-group distribution.26

The results from Figure 5 support the idea that automation reduces within-group wage

dispersion via rent dissipation. Even though the pattern in the data is precisely what

our theory predicts, this is not what many would have expected. It is often assumed

that automation (and technological progress in general) primarily benefits the highest-paid

26The main concern here is that our results could be driven by unobserved heterogeneity within groups.
For example, one alternative explanation for the U-pattern is that low-wage groups are composed of
minimum wage workers at the bottom (whose wages cannot change by much) and more productive workers
at the top in mid-pay jobs that are more likely to be automated. To address this concern, we re-estimated
the quantile regression for groups with an average real wage above $13 in 1980 (i.e., all groups to the right
of the hump in Figure 5) and obtained similar findings, reported in Figure A1 in Appendix C.
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workers at the top of exposed groups. Our finding of the opposite pattern makes our

evidence for rent dissipation more telling.

3.4 Automation and rents

The rent dissipation mechanism implies that groups directly exposed to automation will

be pushed away from high-rent jobs and towards low-rent paying jobs. We now explore the

association between groups’ exposure to automation and different proxies for rents.

Our first proxy for rents is motivated by the group-quantile regressions in Figure 5.

The figure shows a more pronounced decline in wages starting at the 30th percentile of

the within-group wage distribution, and a more uniform decline below these percentiles.

The gray confidence bars in Figure 5 confirm this and show that the wage reductions at

the 30th percentile do not differ systematically from those below it or at the very top, but

are above the reductions estimated at the 50th to 95th percentiles.27 From the viewpoint

of our model, wage changes at the 30th percentile of the within-group distribution can be

interpreted as the effects of automation on groups’ base wage, while the more pronounced

decline at higher percentiles would be interpreted as the loss of high-rent jobs.

Motivated by this reasoning, we proxy the change in group rents by

∆ lnµg =∆ln w̄g −∆lnw30th
g .

This measure interprets rising wage compression around the 30th percentile of the within-

group wage distribution as evidence of rent dissipation.

Figure 6 provides estimates of equation (16) using this proxy for rents as dependent vari-

able. The left panel starts with the bivariate relationship and the right panel shows that

the same relationship applies when we control for gender and education dummies, sectoral

demand and rent shifters, and the share of employment of each group in manufacturing

in 1980. Both panels show a sizable and robust negative relationship between direct task

displacement and our proxy for rents, suggesting that automation is associated with rising

wage compression. According to this proxy, a 10 percentage point increase in task displace-

ment for a demographic group is associated with a 4% reduction in group rents. The point

estimate of β̂ = −0.4 in the right panel implies that automated jobs pay an average rent of

27Our estimates show a minor non-monotonic pattern at the bottom. Figure A1 shows that this is driven
by low-wage groups for whom minimum wages or other forms of wage floors might be binding. Excluding
groups with an average real wage below $13 dollars in 1980 (i.e., all groups to the left of the hump in Figure
5) leads to a flatter pattern below the 30th percentile.
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β̂ = −0.38
(s.e= 0.06)

β̂ = −0.40
(s.e= 0.11)

Figure 6: Reduced-form relationship between rents and task displacement.
The left panel plots the bivariate relationship between change in group rents and task
displacement. The right panel partials out covariates, including gender and education
dummies, sectoral demand and rent shifters, and the manufacturing employment share of
groups in 1980. Rents are proxied by the gap between mean wages and wages at the 30th
percentile of the within-group distribution, ∆ lnµg =∆ln w̄g −∆lnw30th

g .

40% above others, which point to a sizable rent dissipation due to automation.

Our second strategy for measuring the importance of rent dissipation uses proxies for

rents paid in 1980. Our theory predicts that group rents decline because automation shifts

the composition of employment away from high-rent paying jobs. We measure part of the

contribution of this reallocation away from rent-paying jobs to group wages by

∆ lnµreallocation
g = ∑

i,o

(
w̄gio
w̄g
− 1) ⋅∆ℓg,i,o,

where
w̄gio

w̄g
are estimates of the rents earned by group g at jobs in industry i and occupation

o in 1980 and ∆ℓg,i,o is the change in hours worked at industry i and occupation o by worker

group g between 1980 and 2016.28

28In our model,
w̄gio

w̄g
equals the average rent paid to group g in industry i and occupation o. More

generally, these baseline wage differences within detailed demographic groups could also reflect selection
of workers with unobserved skills into different jobs or compensating differentials. However, following a
substantial literature in this area (Katz and Summers, 1989; Stansbury and Summers, 2020), it is reasonable
to presume that these wage differences also reflect rents. For example, Katz and Summers (1989) show
that industries that paid above average wages see lower quit rates and have longer worker queues, which
is consistent with a rent interpretation. An alternative approach for future work, would use matched
employer-employee data to estimate firm-specific rents and explore if automation shifts workers away from
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Figure 7 provides estimates of equation (16) using ∆ lnµreallocation
g as dependent variable.

The left panel starts with the bivariate relationship and the right panel shows that the

same relationship applies when we control for gender and education dummies, sectoral

demand and rent shifters, and the share of employment of each group in manufacturing

in 1980. Both panels show a sizable and robust negative relationship between direct task

displacement and rents. A 10 percentage point increase in direct task displacement is

associated with a 4.1% reduction in rents. The point estimate of β̂ = −0.41 in the right

panel implies that automated jobs pay an average rent of 41% above others, which align

with the estimates obtained for our first proxy.29

β̂ = −0.5
(s.e= 0.07)

β̂ = −0.41
(s.e= 0.11)

Figure 7: Reduced-form relationship between rents and task displacement.
The left panel plots the bivariate relationship between change in group rents and task
displacement. The right panel partials out covariates, including gender and education
dummies, sectoral demand and rent shifters, and the manufacturing employment share of
groups in 1980. Rents are proxied by the change in employment at industry and occupations

that paid groups above-average wages in 1980, ∆ lnµreallocation
g = ∑i,o (

w̄gio

w̄g
− 1) ⋅∆ℓg,i,o.

An interesting pattern revealed by Figure 7 is that most worker groups have shifted

away from high pay industries and occupations over time, with the exception of workers

with a post-college degree. Our theory and evidence suggest that automation might be an

important driver of this phenomenon. Our measure of direct task displacement explains

high-rent paying firms.
29We obtained very similar results if we use a measure of average rents paid by industry and occupation

in 1980 across all groups instead of group-specific rents. This alleviates concern about measurement error
in

w̄gio

w̄g
for small cells. These results are reported in Table A1 in Appendix C.
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38% of the variation in the shift away from high-rent jobs across worker groups in the left

panel and 31% in the right panel.

Taking stock, our reduced form estimates suggest that a 10 pp increase in task displace-

ment due to automation is associated with a reduction in relative wages of 20% for groups

directly exposed. Of these, 4 pp are due to rent dissipation. Our rent proxies provide com-

plementary information. Our first proxy shows that automation compresses group wages

around its 30th percentile. The second proxy shows that this compression is driven by the

shift of exposed groups away from high-rent paying jobs. Taken together, the evidence in

this section supports the view that the reduction or stagnation in real wages experienced

by some groups of US workers since 1980 could be due to the loss of high-rent jobs brought

by automation. The next section quantifies these effects accounting for ripples and general

equilibrium forces.

4 General Equilibrium Effects of Automation: A Quantitative

Exploration

Proposition 6 provides formulas for the general equilibrium effects of automation on average

group wages, rents, output, TFP, and welfare. The formulas show that these effects can be

computed from:

(i) measures of direct task displacement experienced by all groups, both on aggregate

d lnΓdg and within industries d lnΓdgi;

(ii) measures of rent dissipation created by automation, summarized by µAg/µg;

(iii) measures of cost-saving gains from automation, πgi;

(iv) estimates of {λ, η}, the propagation matrix, Θ and the rent impact matrixM.

We think of the quantities in (i)–(iii) as describing the features of the “automation

shock” or “impulse” experienced by the US economy since 1980. The elasticities λ, η and

the matrices {Θ,M} then allow us to compute the effects of this shock on group wages.

This section uses our measures of direct task displacement introduced in equation (17)

and estimates of (ii)-(iv) to compute the general equilibrium effects of automation using

the formulas in Proposition 6. The formulas provide an approximation to the full non-

linear effects. When interpreting our findings, keep in mind that the approximation error

is O(ϵ2), where ϵ is the measure of the set of tasks experiencing advances in automation.
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4.1 Measuring Task Displacement

We continue to use equation (17) to measure direct task displacement, but we now explic-

itly confront the adjustment terms. For this purpose, we make a number of simplifying

assumptions. We assume that πgi = πg = πi = π across all industries and groups, and we

set π = 30%. This number corresponds to the average cost-savings from automation, and

we proxy it with the average cost-savings from the adoption of industrial robots in manu-

facturing (see Acemoglu and Restrepo, 2020). We also assume that µAgi
/µgi − 1 = ρ, where

we treat the common rents’ ratio ρ as a factor to be estimated. These simplifications are

imposed by data limitations but still allow us to explore several dimensions of the general

equilibrium effects of automation. Finally, we take λ = 0.5 from Humlum (2020).

Given these assumptions, task displacement can be measured as

d lnΓdg =td
d
g = ∑

i

ℓgi
ℓg
⋅RCAroutine

gi ⋅
−d ln sdℓi

1 + sℓi ⋅ (λ − 1) ⋅ π
⋅

1

1 + ρ
,

d lnΓdgi =td
d
gi = RCA

routine
gi ⋅

−d ln sdℓi
1 + sℓi ⋅ (λ − 1) ⋅ π

⋅
1

1 + ρ
.

4.2 Estimating the Propagation and Rent Impact Matrices

A key step in our quantitative analysis involves estimating the propagation and rent impact

matrices. We can write the equation for the change in baseline wages and rents in response

to shocks as:

∆ lnwg =
1

λ
⋅Θg ⋅ stack(d ln y − td

d
j + β ⋅Zj + uj)(18)

∆ lnµg = − ρ ⋅ td
d
g +

1

λ
⋅Mg ⋅ stack(d ln y − td

d
j + β ⋅Zj + uj) + β

µ ⋅Zµ
g + eg.(19)

Here, Zj denotes observable shocks affecting the demand for workers from group j directly,

and Zµ
j denotes any direct effects that these shocks might have on rents. For example,

Zj might stand for sectoral shifters and Zµ
j for sectoral rent shifters. In our preferred

specification, we let Zj include sectoral shifters, and gender and educational dummies.

Likewise, we let Zµ
j include sectoral rent shifters, and gender and educational dummies.

The error term ug captures unobserved labor demand shocks, and eg captures unobserved

forces affecting group g rents. In our estimation, d ln y takes the role of a constant.
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We base the estimation of Θ andM on the moment conditions:

tddj , Zj, Z
µ
j ⊥ ug, eg for all g, j.

In principle, one could use these moment conditions and various shocks to estimate

the matrices {Θ,M} non-parametrically. However, these matrices have a large number of

entries, and any such estimation would run the risk of overfitting the data.

To avoid these concerns, we adopt an explicit parameterization of the entries of these

matrices. Recall that Θ = (I − 1
λ
∂ lnΓ
∂ lnw
)
−1

and M = ( ∂ lnµ∂ lnw
) × (I − 1

λ
∂ lnΓ
∂ lnw
)
−1
. We impose the

following parametrization of the Jacobian matrices ∂ lnΓ
∂ lnw and ∂ lnµ

∂ lnw , which then provide a

parametric family for the propagation and rent impact matrices:30

� Common diagonal terms ∂ lnΓg/∂ lnwg = −θown and ∂ lnµg/∂ lnwg = −θ
µ
own.

� For task shares, off diagonal terms g ≠ j are parametrized as:

1

sj
⋅
∂ lnΓg
∂ lnwj

=θe ⋅Education and age proximityjg

+ θo ⋅
1

1 + (1/occupation distancejg − 1)
−κ

+ θi ⋅
1

1 + (1/industry distancejg − 1)
−κ

Here Education and age proximityjg takes a value of 1 if both groups have the same

age and educational level. This term captures the higher substitutability among

workers of similar age and education, as in Card and Lemieux (2001). The term

occupational distancejg is given by the dissimilarity between the vector of employment

shares for group j across occupations and the vector of employment shares for group g

across occupations in 1980. The term industry distancejg is given by the dissimilarity

between the vector of employment shares for group j across industries and the vector

of employment shares for group g across industries in 1980. These terms are computed

from the 1980 US Census.

Our parametrization assumes that groups employed in similar industries and occupa-

tions and groups of similar age and education will create stronger (first order) ripple

30We prefer to impose restrictions directly on the Jacobians, which capture first-order effects, rather than
the propagation and rent impact matrices, which include both first-order and higher-order ripple effects.
The advantage of this strategy is that first-order effects are more easily interpretable in terms of economic
fundamentals.
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effects on each other.

� For rents, off-diagonal terms g ≠ j are parametrized as functions of group similarity,

adjusting for whether groups overlap at high-wage occupations or industries:

1

sj
⋅
∂ lnµg
∂ lnwj

=θµo ⋅
occupation wage overlapjg

1 + (1/occupation distancejg − 1)
−κ

+ θµi ⋅
industry wage overlapjg

1 + (1/industry distancejg − 1)
−κ .

The new terms occupation wage overlapjg and industry wage overlapjg are computed

as the percent difference between a similarity measure of occupations (industries)

employing groups j and g in 1980 and a weighted similarity measure that weights

occupations (industries) by the wage paid to group g in that occupation relative to

group g’s average wage, also measured from the 1980 Census. Intuitively, these terms

adjust for the possibility that j may compete against g in occupations or industries

where g earns rents (as evidenced from above-average wages). When this is the case,

competition from j will push g away from high-rent jobs.

� In both cases, we fix the curvature parameter to κ = 2, though this choice does not

have a major impact on our results.

� We impose two restrictions motivated by the theory: the θ’s should be non-negative

and the rows of the Jacobian 1
λ
∂ lnΓ
∂ lnw must have a negative sum.

With these restrictions in place, we estimate {ρ, θown, θe, θo, θi, θ
µ
own, θ

µ
e , θ

µ
o , θ

µ
i , β, β

µ} in

equations (18) and (19) via GMM. Following our reduced-form empirical strategy in the

previous section, we take the 30th quantile of within-group wages to be the baseline wage

of that demographic group, d lnwg. This then enables us to interpret the gap between the

mean and the 30th quantile as a proxy for average group-level rents, d lnµg.

Our estimation produces the following results:

� We estimate a common rent dissipation coefficient ρ̂ = 0.5 (s.e.=0.15). This estimate

aligns with the reduced-form evidence from Section 3 but is slightly larger due to the

different set of covariates in equation (19).

� The estimated propagation matrix has a common diagonal of 1.4, and its off-diagonal

terms sum to 0.4 on average over a row. This implies that workers from a group

directly exposed to automation bear half the incidence of its displacement effects.
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This explains why the reduced-form models in Section 3 work well even though they

ignore ripple effects. But this also implies that those models are misspecified, since

the propagation matrix is not estimated to be diagonal.

� The estimated rent impact matrix has small terms, suggesting that ripples have a

small impact on groups’ rents.

4.3 General Equilibrium Effects of Automation on Wages and Rents

Figure 8 plots our estimates of the change in average wages for each of the 500 demographic

groups in our analysis, computed using equation (12) from proposition 6. The figures plot

wage changes from 1980–2016 due to automation against groups’ hourly wages in 1980.

Figure 8: Wage effects from automation. The figure plots estimates of the esti-
mated effects of automation on between-group wage changes. In all panels, these results
are plotted against groups’ baseline hourly wages in 1980.

For exposition purposes, we add different effects sequentially, starting from the produc-

tivity effect (1/λ) ⋅d ln y in Panel A. Using the formulas from Proposition 6 and an estimate

for π of 30%, we estimate an expansion in output (GDP) of 13% over 1980–2016 in response

to automation. By itself, this increase in output raises all wages by 26%.

Panel B adds sectoral shifts induced by automation and plots (1/λ) ⋅ d ln y + (1/λ) ⋅

∑i(ℓij/ℓj) ⋅d ln ζi. When computing the sectoral shifts, we take an elasticity of substitution

between sectors of η = 0.2 from Buera et al. (2015). This effect is estimated to be small

and does not appear as a major channel via which automation affects the wage structure.
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Panel C adds in the direct displacement effects from automation and plots (1/λ)⋅d ln y−

(1/λ) ⋅ d lnΓdg + (1/λ) ⋅ ∑i(ℓij/ℓj) ⋅ d ln ζi. This gives the direct effects of automation that

we would observe without ripple effects and rent dissipation. Automation continues to

generate large wage gains for workers not exposed to it and large real wage declines for

those directly exposed to it.

Panel D factors in the ripple effects and plots Θg ⋅ stack((1/λ) ⋅ d ln y − (1/λ) ⋅ d lnΓd +

(1/λ) ⋅∑i(ℓi⋅/ℓj) ⋅d ln ζi). Ripple effects compress the effects of automation on group wages.

This makes intuitive sense: directly affected workers try to reallocate to other tasks for

which they have a competitive advantage, and in doing so, spread the incidence of the

automation shock onto other groups.

Panel E adds the change in rents, d lnµg which we compute using equation (11) in

Proposition 6. As expected from the small entries estimated for the rent impact matrix,

99% of the variation in the change in rents across groups due to automation comes from

the rent dissipation mechanism. Our reduced-form estimates and the estimates of ρ in

this section suggest that, on average, automation displaces workers from jobs where they

earned a 50% rent. This implies a sizable wage reduction for exposed workers due to rent

dissipation. At the bottom and middle of the wage distribution, rent dissipation creates an

additional 10% decline in group wages.

As discussed in the theory section, directly exposed groups bear the full incidence of rent

dissipation. In contrast to ripple effects which “democratized” the inequality implications

of automation, by spreading it to other groups, the new rent dissipation mechanism deepens

the income losses of directly-impacted groups.

To further illustrate the role of rent dissipation, Figure 9 plots the estimated wage

changes from our model in the horizontal axis against observed wage changes in the vertical

axis for 1980–2016. The left panel ignores the effects of automation on rents through rent

dissipation. This panel shows the predicted effects of automation in a competitive economy.

The right panel plots the full wage effects accounting for rent changes.

The baseline competitive effects of automation in the left panel explain 44% of the

observed wage changes between groups. Moreover, we see that many groups are below the

45○ diagonal, which shows that the competitive effects of automation cannot fully account

for the declining or stagnant real wages of groups without college.

More importantly, when accounting for rent dissipation, we estimate that automation

now explains 60% of the observed wage changes between groups. Moreover, almost all

groups of workers are now above the 45○ diagonal, which shows that rent dissipation is
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Figure 9: Wage effects from automation: model vs data. The left panel plots
the predicted wage changes in our model, ignoring the change in rents and the observed
wage changes from 1980–2016. The right panel plots the predicted wage changes in our
model accounting for the change in rents and the observed wage changes from 1980–2016.

important in accounting for the declining or stagnant real wages of groups without college.

To further illustrate this point, consider the case of men without a college degree. In the

US data, their wages decreased by 6.5% from 1980–2016. The baseline competitive effects

of automation in the left panel generate a 2.5% decline in their real wages. However, once

we account for rent dissipation, our model generates a 10.4% decline in their real wages.

4.4 Effects of Automation on TFP and Welfare

We compute the implications of automation for TFP using the formulas in Proposition

6. Using a value of π = 30%, we find that automation increased TFP by 3% via cost

savings. This is already a small contribution to TFP. Moreover, our formula for TFP

shows that this needs to be discounted by the fact that some of these cost-savings came from

automating jobs where workers earned rents, and that as a result, automation worsened

allocative efficiency. Using our estimates of rent dissipation, we find that automation

reduced allocative efficiency by 3.7%. On net, we estimate that automation brought a

0.7% decrease in TFP from 1980 to 2016.

Because in our model d ln c = y
c ⋅ d ln tfp, these estimates also enable us to compute the

implied increase in consumption and (utilitarian) welfare due to automation. We estimate
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that automation reduced aggregate consumption by 1% from 1980 to 2016. Even though we

find negative effects on aggregate TFP and consumption, we estimate an output expansion

of 13%. This reflects increased resources used for investment k and not higher welfare.

The conclusion that automation reduced TFP and consumption is sensitive to the values

of the cost-saving gains π and average rent dissipation ρ used. A higher value of π = 50%

and our estimate of ρ = 50% imply that automation increased TFP by 1.2% from 1980

to 2016. A lower value of ρ = 30% and our estimate of π = 30% imply that automation

increased TFP by 0.5% from 1980 to 2016. The robust conclusion from our exercise is that

the reduction in allocative efficiency created by rent dissipation is of a similar magnitude

to the cost-saving gains from automation, making the net effect of automation on TFP and

consumption small or negative.

5 Conclusion

This paper developed a framework for studying the effects of automation technologies in

economies where workers earn rents on their jobs. The distinguishing feature of our model

is task-specific labor market rents, which implies that identical workers earn different wages

depending on which tasks they perform.

We used this framework to study the interplay between labor market rents and automa-

tion technologies. We showed that high-rent tasks will be targeted for automation first,

creating a new rent dissipation mechanism. This mechanism has important implications

that we explored theoretically and empirically:

1. Within-group wage effects of automation: Because high-rent tasks are automated

first, automation reduce within-group wage dispersion. This prediction contrasts the

view that inequality increases within groups impacted by technological changes.

2. Between-group wage effects of automation: The rent dissipation mechanism implies

a more negative effect on the wages of groups exposed to automation as they are

pushed into low-rent paying jobs.

3. Productivity effects: the automation of high-rent jobs worsens allocative efficiency.

This is because high-rent jobs are those where the value of the marginal product

of labor is highest, and automation displaces labor from these tasks. Consequently,

automation may reduce TFP and (utilitarian) welfare.
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Our reduced-form econometric work provides support for the rent dissipation mecha-

nism. We complement this evidence with a quantitative exercise that estimates the impor-

tance of rent dissipation on aggregates. This exercise suggests that the baseline (“compet-

itive”) effects of automation account for 44% of the increase in between-group inequality

in the United States since 1980, while rent dissipation adds another 16% to this number.

We also estimate that because of worsening allocative efficiency, automation had a small

negative effect on TFP and utilitarian welfare since 1980.
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A Proofs of Results in the Main Text

A.1 Existence and Uniqueness

Preliminaries: We first derive the equilibrium conditions E3 and E4. The production of

the final good is perfectly competitive, so tasks are priced at their marginal product. This

implies px =M
− 1

λ ⋅ (y/yx)
1
λ , which can be rearranged as

yx =
1

M
⋅ y ⋅ p−λx .(A1)

For tasks in Tg, equation (A1) implies

ℓgx ⋅ ψgx =
1

M
⋅ y ⋅ (wg ⋅

µgx
ψgx
)

−λ

,

which can be rearranged into the labor demand equation in E3.

For tasks in Tk, equation (A1) implies

kx ⋅ ψkx =
1

M
⋅ y ⋅ (

1

qx ⋅ ψkx
)
−λ
,

which can be rearranged into the capital demand equation in E3.

Finally, multiplying equation (A1) by px and integrating over x yields

y = ∫
x∈T

px ⋅ yx ⋅ dx =
1

M
⋅ y ⋅ ∫

x∈T
p1−λx ⋅ dx.

Canceling y on both sides of this equation yields the ideal-price index condition in E4.

Existence and uniqueness: Given a vector of positive baseline wages w = {w1,w2, . . . ,wg},

we define the task share of worker group g and the task share of capital as

Γg(w) =
1

M ∫x∈Tg
ψλ−1gx ⋅ µ

−λ
gx ⋅ dx for all g,

Γk(w) =
1

M ∫x∈Tk
(ψkx ⋅ qx)

λ−1 ⋅ dx,

where the integrals are taken over the set of tasks where g (or k) is the lowest cost producer

when wages are given by w, so that task shares depend on baseline wages w through the

task allocation.

A1



The following assumption provides sufficient conditions for the existence and uniqueness

of an equilibrium.

Assumption A1 (Restrictions on the task space) The task elasticity of substitu-

tion λ is below 1 and task productivities are such that:

� The functions Γg(w) and Γk(w) are differentiable. This holds if for any two groups

of workers g ≠ g′ and any constants a, b > 0, the set of tasks for which ψgx/ψg′x = a

and qx ⋅ ψkx/ψgx = b are of measure zero.

� For each g the range of Γg(w) is [Γg, Γ̄g] with 0 < Γg < Γ̄g < ∞.

� The function Γk(w) satisfies limw→0 Γk(w) < 1.

The assumption that λ < 1 implies that tasks are gross complements, which is the

empirically relevant case. The functions Γg(w) and Γk(w) are defined as integrals, and thus

are continuous. The assumption that they are differentiable is natural. It follows if different

demographic groups have distinct comparative advantages. The remaining assumptions are

Inada-style conditions that ensure existence and uniqueness of an equilibrium with positive

and finite output where all workers produce some tasks.

We first provide a lemma regarding the Jacobian of task shares as a function of wages

that will be used in our proofs.

Lemma A1 Let Σ = I − 1
λ
∂ lnΓ(w)
∂ lnw . For all wage vectors w, the matrix Σ is non-singular.

Moreover, Σ is a P−matrix of the Leontief type (i.e., with non-positive off-diagonal entries)

whose inverse Θ has all entries non-negative.

Proof. Assumption A1 ensures that task shares are a continuous and differentiable func-

tion of wages. We now establish the properties of Σ.

First, because ∂Γg/∂wg′ ≥ 0, all off-diagonal entries in Σ are negative. This implies that

Σ is a Z−matrix.

Second, Σ has a positive dominant diagonal. This follows from the fact that

Σgg = 1 −
1

λ

∂ lnΓg
∂ lnwg

> 0, and Σgg − ∑
g′≠g
∣Σgg′ ∣ = 1 −∑

g′

1

λ

∂ lnΓg
∂ lnwg′

> 1.
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This last inequality follows because ∑g′
∂ lnΓg

∂ lnwg′
≤ 0, which is true since when all wages rise

by the same amount, workers lose tasks to capital but do not experience task reallocation

among them.

Third, all eigenvalues of Σ have a real part that exceeds 1. This follows from the

Gershgorin circle theorem, which states that for each eigenvalue ε of Σ, we can find a

dimension g such that ∣∣ε −Σgg ∣∣ < ∑g′≠g ∣Σgg′ ∣. This inequality implies

R(ε) ∈ [Σgg − ∑
g′≠g
∣Σgg′ ∣,Σgg + ∑

g′≠g
∣Σgg′ ∣] .

Because Σgg −∑g′≠g ∣Σgg′ ∣ > 1 for all g, as shown above, all eigenvalues of Σ have a real part

that is greater than 1.

Fourth, since Σ has negative off-diagonal elements and all of its eigenvalues have a pos-

itive real part, we can conclude that it is a non-singular M− matrix, and also a P−matrix.

Moreover, the inverse of a non-singular M−matrix exists and has non-negative and real

entries, θgg′ ≥ 0.

Proposition A1 When Assumption A1 holds, the market equilibrium exists, is unique,

and features positive and finite output.

Proof. Aggregating the labor demand equation in E3 over tasks in Tg, we obtain ℓg =

y ⋅ Γg(w) ⋅w−λg . This can be rewritten as the market-clearing condition

wg =(
y

ℓg
)

1
λ

⋅ Γg(w)
1
λ for g = 1,2, . . . ,G.(A2)

We first show that, given a level for output y, there is a unique set of wages {wg(y)}g

that satisfies the market clearing conditions in (A2).

Assumption A1 implies that the mapping Tw defined by

Twg = (
y

ℓg
)

1
λ

⋅ Γg(w)
1
λ for g = 1,2, . . . ,G

is a continuous mapping from the compact convex set X = ∏G
g=1[(y/ℓg)

1
λ ⋅ Γ

1
λ
g , (y/ℓg)

1
λ ⋅ Γ̄

1
λ
g ]

onto itself. The existence of a positive set of vectors {wg(y)}g follows from Brouwer’s

fixed-point theorem.
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We now turn to uniqueness. We can rewrite the system of equations {wg(y)}g defining

{wg(y)}g in logs as

lnwg −
1

λ
⋅ lnΓg(exp(lnw)) =

1

λ
⋅ (ln y − ln ℓg),

or equivalently as

F (x) =
1

λ
⋅ stack(ln y − ln ℓj),

where x = (lnw1, . . . , lnwG) and F (x) = (f1(x), . . . , fG(x)) with fg(x) = xg −
1
λ ⋅ lnΓg(x).

The Jacobian of F is given by the Leontief-type matrix Σ. Theorem 5 from Gale and

Nikaido (1965) shows that the solution to F (x) = a is unique. The Theorem also shows

that the unique solution x(a) increases in a. As a result, the unique solution to the system

of equations in (A2) is given by a wage vector {wg(y)}g with all wages strictly increasing

in y.

To conclude, we show that there is a unique y that satisfies the ideal-price index condi-

tion. This condition can be written as cu(y) = 1, where

cu(y) =
⎛

⎝

1

M ∫x∈T
[min{min

g
{wg(y) ⋅

µgx
ψgx
} ,

1

qx ⋅ ψkx
}]

1−λ

⋅ dx
⎞

⎠

1
1−λ

.

Because wages are strictly increasing in y, cu(y) is an increasing function of y.

Note that

(y/ℓg)
1/λ ⋅ Γ1/λ

g ≤ wg(y) ≤ (y/ℓg)
1/λ ⋅ Γ̄

1/λ
g .

As a result, wg(y) → ∞ as y →∞, and wg(y) → 0 as y → 0.

The function cu(y) can be written as

cu(y) = (Γk(w(y)) +∑
g

Γg(w) ⋅ µg(w) ⋅wg(y)
1−λ)

1
1−λ

.

As wg(y) → ∞, we have that Γg(w) ⋅µg(w)wg(y)1−λ →∞ (since Γg(w) is bounded from

below, µg(w) ≥ 1, and λ < 1). This then implies that cu(y) → ∞.

As wg(y) → 0, we have that Γg(w) ⋅wg(y)1−λ → 0 (since Γg(w) is bounded from above,

µg(w) < µ̄, and λ < 1). This then implies that cu(y) → limw→0 Γk(w)
1

1−λ < 1.

These observations show that there is a unique level of output y ∈ (0,∞) that satisfies
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cu(y) = 1 and, therefore, a unique equilibrium with wages wg = wg(y). This argument

shows there is a unique vector of equilibrium wages wg. These unique equilibrium wages

wg and the tie-breaking rule in footnote 10 uniquely determine the task allocation.

Our argument for uniqueness also shows that, under Assumption A1, the unique equi-

librium features finite output, positive wages, and positive task shares for all workers.

Moreover, from cu(y) = 1, we obtain that, in equilibrium, 1 − Γk > 0.

Remarks on Assumption A1: The assumption that Γg(w) is bounded from above is

sufficient to ensure existence of a non-negative wage vector that solves (A2). One can show

that all wages must be positive even if we drop the requirement that Γg(w) is bounded

from below (if wages are zero for some group, they will get some positive mass of tasks

under the weaker assumption that they have positive productivity for a positive mass of

tasks).

The assumption that Γg(w) is bounded from below ensures that all workers are needed

for production. This is sufficient to ensure finite output when λ < 1, but weaker condi-

tions can be produced. An alternative sufficient condition for finite output that works

independently of whether λ ≶ 1 is that limw→∞ Γk(w)1/(λ−1) < 1.

Finally, the assumption that limw→0 Γk(w) < 1 ensures the economy produces at least

some output. This is only needed for λ < 1. This holds in particular if labor can produce

all tasks with some positive productivity.

A.2 Proofs of Results in Main Text

We now provide proofs for the results in the text.

Proof of Proposition 1. As we showed in Acemoglu and Restrepo (2022), the efficient

allocation {ℓ∗kx,{ℓ
∗
gx}g}x coincides with the market allocation of our economy for µgx = 1.

In fact, µgx = µg suffices for efficiency. When µgx varies across tasks, we have two types

of inefficiencies. First, too little labor is assigned to tasks in Tg with high wedges. This

follows from the fact that

ℓgx
ℓgx′
=
ℓ∗gx
ℓ∗gx′
⋅ (
µgx
µ′gx
)

−λ

for x,x′ ∈ Tg.

Second, the equilibrium allocation of tasks to factors will differ from the efficient one

because, among tasks with a = wg ⋅ψgx/(qx ⋅ψkx) with a > 1, those with high µgx > a will be

assigned to capital; while those with µgx ∈ [1, a] will be assigned to labor. Instead, in the

A5



efficient allocation, all these tasks are automated or all of them are produced by labor.

Proof of Proposition 2. The set of tasks T defines a joint probability distribution over

task attributes and rents. Let Ψ = ⟨q,ψk,{ψg}g⟩ be a vector of the technological attributes

of a task. For any set B ⊆ T of the task space, define H(Ψ∣B) by

H(Ψ∣B) =Pr(x ∶ q′x ≤ q,ψkx ≤ ψk,{ψgx ≤ ψg}g ∣x ∈ B) =
∫B∩{x∶q′x≤q,ψkx≤ψk,{ψgx≤ψg}g} dx

∫B dx
,

and denote its density by h(Ψ∣B).

We first compute F̄ (µ∣ATg ) and F̄ (µ∣Ag), where both distributions are defined using the

initial allocation of employment. For all µ ≥ 1, we have

F̄g(µ∣A
T
g ) =
∫
Ψ
∫

∞

µ
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

∫
Ψ
∫

∞

1
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

.

Using condition (ii) we simplify this as

F̄g(µ∣A
T
g ) =
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

.

Turning to F̄g(µ∣Ag), we have

F̄g(µ∣Ag) =
∫
Ψ
∫

∞

max{µ,ρ(Ψ)}}
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

∫
Ψ
∫

∞

max{1,ρ(Ψ)}
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

.

Here, ρ(Ψ) = 1
wg
⋅

ψg

q′⋅ψk
gives a threshold wedge above which tasks with technological at-

tributes Ψ will be automated.

Using condition (ii) we can write this as

F̄g(µ∣Ag) =
∫
Ψ
∫

∞

max{µ,ρ(Ψ)}}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

∫
Ψ
∫

∞

max{1,ρ(Ψ)}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

.

A6



We now show that, for all ρ and µ ≥ 1, we have

∫

∞

max{µ,ρ}}
f̄g(u∣A

T
g ) ⋅ du

∫

∞

max{1,ρ}
f̄g(u∣A

T
g ) ⋅ du

≥
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

= F̄g(µ∣A
T
g ),(A3)

with strict inequality if ρ > 1. For ρ < 1 both sides are equal. For ρ ∈ (1, µ], the inequality

becomes

∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

ρ
f̄g(u∣A

T
g ) ⋅ du

>
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

.

Comparing denominators we can see that the strict inequality holds. Finally, for ρ > µ, the

inequality becomes

1 >
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

.

Comparing the numerator and denominator in the RHS we see that the stric inequality

holds.

To conclude the proof, re-write (A3) as

∫

∞

max{µ,ρ}}
f̄g(u∣A

T
g ) ⋅ du ≥ F̄g(µ∣A

T
g ) ⋅ ∫

∞

max{1,ρ}
f̄g(u∣A

T
g ) ⋅ du

Letting ρ = ρ(Ψ) and integrating over the task space, we get

∫
Ψ
∫

∞

max{µ,ρ(Ψ)}}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

> F̄g(µ∣A
T
g ) ⋅ ∫

Ψ
∫

∞

max{1,ρ(Ψ)}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ.

The resulting inequality is strict because (A3) holds with strict inequality for a positive

mass of tasks. This inequality can then be rearranged as F̄g(µ∣Ag) > F̄g(µ∣ATg ). Condition

(i) then implies F̄g(µ∣Ag) > F̄g(µ∣Tg) as wanted.

Proof of Proposition 3. Proposition 2 showed that F̄g(µ∣Ag) > F̄g(µ∣Tg). This implies

F̄g(µ∣Tg) > F̄g(µ∣Tg −Ag). That is, the distribution of rents among workers in Tg dominates

(in the first order stochastic sense) the distribution of rents among workers in Tg −Ag.
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Following the automation of tasks in Ag, workers are reallocated proportionally to tasks

in Tg−Ag (recall that this proposition does not account for ripples and holds the boundaries

of Tg constant). As a result, the distribution of wages across workers after the tasks in Ag

are automated equals the distribution of wages in Tg −Ag.

Consider the quantile function for wages in Tg and in Tg −Ag. Below Mg, both quantile

functions are equal to wg, since the share of workers earning no rents in Tg − Ag exceeds

the share of workers earning no rents in Tg. This shows that d lnw
p
g = d lnwg for all p ≤Mg.

Moreover, because F̄g(µ∣Tg) > F̄g(µ∣Tg −Ag), the quantile function for wages in Tg −Ag

must be strictly below the quantile function for wages in Tg for all µ > 1. This shows that

d lnwpg < d lnwg for all p >Mg.

Finally, because not all tasks in Tg can be automated, there is a positive mass of tasks

with technological attributes Φ in Tg −Ag. Condition (ii) in Proposition 2 implies that the

distribution of rents in these tasks has the same maximum as the distribution of rents in

Tg. This implies that the distribution of rents in Tg −Ag and the distribution of rents in Tg

have the same maximum. This shows that d lnwpg = d lnwg as p→ 1.

Proof of Proposition 4. By definition, w̄g = wg ⋅ µg. Using equation (A2), we obtain

w̄g =(
y

ℓg
)

1
λ

⋅ Γg(w)
1
λ ⋅ µg for g = 1,2, . . . ,G.(A4)

In addition, the demand for capital for tasks in Tk given in E3 can be written as

kx
qx
=y ⋅

1

M
⋅ (ψkx ⋅ qx)

λ−1.

Integrating over Tk yields

k =y ⋅ Γk.(A5)

There are no profits in the economy, and so all income accrues to capital or labor. As a

result y = k +∑g w̄g ⋅ ℓg. Substituting the expression for wages from equation (A4) and the

expression for k in (A5), we obtain

y = y ⋅ Γk +∑
g

(
y

ℓg
)

1
λ

⋅ Γg(w)
1
λ ⋅ µg ⋅ ℓg.
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Solving for y using this equation yields the expression

y = (1 − Γk)
λ

1−λ ⋅ (∑
g

Γ
1
λ
g ⋅ µg ⋅ ℓ

λ−1
λ
g )

λ−1
λ

.(A6)

Before turning to the proof of Proposition 5, we formally define the notion of small

automation shocks that we will use in our derivation. In what follows, we define Bj,g as

the set of boundary tasks between j and g.

Definition 1 An automation shock in AT is of order ϵ if the sets ATg have density O(ϵ)

and the boundary set of tasks

Bgi(w) = {x ∈ A
T
gi ∶

wg ⋅ µgx
ψgx

=
1

q′x ⋅ ψkx
}

has arc-length O(ϵ) for all wg. In addition, we say that an automation shock is interior if

ATg is in the interior of Tg.

Our derivations assume we have a small an interior automation shock. The shock is

assumed to be interior to ensure that it does not alter substitution patterns by automating

boundary tasks.

Proof of Proposition 5. Consider an interior automation shock in ATg of order ϵ. For

functions over the task space, F (w), we denote by FA(w) the new function obtained after

qx increases from zero to q′x in AT .

Effects on baseline wages d lnwg: we first derive equation (3) in the Proposition.

Lemma A2 shows that we can do a “Taylor expansion” of equation (1) (in logs) to express

the change in equilibrium wages as

d lnwg =
1

λ
⋅ d ln y +

1

λ
⋅ (lnΓAg (w) − lnΓg(w)) +

1

λ
⋅
∂ lnΓg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2)(A7)

This expansion decomposes the effects of wages into the productivity effect, the direct effect

of automation on task shares, and the reallocation of tasks in response to wages.

We now approximate lnΓAg (w) − lnΓg(w). Let dLg(x) = ψλ−1gx ⋅ µ
−λ
gx ⋅ dx. This is a new
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measure over the space of tasks that accounts for employment. We have

lnΓAg (w) − lnΓg(w) =
ΓAg (w) − Γg(w)

Γg(w)
+ O(ϵ2)

= −
∫x∈Ag

dLg(x)

∫x∈Tg dLg(x)
+ O(ϵ2)

= − d lnΓdg +O(ϵ
2).

The first-line follows from an approximation of log changes. The second line uses the

definition of task shares and of ΓAg (w). The last line is the definition of d lnΓdg.

Plugging our approximations for lnΓAg (w) − lnΓg(w) into equation (A7), we obtain

d lnwg =
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdg +

1

λ
⋅
∂ lnΓg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2).(A8)

Lemma A1 implies that this system has the unique solution (to a first-order approximation)

d lnwg = Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) +O(ϵ

2).(A9)

Effects on group rents d lnµg: we now derive the effects of automation on group

rents, summarized by equation (4) in the Proposition. Lemma A2 implies

d lnµg = lnµ
A
g (w) − lnµg(w) +

∂ lnµg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2).

We can rewrite the direct effect of automation on rents, lnµAg (w) − lnµg(w), as

lnµAg (w) − lnµg(w) =
µAg (w) − µg(w)

µg(w)
+ O(ϵ2)

=

∫x∈Tg µgx ⋅ dLg(x) − ∫x∈Ag
µgx ⋅ dLg(x)

∫x∈Tg dLg(x) − ∫x∈Ag
dLg(x)

− µg

µg
+O(ϵ2)

=

µg ⋅ ∫x∈Tg dLg(x) − µAg ⋅ ∫x∈Ag
dLg(x)

∫x∈Tg dLg(x) − ∫x∈Ag
dLg(x)

− µg

µg
+O(ϵ2)

=
∫x∈Ag

dLg(x) −
µAg

µg
⋅ ∫x∈Ag

dLg(x)

∫x∈Tg dLg(x) − ∫x∈Ag
dLg(x)

+ O(ϵ2).

The first line approximates the change in logs. The second line uses the definition of µAg (w)
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and the fact that µg(w) = µg. The third line uses the definition of average group rents and

average group rents at automated jobs, µAg . The last line divides by µg and cancels terms.

By definition d lnΓdg =
∫x∈Ag

dLg(x)
∫x∈Tg dLg(x) . Using this expression, we obtain

lnµAg (w) − lnµg(w) = −(
µAg

µg
− 1) ⋅

d lnΓdg
1 − d lnΓdg

+O(ϵ2) = −(
µAg

µg
− 1) ⋅ d lnΓdg +O(ϵ

2)

The last equality uses the fact that
d lnΓd

g

1−d lnΓd
g
= d lnΓdg +O(ϵ

2).

These derivations show that

d lnµg = −(
µAg

µg
− 1) ⋅ d lnΓdg +

∂ lnµg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2).

Using the solution for baseline wages, we obtain

d lnµg = −(
µAg

µg
− 1) ⋅ d lnΓdg +

∂ lnµg(w)

∂ lnw
⋅Θ ⋅ stack(

1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) +O(ϵ

2).(A10)

Effects on group average wages d ln w̄g: The expression for d ln w̄g in equation (5)

follows from combining our formula for baseline wages in (A9) and our formula for rent

changes d lnµg in equation (A10), and using the fact that d ln w̄g = d lnwg + d lnµg.

Effects on TFP d ln tfp: To conclude, we derive the expression for the change in TFP

in equation (7). First, we prove the dual version of the Solow residual. Because all income

accrues to capital or labor, we have y = ∑g w̄g ⋅ ℓg + k. Differentiating this expression yields

d ln y = sk ⋅ d lnk +∑
g

sg ⋅ d ln w̄g ⇒ d ln y − sk ⋅ d lnk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡d ln tfp

= ∑
g

sg ⋅ d ln w̄g.

Second, we turn to the ideal-price index condition, written as C(w) = 1, where

C(w) = Γk(w) +∑
g

Γg(w) ⋅ µg(w) ⋅w
1−λ
g .

Lemma A2 shows that we can expand C(w) as

dC =CA(w) −C(w) +C(w) ⋅
∂ lnC(w)

∂ lnw
⋅ d lnw +O(ϵ2).(A11)

Note that ∂ lnC(w)
∂ lnw ⋅d lnw captures the effect of a change in wages on the cost of producing
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the final good at the initial equilibrium allocation. Because tasks are allocated in a cost-

minimizing way (given wedges), the envelope theorem implies

∂ lnC(w)

∂ lnw
⋅ d lnw = (1 − λ) ⋅∑

g

sg ⋅ d lnwg +O(ϵ
2)

The term CA(w) − C(w), on the other hand, captures the cost saving gains from au-

tomating tasks in Ag holding wages constant. We have

CA(w) −C(w) =ΓAk (w) − Γk(w) +∑
g

ΓAg (w) ⋅ µ
A
g (w) ⋅wg

1−λ −∑
g

Γg(w) ⋅ µg(w) ⋅wg
1−λ

=∑
g

[
1

M
⋅ ∫

x∈Ag

(q′x ⋅ ψkx)
λ−1 ⋅ dx −

1

M
⋅ ∫

x∈Ag

(ψgx/µgx)
λ−1 ⋅wg

1−λdx⋅]

=∑
g

1

M ∫x∈Ag

[(q′x ⋅ ψkx)
λ−1 − (ψgx/µgx)

λ−1 ⋅wg
1−λ] ⋅ dx

=∑
g

1

M ∫x∈Ag

(ψgx/µgx)
λ−1 ⋅wg

1−λ ⋅ [(
q′x ⋅ ψkx ⋅wg ⋅ µgx

ψgx
)λ−1 − 1] ⋅ dx

=∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅

1
M ∫x∈Ag

(ψgx/µgx)λ−1 ⋅ [(
q′x⋅ψkx⋅wg ⋅µgx

ψgx
)λ−1 − 1] ⋅ dx

1
M ∫x∈Ag

(ψgx/µgx)λ−1 ⋅ dx

=(λ − 1) ⋅∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg.

In the last step, we used the fact that ℓgx ⋅ µgx ∝ (ψgx/µgx)λ−1 (from equilibrium condition

E3), which gives the expression for πg in the main text.

Because real wages satisfy C(w) = 1, we have dC = 0. Equation (A11) then implies

∑
g

sg ⋅ d lnwg = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg +O(ϵ

2).

Using the fact that d ln w̄g = d lnwg + d lnµg, we obtain

∑
g

sg ⋅ d ln w̄g = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg −∑

g

sg ⋅ d lnµg +O(ϵ
2).

Finally, combining this expression for the change in wages with the dual version of the

Solow residual yields the formula for TFP in the proposition.
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A.3 Proofs and details for the multi-sector model.

A market equilibrium is again given by a vector of base wages {wg}, output y, sectoral

prices pi, an allocation of tasks {Tgi}i,g,{Tik}i, task prices px, hiring plans ℓgx, and capital

production plans kx such that:31

E1’ Tasks prices equal the minimum unit cost of producing the task

px =min

⎧⎪⎪
⎨
⎪⎪⎩

1

qx ⋅ ψkx
,

⎧⎪⎪
⎨
⎪⎪⎩

wg ⋅
µgx
ψgx

⎫⎪⎪
⎬
⎪⎪⎭g

⎫⎪⎪
⎬
⎪⎪⎭

.

E2’ Tasks are allocated in a cost-minimizing way. The set of tasks

Tgi = {x ∈ Ti ∶ px = wg ⋅
µgx
ψgx
}

will be produced by workers of type g, and the set of tasks

Tik = {x ∈ Ti ∶ px =
1

q(x) ⋅ ψk(x) ⋅Ak
}

will be produced by capital.

E3’ Quantities of labor and capital are given by

ℓgx = y ⋅ syi ⋅ p
λ−1
i ⋅

1

Mi

⋅ ψλ−1gx ⋅ (µgx ⋅wg)
−λ for x ∈ Tgi,

kx = y ⋅ syi ⋅ p
λ−1
i ⋅

1

Mi

⋅ ψλ−1kx ⋅ q
λ
x for x ∈ Tik.

E4’ Sectoral prices are given by

pi = (
1

Mi
∫
x∈Ti

p1−λx ⋅ dx)

1
1−λ

E5’ The ideal-price index condition holds

1 = cf({p}i).

31As in the single-sector model (see footnote 10), we assume that, when indifferent, tasks are allocated
to capital or to the group with the highest index g. This tie-breaking rule ensures uniqueness of the task
allocation.
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Preliminaries: We first derive the equilibrium conditions E3’ and E4’. The production

of the final good is perfectly competitive, and so tasks are priced at their marginal product.

This implies px = pi ⋅M
− 1

λ
i ⋅ (yi/yx)

1
λ , which can be rearranged as

yx =
1

Mi

⋅ y ⋅ syi ⋅ p
λ−1
i ⋅ p−λx .(A12)

For tasks in Tg, equation (A1) implies

ℓgx ⋅ ψgx =
1

M
⋅ y ⋅ syi ⋅ p

λ−1
i (wg ⋅

µgx
ψgx
)

−λ

,

which can be rearranged into the labor demand equation in E3’.

For tasks in Tk, equation (A1) implies

kx ⋅ ψkx =
1

M
⋅ y ⋅ syi ⋅ p

λ−1
i (

1

qx ⋅ ψkx
)
−λ
,

which can be rearranged into the capital demand equation in E3’.

Finally, multiplying equation (A12) by px and integrating over x yields

syi ⋅ y = ∫
x∈T

px ⋅ yx ⋅ dG(x) =
1

Mi

⋅ syi ⋅ y ⋅ p
λ−1
i ⋅ ∫

x∈T
p1−λx ⋅ dG(x).

Canceling syi ⋅y on both sides of this equation yields the sectoral-price index condition E4’.

Proposition A2 Given the equilibrium allocation ⟨{Tgi}g,i,{Tki}i⟩ and the resulting task

shares and group rents, output, sectoral prices, baseline wages by group and average wages

by group satisfy

wg =(
y

ℓg
)

1
λ

⋅ Γ
1
λ
g ,(A13)

w̄g =(
y

ℓg
)

1
λ

⋅ Γ
1
λ
g ⋅ µg(A14)

pi =(Γki +∑Γgi ⋅ µg ⋅w
1−λ
g )

1
1−λ ,(A15)

1 =cf(pi).(A16)

Proof of Proposition A2. Aggregating the labor demand equation in E3’ over tasks in

A14



Tgi for all industries, we obtain ℓg = y ⋅ Γg ⋅w−λg . This can be rewritten as (A13). Equation

(A14) then follows from the definition of average group rents.

Equation E4’ implies that sectoral prices satisfy

pi = (
1

Mi
∫
x∈Ti

p1−λx ⋅ dx)

1
1−λ

= (Γki +∑
g

Γgi ⋅ µgi ⋅w
1−λ
g )

1
1−λ

.

Here, we used the fact that

1

Mi
∫
x∈Tgi

p1−λx ⋅ dx =
1

Mi
∫
x∈Tgi
(wg ⋅

µgx
ψgx
)

1−λ

⋅ dx

= (
1

Mi
∫
x∈Tgi

ψλ−1gx ⋅ µ
−λ
gx ⋅ dx)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γgi

⋅
⎛

⎝

∫x∈Tgi ψ
λ−1
gx ⋅ µ

1−λ
gx

∫x∈Tgi ψ
λ−1
gx ⋅ µ

−λ
gx

⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µgi

⋅w1−λ
g .

Finally, equation E5’ implies 1 = cf({pi}i).

Proof of Proposition 6. We make the dependence of task shares on wages and sectoral

prices explicit. In particular, define the industry i task share when wages are w by

Γgi(w) =
1

Mi
∫
x∈Tgi

ψλ−1gx ⋅ µ
−λ
gx ⋅ dx for all g,

Γik(w) =
1

Mi
∫
x∈Tik
(ψkx ⋅ qx)

λ−1 ⋅ dx.

and the aggregate task share when wages are w and sectoral prices are p by

Γg(w,p) =∑
i

syi ⋅ p
λ−1
i ⋅

1

Mi
∫
x∈Tgi

ψλ−1gx ⋅ µ
−λ
gx ⋅ dx for all g,

Γk(w,p) =∑
i

syi ⋅ p
λ−1
i ⋅

1

Mi
∫
x∈Tik
(ψkx ⋅ qx)

λ−1 ⋅ dx.

Note that syi is a function of sectoral prices, since the aggregator f is assumed to be

homothetic.

Consider an automation shock in ATg of order ϵ. For functions over the task space,

F (w,p), denote by FA(w,p) the function obtained after qx increases from zero to q′x in A
T
g .

Effects on baseline wages d lnwg: we first derive equation (10) in the Proposition.

Lemma A2 shows that we can do a “Taylor expansion” of equation (A13) (in logs) to
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express the change in equilibrium wages as

d lnwg =
1

λ
⋅ d ln y +

1

λ
⋅ (lnΓAg (w) − lnΓg(w)) +

1

λ
⋅
∂ lnΓg(w,p)

∂ lnw
⋅ stack(d lnw)

(A17)

+
1

λ
⋅
∂ lnΓg(w,p)

∂ lnp
⋅ stack(d lnp) + O(ϵ2)

This expansion decomposes the effects of wages into the productivity effect, the direct effect

of automation on task shares, the reallocation of tasks in response to wages, and the effect

of changes in sectoral prices on task shares.

We now approximate lnΓAg (w,p) − lnΓg(w,p). Letting dLg(x) = ψ
λ−1
gx ⋅µ

−λ
gx ⋅ dx, we have

lnΓAg (w,p) − lnΓg(w,p) =
ΓAg (w,p) − Γg(w,p)

Γg(w,p)
+ O(ϵ2)

= −
∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

dLg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x)

+ O(ϵ2)

= −∑
i

syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x)

∑i′ syi′ ⋅ p
λ−1
i′ ⋅ ∫x∈Tgi′

dLg(x)
⋅
∫x∈Agi

dLg(x)

∫x∈Tgi dLg(x)
+ O(ϵ2)

= −∑
i

ℓgi
ℓg
⋅ d lnΓdgi +O(ϵ

2).

The first-line follows from an approximation of log changes. The second line uses the

definition of task shares and of ΓAg (w,p). The last line is the definition of d lnΓdg.

We now turn to the effects of sectoral prices on task shares,
∂ lnΓg(w,p)

∂ lnp ⋅ stack(d lnp).

This is given by

∂ lnΓg(w,p)

∂ lnp
⋅ d lnp = ∑

i

syi ⋅ p
λ−1
i ⋅ Γgi

∑i′ syi′ ⋅ p
λ−1
i′ ⋅ Γgi′

⋅ d ln ζi = ∑
i

ℓgi
ℓg
⋅ d ln ζi,

which uses the definition of sectoral shifters d ln ζi = d ln(syi ⋅ p
λ−1
i ).

Plugging our approximation for lnΓAg (w,p) − lnΓg(w,p) and our formula for
∂ lnΓg(w,p)

∂ lnp ⋅

stack(d lnp) into equation (A17), we obtain

d lnwg =
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdg +

1

λ
⋅ ∑
i

ℓgi
ℓg
⋅ d ln ζi +

1

λ
⋅
∂ lnΓg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2).

(A18)
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Lemma A1 implies that this system has the unique solution (to a first-order approximation)

d lnwg = Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓji
ℓj
⋅ d ln ζi) +O(ϵ

2).(A19)

Effects on group rents d lnµg: we now derive equation (11) in the Proposition. Using

Lemma A2 we get

d lnµg = lnµ
A
g (w,p) − lnµg(w,p) +

∂ lnµg(w,p)

∂ lnw
⋅ stack(d lnw)

+
∂ lnµg(w,p)

∂ lnp
⋅ stack(d lnp) + O(ϵ2).

We can rewrite the direct effect of automation on rents, lnµAg (w,p) − lnµg(w,p), as

lnµAg (w,p) − lnµg(w,p)

=
µAg (w,p) − µg(w,p)

µg(w,p)
+ O(ϵ2)

=

∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi µgx ⋅ dLg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

µgx ⋅ dLg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

dLg(x)
− µg

µg
+O(ϵ2)

=

µg ⋅ ∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x) − µAg ⋅ ∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

dLg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

dLg(x)
− µg

µg
+O(ϵ2)

=
∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

dLg(x) −
µAg

µg
⋅ ∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

dLg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫x∈Agi

dLg(x)
+ O(ϵ2).

The first line approximates the change in logs. The second line uses the definition of

µAg (w,p) and the fact that µg(w,p) = µg. The third line uses the definition of average

group rents and average group rents at automated jobs, µAg . The last line divides by µg

and cancels terms. By definition d lnΓdg =
∑i syi ⋅p

λ−1
i ⋅∫x∈Agi

dLg(x)

∑i syi ⋅pλ−1i ⋅∫x∈Tgi dLg(x) . Using this, we obtain

lnµAg (w,p) − lnµg(w,p) = −(
µAg

µg
− 1) ⋅

d lnΓdg
1 − d lnΓdg

+O(ϵ2)

= −(
µAg

µg
− 1) ⋅ d lnΓdg +O(ϵ

2)

The last equality uses the fact that
d lnΓd

g

1−d lnΓd
g
= d lnΓdg +O(ϵ

2).
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We now turn to the effects of sectoral prices on group rents. First, observe that group

rents can be written as

µg(w,p) =
∑i syi ⋅ p

λ−1
i ⋅ µgi ⋅ ∫x∈Tgi dLg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x)

.

Therefore, we can compute the effect of sectoral prices on rents as

∂ lnµg(w,p)

∂ lnp
⋅ d lnp = ∑

i

syi ⋅ p
λ−1
i ⋅ µgi ⋅ ∫x∈Tgi dLg(x)

∑i syi ⋅ p
λ−1
i ⋅ µgi ⋅ ∫x∈Tgi dLg(x)

⋅ d ln ζi

−∑
i

syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫x∈Tgi dLg(x)

⋅ d ln ζi.

We can rewrite this as

∂ lnµg(w,p)

∂ lnp
⋅ d lnp = ∑

i

µgi
µg
⋅
ℓgi
ℓg
d ln ζi −∑

i

ℓgi
ℓg
⋅ d ln ζi = ∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
d ln ζi.

These derivations show that

d lnµg = −(
µAg

µg
− 1) ⋅ d lnΓdg +∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
d ln ζi +

∂ lnµg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2).

Using the solution for baseline wages, we obtain

d lnµg = − (
µAg

µg
− 1) ⋅ d lnΓdg +∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
d ln ζi(A20)

+
∂ lnµg(w)

∂ lnw
⋅Θ ⋅ stack(

1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +∑

i

ℓji
ℓj
d ln ζi) +O(ϵ

2).

Effects on average wages d ln w̄g: The expression for d ln w̄g in equation (12) follows

from combining our formula for baseline wages in (A19) and our formula for rent changes

d lnµg in equation (A20), and using the fact that d ln w̄g = d lnwg + d lnµg.

Effects on sectoral prices d lnpi: we now derive the effects of automation on sectoral

prices. Equation (A15) implies pλ−1i = Ci(w), where

Ci(w) = Γki(w) +∑
g

Γgi(w) ⋅ µgi(w) ⋅w
1−λ
g .
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Lemma A2 shows that we can expand Ci(w) as

dCi =C
A
i (w) −Ci(w) +Ci(w) ⋅

∂ lnCi(w)

∂ lnw
⋅ d lnw +O(ϵ2).(A21)

Note that ∂ lnCi(w)
∂ lnw ⋅d lnw captures the effect of a change in wages on the cost of producing

the final good at the initial equilibrium allocation. Because tasks are allocated in a cost-

minimizing way (given wedges), the envelope theorem implies

∂ lnCi(w)

∂ lnw
⋅ d lnw = (1 − λ) ⋅∑

g

sgi ⋅ d lnwg +O(ϵ
2)

The term CA(w) − C(w) captures the cost saving gains from automating tasks in Agi

holding wages constant. We have

CAi (w) −Ci(w) =Γ
A
ki(w) − Γki(w) +∑

g

ΓAgi(w) ⋅ µ
A
gi(w) ⋅wg

1−λ −∑
g

Γgi(w) ⋅ µgi(w) ⋅wg
1−λ

=∑
g

[
1

Mi

⋅ ∫
x∈Agi

(q′x ⋅ ψkx)
λ−1 ⋅ dx −

1

Mi

⋅ ∫
x∈Agi

(ψgx/µgx)
λ−1 ⋅wg

1−λdx⋅]

=∑
g

1

Mi
∫
x∈Agi

[(q′x ⋅ ψkx)
λ−1 − (ψgx/µgx)

λ−1 ⋅wg
1−λ] ⋅ dx

=∑
g

1

Mi
∫
x∈Agi

(ψgx/µgx)
λ−1 ⋅wg

1−λ ⋅ [(
q′x ⋅ ψkx ⋅wg ⋅ µgx

ψgx
)λ−1 − 1] ⋅ dx

=Ci(w) ⋅∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅

1
Mi ∫x∈Agi

(ψgx/µgx)λ−1 ⋅ [(
q′x⋅ψkx⋅wg ⋅µgx

ψgx
)λ−1 − 1] ⋅ dx

1
Mi ∫x∈Agi

(ψgx/µgx)λ−1 ⋅ dx

=Ci(w) ⋅ (λ − 1) ⋅∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi.

In the last step, we used the fact that ℓgx ⋅ µgx ∝ (ψgx/µgx)λ−1 (from equilibrium condition

E3’), which gives the expression for πgi in the main text.

Putting together our formulas for ∂ lnCi(w)
∂ lnw ⋅d lnw and CA(w)−C(w) in (A21), we obtain

dCi =Ci(w) ⋅ (λ − 1) ⋅∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi +Ci(w) ⋅ (1 − λ) ⋅∑

g

sgi ⋅ d lnwg +O(ϵ
2),

which is equivalent to

d lnpi = ∑
g

sgi ⋅ d lnwg −∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi.(A22)
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Effects on sectoral shifters d ln ζi: The expression for d ln zetai in the proposition

follows from the fact that, with a CES demand system, d ln syi ⋅ p
λ−1
i = (λ − η) ⋅ d lnpi.

Effects on TFP d ln tfp: The expression for the change in TFP in equation (14) is

derived in the same way as before.

We now turn to the ideal-price index condition, which can be written as cf({pi}i) = 1.

The envelope theorem applied to this cost function implies

0 = ∑
i

syi ⋅ d lnpi.

Substituting the expression for d lnpi in (A22) and rearranging yields

∑
g

sg ⋅ d lnwg = ∑
i

syi ⋅ ∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi.

Adding ∑g sg ⋅ d lnµg to both sides yields

∑
g

sg ⋅ d ln w̄g = ∑
i

syi ⋅ ∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi +∑

g

sgd lnµg.

Using the dual version of the Solow residual in equation (13) to substitute for the left-hand

side, we obtain the formula for TFP in equation (14).

A.4 Approximation Lemma

One important step in the proofs of Proposition 5 and 6 involves the approximation of the

effects of automation in three parts: the effects of the automation shock holding prices

constant, the effect of prices governed by the Jacobians of task shares with respect to

prices, and a small approximation error. This is similar to a first-order Taylor expansion,

but instead of considering a change in real arguments, we are also considering the effects

of a direct change in task allocations generated by automation. The following Lemma

shows that this expansion provides a valid approximation for automation shocks of order

ϵ. We give a general version of the Lemma that accommodates the multisector economy.

Its application to the single-sector economy follows as a corollary.

Lemma A2 (Taylor Expansions of Functions on Task Space) Consider a func-
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tion of the form

f(w, z) = h
⎛

⎝

⎧⎪⎪
⎨
⎪⎪⎩
∫
x∈Tgi(w)

N(µgx, ψgx, ψkx, qx) ⋅ dx

⎫⎪⎪
⎬
⎪⎪⎭g,i

, z
⎞

⎠
.

where Tg(w) is defined by E1 and E2, N is a continuous vector function of task attributes

to Rn that is bounded in Tg, z is a vector of inputs of dimension m and h is a continuously

differentiable function from G × I ×Rn +Rm to R.

Let T Agi (w) denote the equilibrium task allocation after a small automation shock of

order ϵ when wages are w. Define

fA(w, z) = h
⎛

⎝

⎧⎪⎪
⎨
⎪⎪⎩
∫
x∈T Agi (w)

N(µgx, ψgx, ψkx, qx) ⋅ dx

⎫⎪⎪
⎬
⎪⎪⎭g,i

, z
⎞

⎠
.

Suppose that the automation shock changes z and w by dz and dw, both of which are

O(ϵ). Then the total effect of this shock on f can be approximated as

df = fA(w, z) − f(w, z) +
∂f

∂w
⋅ dw +

∂f

∂z
⋅ dz +O(ϵ2)(A23)

Proof. Let w′ = w + dw and z′ = z + dz be the new values of w, z. The total change in f

can be written as

df =fA(w′, z′) − f(w, z)

=fA(w, z) − f(w, z) + fA(w′, z′) − fA(w, z)

=fA(w, z) − f(w, z) +
∂fA(w, z)

∂w
⋅ dw +

∂fA(w, z)

∂z
⋅ dz +O(ϵ2),

where the last line does a first-order Taylor expansion of fA(w′, z′) around (w, z).

We now show that ∂fA(w,z)
∂w =

∂f(w,z)
∂w + O(ϵ2). Let a′gi = ∫x∈T Agi (w)

N(µgx, ψgx, ψkx, qx) ⋅ dx

and agi = ∫x∈Tgi(w)N(µgx, ψgx, ψkx, qx) ⋅ dx. Because Agi is of measure O(ϵ), a′gi = agi +O(ϵ).

A21



Moreover,

∂fA(w, z)

∂w
=∑
g,i

∂h({a′gi}g,i, z)

∂agi
⋅
∂

∂w ∫x∈T Agi (w)
N(µgx, ψgx, ψkx, qx) ⋅ dx

=∑
g,i

∂h({agi}g,i, z)

∂agi
⋅
∂

∂w ∫x∈T Agi (w)
N(µgx, ψgx, ψkx, qx) ⋅ dx +O(ϵ)

=∑
g,i

∂h({agi}g,i, z)

∂agi
⋅
∂

∂w ∫x∈Tgi(w)
N(µgx, ψgx, ψkx, qx) ⋅ dx

−∑
g,i

∂h({agi}g,i, z)

∂agi
⋅
∂

∂w ∫x∈Tgi(w)∖T Agi (w)
N(µgx, ψgx, ψkx, qx) ⋅ dx +O(ϵ)

=
∂f(w, z)

∂w
+O(ϵ).

The first line uses the chain rule. The second line exploits the fact that the derivatives of

h are continuous and therefore
∂h({a′gi}g,i,z)

∂agi
=
∂h({agi}g,i,z)

∂agi
+O(ϵ). The third line decomposes

the integral over T Agi in three terms. Our focus on small and interior shocks implies that

∑
g,i

∂h({agi}g,i, z)

∂agi
⋅
∂

∂w ∫x∈Tgi(w)∖T Agi (w)
N(µgx, ψgx, ψkx, qx) ⋅ dx =O(ϵ).

To conclude, we show that ∂fA(w,z)
∂z =

∂f(w,z)
∂z +O(ϵ2). We have

∂fA(w, z)

∂z
=
∂h({a′gi}g,i, z)

∂z

=
∂h({agi}g,i, z)

∂z
+O(ϵ)

=
∂f(w, z)

∂z
+O(ϵ),

where the second line exploits the fact that the derivatives of h are continuous and therefore
∂h({a′gi}g,i,z)

∂z =
∂h({agi}g,i,z)

∂z +O(ϵ).

Using these approximations in the equation for df gives (A23).

Remark 1: One can generalize the proof to non-interior shocks. In this case, the approx-

imation df = ∂f
∂w ⋅dw +

∂f
∂z ⋅dz + f

A(w, z)− f(w, z) is still valid, but the error is now O(ϵ ⋅ ϵb),

where ϵb is an upper bound on the arc-length of boundary tasks that overlap with AT .
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Remark 2: The requirement that the boundary set of tasks

Bgi(w) = {x ∈ A
T
gi ∶

wg ⋅ µgx
ψgx

=
1

q′x ⋅ ψkx
}

has arc-length O(ϵ) is also needed to ensure that advances in automation do not introduce

a sizable mass of new marginal tasks that change substitution patterns in response to wage

changes. In Acemoglu and Restrepo (2022), this was not needed because we assumed

that all tasks in which advances in automation occurred where automated. Our definition

of small shocks in this paper as well as the assumed nature of the shocks in Acemoglu

and Restrepo (2022) require that the wage of group g cannot fall by more than πgi in

equilibrium. We check this requirement directly in our quantitative section.

B Microfoundations for wedges.

B.1 Efficiency wage considerations

We consider a static version of an efficiency wage model (i.e. Shapiro and Stiglitz, 1984;

Bulow and Summers, 1986).

On the one hand, there is a positive mass of tasks where workers earn a wage wg and

do not have to be monitored or receive extra incentives to work. Workers can always take

these jobs freely.

On the other hand, there is a positive mass of tasks where workers need to be monitored

and are paid an efficiency wage wgx. In these tasks, workers have two options. They can

stick to their duties, produce, and obtain a wage wgx. Or they can shirk. In this case

they put no effort on their main job and collect some income e ⋅wg by moonlighting in the

no-rent sector. If not found, they obtain an income wgx + e ⋅ wg. However, workers who

shirk are detected with probability Pgx, fired, and forced to take a job that pays no rents.

The no shirking condition is then

wgx ≥ (1 − Pgx) ⋅ (wgx + e ⋅wg) + Pgx ⋅wg.

This can be rearranged as

wgx = (e ⋅
1 − Pgx
Pgx

+ 1) ⋅wg.
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This model thus provides a micro-foundation for wedges µgx = e ⋅
1−Pgx

Pgx
+ 1 derived from

efficiency wage considerations. Our treatment assumes there are no other contracts that

can solve the monitoring problem.

B.2 Bargaining models

Consider a one-shot model where firms must make an investment to create a position before

matching with a worker.

A firm producing task x can create ℓgx positions for workers of type g. Creating each

position takes up κ ∈ (0,1) units of labor, which implies that the total amount of labor

available for production is ℓgx ⋅ (1 − κ). The firm must pay this cost in advance, which

implies that once workers are matched to their positions, there is a surplus to bargain over.

The firm obtains a surplus of px ⋅ψgx −wgx if the negotiation succeeds and 0 otherwise.

The worker obtains a surplus of wgx if the negotiation succeeds and wg otherwise. As before,

we assume that there is a positive mass of jobs that pay no rents at which workers can

always access. The wage wgx is determined by Nash bargaining, with workers’ bargaining

power given by βgx ∈ (0,1 − κ).

Lemma A3 (Representation result) The equilibrium of the bargaining economy co-

incides with that of our baseline model by taking ψ̃gx = ψgx ⋅(1−κ) and µgx =
(1−κ)⋅(1−βgx)

1−κ−βgx ≥ 1.

Proof. Free entry for firms implies

(1 − βgx) ⋅ (px ⋅ ψgx −wg) ≤ κ ⋅ px ⋅ ψgx.

This can be written as

px ≤ wg ⋅
µgx

ψgx ⋅ (1 − κ)
,

which coincides with E1 and E2 for ψ̃gx = ψgx ⋅ (1 − κ). Thus, the bargaining model gives

the same rule for allocating tasks across workers and capital than our baseline model with

exogenous wedges.

Moreover market clearing for task x ∈ Tg requires

ψgx ⋅ (1 − κ) ⋅ ℓgx = y ⋅
1

M
⋅ (ψgx ⋅ (1 − κ))

λ ⋅ (µgx ⋅wg)
−λ
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which coincides with E3 for ψ̃gx = ψgx ⋅ (1 − κ). Thus, the bargaining model gives the same

allocation of labor by tasks as our baseline model with exogenous wedges.

Turning to wages paid to workers, we have

wgx = βgx ⋅ px ⋅ ψgx + (1 − βgx) ⋅wg = µgx ⋅wg.

This implies the bargaining model gives the same wage payments by task as our baseline

model with exogenous wedges.

C Measurement and robustness checks.

C.1 Measuring task displacement

This subsection derives the measure of direct task displacement in equation (17).

First, let Rgi denote the set of routine tasks in industry i assigned to group g. Define

Γroutine
gi =∫

Rgi

ψλ−1xg ⋅ µ
−λ
xg ⋅ dx,

as the task share of group g in routine jobs at industry i. As discussed in the main text, we

assume that all groups experience the same displacement from routine jobs in industry i.

Formally, this implies d lnΓroutine,d
gi = χroutine

i . In addition, the assumption that non-routine

jobs are not automated implies

d lnΓdgi = (ℓ
routine
gi /ℓgi) ⋅ χ

routine
i ,(A24)

where ℓroutinegi /ℓgi is the share of employment of group g in industry i earned in routine jobs

(out of all employment of group g in industry i).

Let’s now turn to the labor share in industry i. This is given by

sℓi =
∑g Γgi ⋅ µgi ⋅w

1−λ
g

p1−λi

.(A25)

The direct effect of automation on the labor share sℓi holding wages constant is

d ln sdℓi = −∑
g

sgi
sℓi
⋅ d lnΓdgi ⋅

µAgi

µg
− (1 − λ) ⋅ d lnpi.
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Using the formula for d lnpi in (A22), we obtain

d ln sdℓi = −∑
g

sgi
sℓi
⋅ d lnΓdgi ⋅

µAgi

µgi
+ (1 − λ) ⋅∑

g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi

= −∑
g

sgi
sℓi
⋅ d lnΓdgi ⋅

µAgi

µgi
⋅ (1 − sℓi ⋅ (1 − λ) ⋅ πgi) .

Define the average cost-saving gains and average rent dissipation in industry i as

πi =
∑g sgi ⋅ d lnΓ

d
gi ⋅

µAgi

µgi
⋅ πgi

∑g sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi

, 1 + ρi =
∑g sgi ⋅ d lnΓ

d
gi ⋅

µAgi

µgi

∑g sgi ⋅ d lnΓ
d
gi

.

Using these definitions, we can write the change in labor shares as

d ln sdℓi = −(1 + ρi) ⋅ (1 − sℓi ⋅ (1 − λ) ⋅ πi) ⋅∑
g

sgi
sℓi
⋅ d lnΓdgi.

Using equation (A24), we can rewrite the change in the labor share as

d ln sdℓi = −(1 + ρi) ⋅ (1 − sℓi ⋅ (1 − λ) ⋅ πi) ⋅∑
g

sgi
sℓi
⋅ (ℓroutinegi /ℓgi) ⋅ χ

routine
i .(A26)

Using this equation, we can solve for the common rate of automation ωroutine
i as

χroutine
i =

1

∑g
sgi
sℓi
⋅ (ℓroutinegi /ℓgi)

⋅
1

1 + ρi
⋅

−d ln sdℓi
1 − sℓi ⋅ (1 − λ) ⋅ πi

.

A second use of equation (A24) then implies

d lnΓdgi = RCA
routine
gi ⋅

1

1 + ρi
⋅

−d ln sdℓi
1 − sℓi ⋅ (1 − λ) ⋅ πi

,

where the revealed comparative advantage measure is constructed as

RCAroutine
gi =

ℓroutinegi /ℓgi

∑g′
sg′i
sℓi
⋅ (ℓroutineg′i /ℓg′i)

.(A27)

C.2 Robustness checks

Acemoglu and Restrepo (2022) report a vast range of robustness checks for the reduced-

form relationship between group average wages and their direct task displacement due

to automation. Here, instead, we provide robustness checks for the relationship between
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automation and within-group wage dispersion and rents, which is the novel empirical aspect

in this paper.

Figure A1 provides a robustness check for the U-shaped pattern of within group wage

declines explored in Section 3.3. The left panel reports estimates by percentile in levels and

not relative to the 30th percentile as in the main text. The right panel reports estimates

constraining the estimation sample to groups with an average real wage in 1980 above

$13 dollars. The results in the right panel show that, once we focus on this group, wage

changes become flat below the 30th percentile. They also show that the bigger drop at top

percentiles is not driven by top workers in low-pay groups, but can also be seen among top

workers at highly paid groups.

Figure A1: Reduced-form relationship between wage changes across per-
centiles of the within-group wage distribution and task displacement. the
left panel plots estimates from a group quantile regression of changes in d lnwpg against task
displacement for percentiles p ranging from the 5th to the 99th. The lines provide estimates
for different specifications. The right panel excludes worker groups with an average hourly
wage below $13 dollars in 1980. This panel reports estimates relative to the 30th percentile.

Figure A2 provides a robustness check for the estimates in Section 3.3 exploring the

association between direct task displacement and group rents. In this case, rents are proxied

by the change in employment at industry and occupations that paid above-average wages

nationally in 1980,

∆ lnµreallocation
g = ∑

i,o

(
w̄io
w̄
− 1) ⋅∆ℓg,i,o.

The term w̄io

w̄ is a weighted average of
w̄gio

w̄g
across all groups, where the weights are given
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by group wage payments from industry i and occupation o.

β̂ = −0.52
(s.e= 0.07)

β̂ = −0.41
(s.e= 0.11)

Figure A2: Reduced-form relationship between rents and task displace-
ment. The left panel plots the bivariate relationship between change in group rents and
task displacement. The right panel partials out covariates, including gender and education
dummies, sectoral demand and rent shifters, and the manufacturing employment share of
groups in 1980. Rents are proxied by the change in employment at industry and occupations

that paid above-average wages nationally in 1980, ∆ lnµreallocation
g = ∑i,o (

w̄io

w̄g
− 1) ⋅∆ℓg,i,o.

Finally, Table A1 provides a summary of the reduced-form estimates linking direct task

displacement to group wages and rents. Table A2 provides various robustness checks for

our results for rent dissipation. Panel A measures wage compression relative to the 20th

percentile. Panel B measures rent compression relative to the 40th percentile. Panel C

measures rent compression relative to the 50th percentile. Panel D excludes groups with

an average wage below 13 dollars. Panel E estimates the reduced-form model for rent

dissipation for workers with no college degree. Panel F estimates the reduced-form model

for rent dissipation for workers with a college degree. These two panels show that rent

dissipation is visible among college and non-college workers, even though the estimates

become imprecise when separated by group.
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Table A1: Summary of reduced-form evidence, 1980-2016.

(1) (2) (3) (4)

Panel A. Dependent variable: percent change in group
average wage, ∆ ln w̄g

Direct task displacement
-2.43 -2.11 -2.11 -1.98
(0.14) (0.26) (0.28) (0.31)

Share variance task
displacement

0.66 0.57 0.57 0.53

R-squared 0.66 0.83 0.83 0.83

Panel B. Dependent variable: change in group rents,
∆ lnµg =∆ln w̄g −∆lnw30th

g

Direct task displacement
-0.38 -0.57 -0.53 -0.40
(0.06) (0.13) (0.11) (0.11)

Share variance task
displacement

0.24 0.36 0.34 0.25

R-squared 0.24 0.38 0.39 0.44

Panel C. Dependent variable: change in group rents due to

reallocation, ∆ lnµreallocation
g = ∑i,o (

w̄gio

w̄g
− 1) ⋅∆ℓg,i,o

Direct task displacement
-0.50 -0.37 -0.36 -0.41
(0.07) (0.11) (0.11) (0.11)

Share variance task
displacement

0.38 0.28 0.28 0.31

R-squared 0.38 0.61 0.61 0.61

Panel D. Dependent variable: change in group rents
(measured at national level) due to reallocation,

∆ lnµreallocation
g = ∑i,o (

w̄io

w̄ − 1) ⋅∆ℓg,i,o

Direct task displacement
-0.52 -0.38 -0.38 -0.41
(0.07) (0.11) (0.11) (0.11)

Share variance task
displacement

0.41 0.30 0.29 0.32

R-squared 0.41 0.64 0.64 0.64

Covariates:
Education and gender ✓ ✓ ✓

Sectoral demand shifters ✓ ✓ ✓

Sectoral rent shifters ✓ ✓

Manufacturing share ✓

Notes: This table presents estimates of the relationship between the direct task displacement due to
automation and the change in hourly wages and rents for 500 demographic groups, defined by gender,
education, age, race, and native/immigrant status. The dependent variable is indicated in the panel
headers. Column 2 controls gender and education dummies and sectoral demand shifters. Column 3
controls for sectoral rent shifters. Column 4 controls for the manufacturing employment share of groups in
1980. All regressions are weighted by total hours worked by each group in 1980. Standard errors robust
to heteroskedasticity are reported in parentheses.
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Table A2: Robustness checks for rent dissipation, 1980-2016.

(1) (2) (3) (4)

Panel A. Dependent variable: change in group rents,
∆ lnµg =∆ln w̄g −∆lnw20th

g

Direct task displacement
-0.45 -0.48 -0.45 -0.21
(0.08) (0.20) (0.18) (0.17)

Panel B. Dependent variable: change in group rents,
∆ lnµg =∆ln w̄g −∆lnw40th

g

Direct task displacement
-0.33 -0.59 -0.54 -0.44
(0.07) (0.15) (0.12) (0.11)

Panel C. Dependent variable: change in group rents,
∆ lnµg =∆ln w̄g −∆lnw50th

g

Direct task displacement
-0.12 -0.26 -0.23 -0.21
(0.06) (0.09) (0.08) (0.08)

Panel D. Dependent variable: change in group rents,
∆ lnµg =∆ln w̄g −∆lnw30th

g excluding low income groups

Direct task displacement
-0.27 -0.33 -0.34 -0.30
(0.07) (0.14) (0.12) (0.14)

Panel E. Dependent variable: change in group rents,
∆ lnµg =∆ln w̄g −∆lnw30th

g for non-college groups

Direct task displacement
-0.24 -0.58 -0.51 -0.34
(0.10) (0.15) (0.13) (0.13)

Panel F. Dependent variable: change in group rents,
∆ lnµg =∆ln w̄g −∆lnw30th

g for college groups

Direct task displacement
-0.71 -0.35 -0.36 -0.39
(0.25) (0.31) (0.36) (0.37)

Covariates:
Education and gender ✓ ✓ ✓

Sectoral demand shifters ✓ ✓ ✓

Sectoral rent shifters ✓ ✓

Manufacturing share ✓

Notes: This table presents estimates of the relationship between the direct task displacement due to
automation and various proxies of rents for 500 demographic groups, defined by gender, education, age,
race, and native/immigrant status. The details of each specification are indicated in the panel headers.
Panel A measures wage compression relative to the 20th percentile. Panel B measures rent compression
relative to the 40th percentile. Panel C measures rent compression relative to the 50th percentile. Panel
D excludes groups with an average wage below 13 dollars (N = 364). Panel E estimates the reduced-form
model for rent dissipation for workers with no college degree (N = 300). Panel F estimates the reduced-
form model for rent dissipation for workers with a college degree (N = 200). Column 2 controls gender and
education dummies and sectoral demand shifters. Column 3 controls for sectoral rent shifters. Column
4 controls for the manufacturing employment share of groups in 1980. All regressions are weighted by
total hours worked by each group in 1980. Standard errors robust to heteroskedasticity are reported in
parentheses.
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