

The effects of the 2022 Italian tax-benefit reform at local level using a spatial microsimulation model

Stefano Boscolo, Francesco Figari, Carlo Fiorio and Manos Matsaganis

June 2023

POST-COVID: POverty and vulnerability **S**cenarios in **T**he era of **COVID-19**: how the pandemic is affecting the wellbeing of the Italians

The problem (1)

- Most of EUROMOD-based research at national level
 - Enabling cross-country comparisons key motivation for creating the model in the first place
 - > **Policy-making powers** overwhelmingly rest with national governments
 - Sample size of SILC and similar datasets used in EUROMOD designed to ensure statistical representativeness at national, NUTS-1 (macro areas), or in some cases NUTS-2 level (IT: *Regioni*; ES: *Comunidades Autónomas*), but no further

The problem (2)

- **Growing importance of local level** as the focus of analysis
 - Effects of the same macro-economic shock typically vary by small areas, changing the geography of prosperity, employment, poverty, inequality etc.
 - Spatial inequalities occasionally erupt on the national scene: Brexit / Trump / Gilets jaunes (see Rodriguez-Pose's 2018 paper "The revenge of the places that don't matter")
 - Devolution of tax-benefit policies from central to local (i.e. regional or municipal) authorities

The problem (3)

- In order to make MSM or EUROMOD more 'granular', enabling analysis at the small area level, we would ideally need a dataset which can be used both:
 - > to **explore spatial variation** in living conditions

and

- > to **monitor the effects of changes** in tax-benefit policies
- Such a dataset **does not currently exist**

Solutions (1)

- What are the remedies?
- The obvious solution would be to **increase the sample size of SILC** to ensure statistical significance at NUTS-3 level (in IT, ES: provinces), or conceivably even lower
- Disadvantages:
 - Prohibitive cost
 - SILC already now enables analysis at NUTS-2 level only in some countries (IT, ES)

Solutions (2)

- An alternative might be to run EUROMOD on **registry data** (e.g. tax returns)
- Registry data could well be the future: high accuracy, granular at local level, large number of observations (big data)
- Disadvantages:
 - Privacy concerns
 - Limited coverage of some vulnerable populations (e.g. non-tax payers)
 - Limited access

Solutions (3)

- Another option is to impute into population census data an outcome variable (e.g. equivalised disposable income; poverty status) from household survey data—whose sample size is too small for small area disaggregation
 - World Bank method based on regressions (Elbers et al. 2003)
 - > M-quantile approach (Chambers and Tzavidis 2006; Giusti et al.)
 - Empirical Best Prediction approach (Molina and Rao, 2010)
- However, in order to adapt the multiple outcomes of a tax-benefit microsimulation model to small areas we need to retrieve the whole information set from surveys

Solutions (4)

- Spatial microsimulation is the third solution
 - > Create a synthetic dataset
 - … in order to augment the power (and local granularity) of the income survey routinely used for distribution analysis
 - ... by drawing on publicly-available information (e.g. cross-tabulations) on the characteristics of the local communities of interest
 - Geographers have been using this approach for over twenty years (Ballas, 2001)

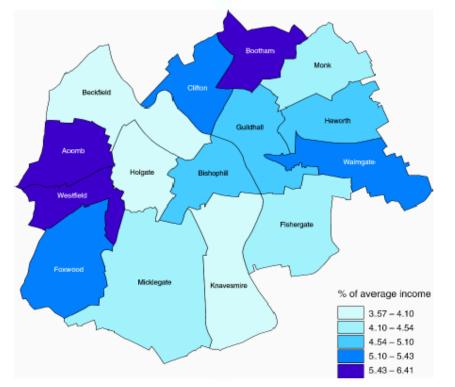
SimBritain (1)

Contemporary research issues

Geography matters

Simulating the local impacts of national social policies

Dimitris Ballas, David Rossiter, Bethan Thomas, Graham Clarke and Danny Dorling

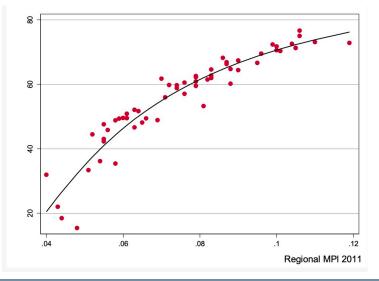

- Early example of spatial microsimulation: SimBritain was produced by combining the Census small-area population data with the British Household Panel Survey (BHPS)
- Joseph Rowntree Foundation report (2005)
- "This report explores how to develop new spatial microsimulation techniques to combine census small area data with the British Household Panel Survey in order to build and update a small area population microdata set in Britain at various geographical scales between 1991-2021."

SimBritain (2)

- > *SimBritain* was adapted for local use in various UK settings:
 - > *SimYork* (for the analysis of population dynamics in the city of York)
 - > SimLeeds (for the analysis of the labour market in the city of Leeds)
 - > *SimAlba* (for the analysis of health policy in Scotland)
 - ... and possibly others

SimYork

Figure 40 Spatial distribution of additional income per household as a proportion of average household income by ward, after the implementation of the April 2003 Tax Credits


- Effects of a UK tax-benefit reform (2003)
- … in the city ofYork
- ... by electoral ward
- (average size: 5,500 individuals)

SMILE and SimAthens

- SMILE (Simulation Model for the Irish Local Economy) was another such offshoot
- Ballas D., Clarke G.P. & Wiemers E. (2005) Building a dynamic spatial microsimulation model for Ireland. Population Space and Place.
- SimAthens based on ECHP/EU-SILC and Census data
- Panori A., Ballas D. & Psycharis Y. (2016) SimAthens: A spatial microsimulation approach to the estimation and analysis of small area income distributions and poverty rates in the city of Athens. Computers, Environment and Urban Systems.

"The revenge of the places that don't matter" Greek-style

Multiple Poverty Index value in 2011 vs. share of "No" vote at the 2015 referendum by municipality in Greater Athens

EUROMODspatial Italy (1)

- EUROMODspatial Italy is the latest addition
- The model
 - ... is based on EUROMOD to simulate the 2022 tax-benefit reform
 - ... uses cross-tabs from the 2018 Census and income tax returns
 - ... to reweight the IT-SILC dataset EUROMOD currently runs on
 - ... so it is representative at NUTS-3 level (107 Italian provinces)

EUROMOD

- A static multi-country tax-benefit microsimulation for the EU (Sutherland and Figari, 2013)
- 27 countries [+ UK] (mainly) using the EU-SILC as input data
- Yearly update (policy and data, up to very recent policy system)
- Simulation of
 - Income taxes, employee and employer SICs, benefits that depend on current income and observed characteristics
 - Plus unemployment benefits, with assumptions
 - Remaining benefits (e.g. contributory pensions, disability benefits) taken from input data and updated to policy year where necessary
 - (non cash income and indirect taxes for selected countries)
- Free for research purposes subject to obtaining microdata access permission (European Commission JRC Seville and Eurostat)

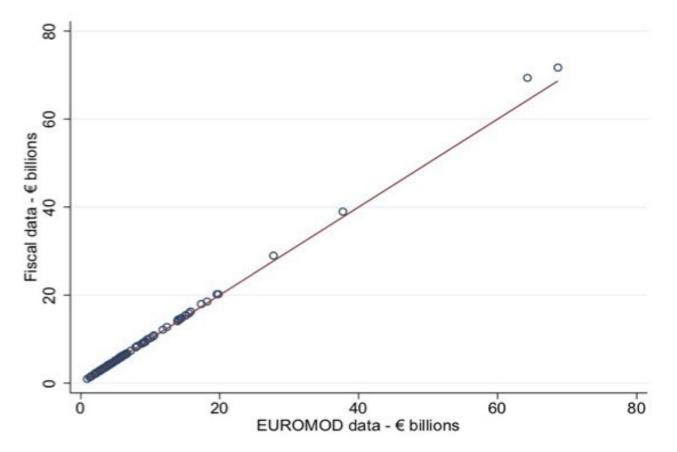
Italy's 107 provinces

EUROMODspatial Italy (2)

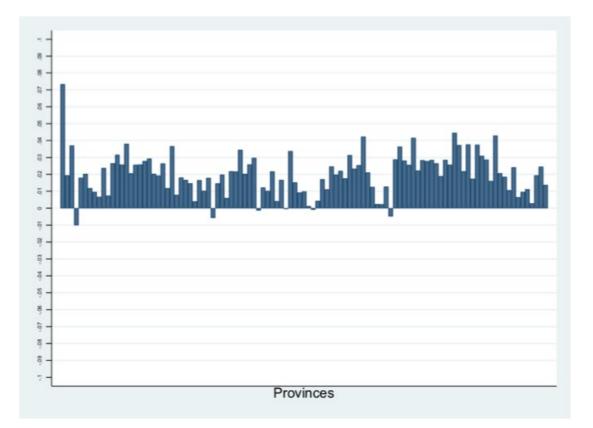
- Small-area constraint variables at individual level
 - from the Census:
 - gender (2)
 - > age (17)
 - marital status (4)
 - education (5)
 - main economic activity (5)
 - from tax return data:
 - number of taxpayers by income class (8)
- Small-area constraint variables at household level
 - from the Census:
 - Number of components in the household (7)
 - Housing tenure (3)

EUROMODspatial Italy (3)

- Reweighting approach
 - start from the IT-SILC sample for a given region (NUTS-2)
 - match the aggregate IT-SILC variables to the Census variables
 - assign to every record a **new weight** for every province (municipality) to make it representative of that small area
 - Example: the 5,000 observations of the IT-SILC sample for Lombardy (NUTS-2) are reweighted to create 12 synthetic micro datasets – one for each of Lombardy's 12 provinces (NUTS-3)


Final sample contains 277,286 observations

Reweighting approaches


- probabilistic, which typically reweight an existing national microdata set to fit a geographical area description on the basis of random sampling and optimisation techniques
- > deterministic, which reweight a non geographical population microdata set to fit small area descriptions, but without the use of random sampling procedures. Such approach uses the iterative proportional fitting (IPF) technique to give a weight to each individual, by adjusting for each constraint variable the initial weight through a reweighting algorithm

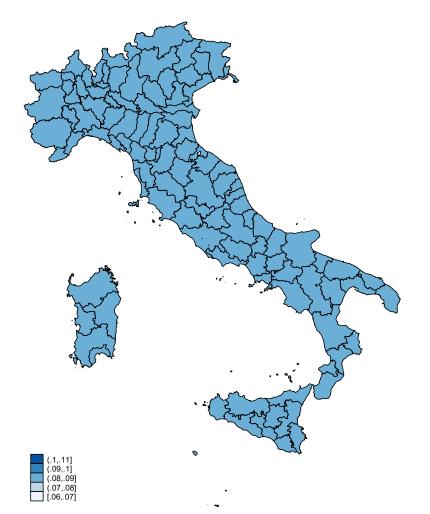
EUROMODspatial Italy (5)

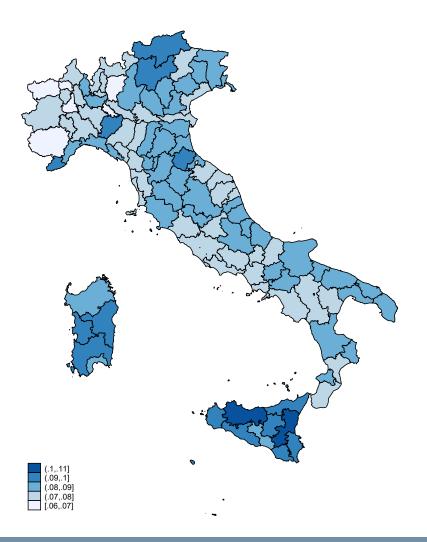
External validation: estimates of total taxable income by province from *EUROMODspatial* remarkably close to registry data (income tax returns)

External validation: *EUROMODspatial* underestimates total taxable income by province with respect to registry data mostly in a range between 1%-3%

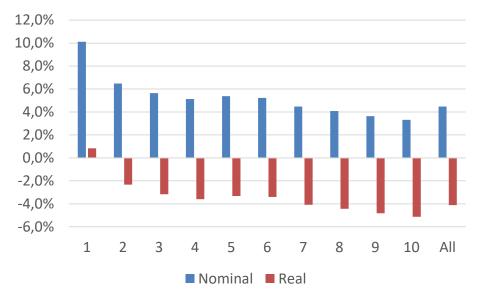
EUROMODspatial Italy (7)

- Simulation of 2022 policy changes: income taxes and social contributions
- PIT reform
 - > no. of tax brackets reduced
 - tax rates reduced
 - tax credits made more generous
 - (except for child tax credits, which were abolished)
- EESIC cut
 - Employee social contribution rate reduced by 0.8 pp (January-June 2022) and by a further 1.2 pp (July-December 2022) if labour income below €35,000 p.a.

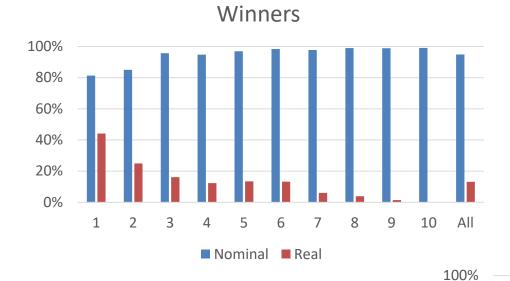

EUROMODspatial Italy (8)


- Simulation of 2022 policy changes: social benefits
- Introduction of new child benefit (*Assegno unico e universale per i figli a carico AUU*)
 - non-categorical: replaces contributory family allowance (Assegno per il nucleo familiare) only available for children of employees (incl. retired ones)
 - > **universal**: all eligible for at least the minimum rate (€50 pcm per child)
 - means-tested supplements available (up to the maximum benefit rate of €175 pcm)

EUROMODspatial Italy (9)


- Simulation of 2022 tax-benefit reform: Main results (at national level with fixed nominal incomes)
 - > Net reduction in PIT revenue: €2.5 billion
 - > Net reduction in SIC revenue: €2.3 billion
 - > Net cost of new child benefit: €9.8 billion
 - > Inequality of disposable income (Gini): from 0.3278 (2021) to 0.3219 (2022)
 - > Poverty rate (poverty line anchored to 2021): from 18.9 (2021) to 16.5 (2022)
 - Child poverty rate (poverty line anchored to 2021): from 23.89 (2021) to 18.78 (2022)
 - ✓ But what about effects in real terms and at local level?

Consumer price index at provincial level



Nominal vs real effects, national level

Mean disposable income

Nominal vs real effects, national level

80%

60%

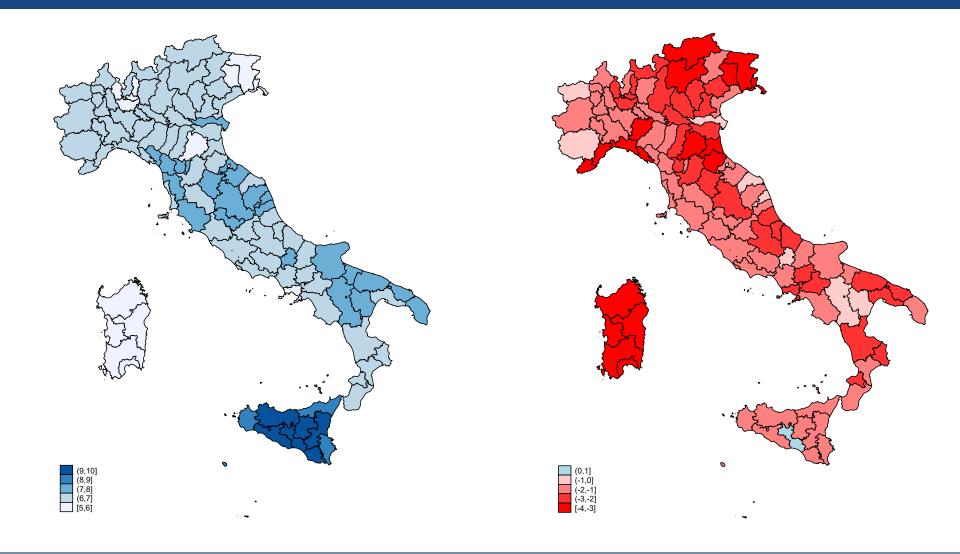
40%

20%

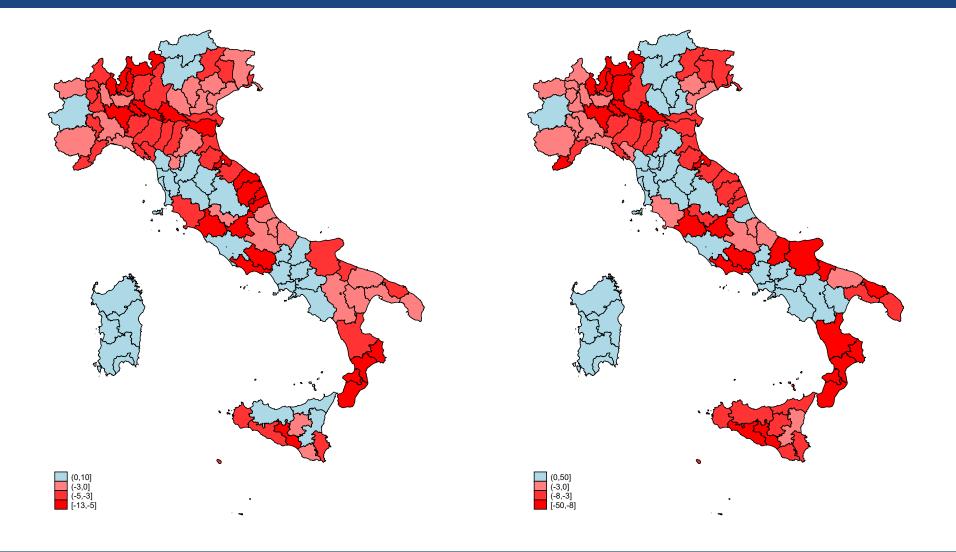
0%

1

2



9


10

All

Change in disposable income - Nominal vs real effects

Change in poverty rates (all(sx) and children(dx)), REAL

Concluding remarks (1)

- Previous research has demonstrated the added value of spatial microsimulation as a useful extension to the scope of a national model
 - ✓ It adds a small-area dimension to EUROMOD that has eluded us for long
 - ... at a time of growing interest in the local effects of national policies
 - ... and of tax-benefit policies that have been devolved to sub-national level

Concluding remarks (2)

- The underlying methodology
 - has been validated (in the geography literature)
 - ✓ appears to produce perfectly plausible results
 - ... and is sufficiently honed for its application to be relatively straightforward
- However
 - Reweighting needs to consider individual and household level constraints (and joint distributions)
 - Point estimates needs to be accompanied by confidence intervals
 - Temporal price indexes are a second best given the lack of spatial price indexes