Dissecting Mechanisms of Financial Crises: Intermediation and Sentiment

Arvind Krishnamurthy¹ Wenhao Li²

¹Stanford Graduate School of Business, SIEPR and NBER

²USC Marshall Business School

March 18, 2022

Bank of Italy and Bocconi University Conference on "Financial stability and Regulation"

The Financial (Banking) Crisis Cycle: Mean Path

Figure: Mean paths of credit spread, bank credit, and GDP of 41 financial crises, 1870-2014.

Notes: Units for spread path are 0.5 means spreads are 0.5σ s above average for a given country. Units for credit path are that 5 indicates that credit/GDP is 5% above the trend for a given country. Units for GDP path are that -8 means that GDP is 8% below trend for a given country. **Source**: Krishnamurthy and Muir (2017); Banking Crises dated by Jorda, Schularick, and Taylor (2011).

Cross-section Crisis Cycle Facts: Severity

Figure: 3-Year GDP Growth after a Crisis

Conditional on a crisis, we observe:

- ► Left-skewed GDP growth
- Larger post-crisis output drop
 More pre-crisis bank credit, or larger in-crisis spike of credit spread.

Cross-section Crisis Cycle Facts: Predictability and Risk Premium

Predicting crises:

$$Prob(Crisis_{i,t}|Credit_{i,t-1},CreditSpread_{i,t-1})$$

Higher credit growth predicts more crises (Schularick and Taylor 2012) and equity crashes (Baron and Xiong 2017)

- ▶ Higher credit growth predicts lower expected excess bond/equity returns (Greenwood and Hanson 2013; Baron and Xiong 2017)
- ► Lower credit spread before crises (Krishnamurthy and Muir 2017)

Mechanisms?

- 1. Financial intermediation (Brunnermeier and Sannikov 2014)
 - Losses reduce equity capital and cause disintermedation
 - ► Credit contraction ... amplification mechanism
- 2. Beliefs/Sentiment
 - ► Good news ⇒ more optimistic ⇒ growth of credit and decline in credit spread.
 - ▶ Bad news ⇒ sharp revision of beliefs ⇒ transition to crisis.
 - ► Bayesian updating, similar to Moreira and Savov (2017)

or Diagnostic updating, as in Bordalo, Gennaioli, Shleifer (2018)

* Literature: Maxted (2020)

This Paper

- ► Financial intermediation mechanism matches crises severity and post-crisis dynamics, but fails to match crisis predictability and low pre-crisis risk premium.
- Financial intermediation + time-varying beliefs (Bayesian/Diagnostic) match all crises cycle facts.
 - ▶ Introducing diagnostic belief improves quantitative fit.
 - Caking (time-varying belief) v.s. Icing (behavioral)

▶ A lean-against-the-wind policy has similar impact in both Bayesian and diagnostic belief models, conditional on same observables.

Model

Model Evaluation

Summary

Agents and Preferences

▶ Two agents: bankers and households, optimizing expected log utility.

$$\max E^{belief} \left[\int_0^\infty e^{-\rho t} \log(c_t) dt \right]$$

- Bankers raise only demandable debt and inside equity (banker wealth).
- ▶ Production is through 'A-K" technology. Bank productivity \bar{A} > household productivity \underline{A} .
- ▶ Kiyotaki and Moore (1997), Brunnermeier and Sannikov (2014)

Shocks

Capital accumulation process:

$$\frac{dk_t}{k_t} = \underbrace{\mu_t^K dt}_{\text{growth, Q-theory}} - \underbrace{\delta dt}_{\text{depreciation}} + \underbrace{\sigma^K dB_t}_{\text{capital shock}}$$

where dB_t is a Brownian motion representing "real" shocks.

- ▶ Illiquidity (purely financial) shock dN_t with hidden intensity $\tilde{\lambda}_t$.
 - Exogenous shock triggers rolling over problems of bank debt, asset sales, and a loss spiral. (microfoundations in Li (2019))
 - ► High fragility + illiquidity shock may lead to a banking crisis.

Beliefs

▶ Hidden intensity $\tilde{\lambda}_t \in \{\lambda_H, \lambda_L = 0\}$ is a continuous-time Markov process with switching rate $\lambda_{H \to L}$ and $\lambda_{L \to H}$. Expected intensity is $E_t^{belief}[\tilde{\lambda}_t]$.

Q

State Variables and Endogenous Outcomes

- ► State variables:
 - w₊: banker wealth share
 - $\triangleright \lambda_t$ (Bayesian) or λ_t^{θ} (Diagnostic): expected intensity of illiquidity shock
 - $ightharpoonup K_t$: scale of the economy (this state variable can be "eliminated")
- Endogenous outcomes:
 - Output: "AK" technology
 - ▶ Value of capital = $p(w_t, \lambda_t)$
 - ▶ Bank credit: amount of capital held by the banks.
 - Credit spread: defaultable bond yield safe bond yield.
 - ▶ Crisis: a period when bank credit growth is below 4% quantile. Not the same as dN_t !

Prob of crisis = Leverage
$$\times \tilde{\lambda}_t$$

Financial Amplification Mechanism

Financial Amplification Mechanism (With Illiquidity Shock)

Financial Amplification Mechanism (Conditional Response)

Model Calibration Strategy

- ▶ We evaluate three versions of the model.
 - Static belief model: no belief variation.
 - Rational model: Bayesian belief.
 - Diagnostic model: diagnostic belief.

- ▶ We separately solve parameters for each model to match the same targets.
 - ► Targets: average output declines in a crisis, · · ·
 - Cross-section results are not targeted and used as evaluations.

Model

Model Evaluation

Summary

Criss-section: Left-Skewed Distribution of 3-Year Post-Crisis GDP Growth $\sqrt[]{\sqrt{}}$

Severity of Crises, Bank Credit, and Credit Spread \checkmark \checkmark

▶ Intermediation mechanism is enough.

	Dependent variable: GDP Growth from t to $t+3$							
	Static Belief		Bayesian		Diagnostic		Data	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Δ credit spread $_t*$ crisis $_t$	-5.35		-3.18		-3.45		-7.46 (0.16)	
$(\frac{bank\;credit}{GDP})_t *crisis_t$		-1.04		-2.40		-3.23	, ,	-0.95 (0.30)
Observations							641	641

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one sigma change in spreads, and bank credit/GDP.

Pre-Crisis Low Credit Spread $X \checkmark \checkmark$

- Krishnamurthy and Muir (2017): credit spread is unusually low in the pre-crisis period
- Static belief model fails to match pre-crisis spreads. Sign is wrong!

	Dependent variable: credit spreadt				
	Static Belief	Bayesian	Diagnostic	Data	
	(1)	(2)	(3)	(4)	
pre-crisis indicator	0.28	-0.18	-0.26	- 0.34 (0.15)	
Observations				634	

Note: regression is: $s_t = \alpha + \beta \cdot 1\{t \text{ is within 5-year window before a crisis}\} + controls$. For both model and data, controls include an indicator of within 5 years after the last crisis. Data regression has more controls such as country fixed effect.

Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

- one state variable w
 - * crises more likely
 - \Leftrightarrow low bank equity w
 - ⇔ higher bank fragility
 - ⇔ higher risk premium

Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

- one state variable w
 - * crises more likely
- \Leftrightarrow low bank equity w
- ⇔ higher bank fragility
- ⇔ higher risk premium

Why the Bayesian model works?

Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

- one state variable w
 - * crises more likely
 - \Leftrightarrow low bank equity w
 - ⇔ higher bank fragility
 - ⇔ higher risk premium

Why the Bayesian model works?

Key: slope of the risk taking – belief relationship.

Predicting Crises with High Bank Credit

Prob of crisis \propto Leverage $imes ilde{\lambda}_t$

Predicting crisis is a race between two effects: As $\tilde{\lambda}_t$ falls:

$$\underbrace{\mathsf{Leverage}}_{\uparrow} \times \underbrace{\tilde{\lambda}_t}_{\downarrow}$$

- ▶ In both Bayesian and Diagnostic belief models, leverage is inversely related to $\tilde{\lambda}$.
- ▶ Slope is higher in diagnostic model...
- ▶ But the effects play out qualitatively similarly

Model

Model Evaluation

Summary

Summary

- ► Financial intermediation mechanism matches crises severity and post-crisis dynamics, but fail to match crisis predictability and low pre-crisis risk premium.
- ► Financial intermediation + time-varying beliefs (Bayesian/Diagnostic) explain all crises cycle facts.
- ▶ A lean-against-the-wind policy has similar impact in both Bayesian and diagnostic belief models, conditional on same observables.

Appendix

Predicting Crises

Leaning Against the Wind: Bayesian vs Diagnostic

Bank Credit Predicts Crises $X \checkmark \checkmark$

- ► The static-belief model fails again.
- ▶ Both Bayesian and diagnostic model qualitatively match data.

	De	Dependent variable: crisis _{t+1 to t+5}					
	Static Belief	Bayesian	Diagnostic	Data			
	(1)	(2)	(3)	(4)			
$HighCredit_t$	-0.51	0.21	0.51	0.55 (0.46)			
Observations				549			

Note: HighFroth measures if spreads have been abnormally low in the last 5 years. HighCredit measures if credit growth has been abnormally high in the last 5 years.

Predicting crises using high leverage

Prob of crisis = Leverage
$$\times \, \tilde{\lambda}_t$$

Predicting crisis is a race between two effects: As $\tilde{\lambda}_t$ falls:

$$\underbrace{\mathsf{Leverage}}_{\uparrow} \times \underbrace{\tilde{\lambda}_t}_{\downarrow}$$

- lacktriangle Leverage rises faster (as a function of $E_t[\tilde{\lambda}_t]$) in diagnostic model
- ▶ But the effects play out similarly in both Bayesian and Diagnostic belief models

Predicting Crises

Leaning Against the Wind: Bayesian vs Diagnostic

Average Impact of a 10% Recapitalization Policy

- ► Policy: recapitalization to "lean against the wind"
- Initial state: boom (high lev,low spread)
- Simulation: $dN_t = 1$ after the policy, but $dN_t = 0$ otherwise. dB_t randomly generated.
- ► Impact = log(with policy) log(without policy).

Average Impact of a 10% Recapitalization Policy

- Impact is similar.
- Initial state solved via observables – the same credit spread and bank leverage.
- ▶ Both models are calibrated to the same moment targets.

Average Impulse Response Difference to a 10% Recapitalization Policy

- Diagnostic model uses Bayesian belief model parameters
- ► And adds a new parameter.
- "Comparative static"