Granular Credit Risk

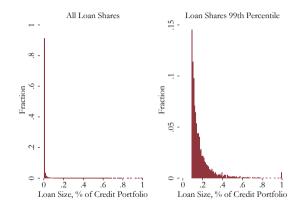
Sigurd Galaasen¹ Rustam Jamilov² Ragnar Juelsrud¹ Hélène Rey³

¹Norges Bank. This presentation does not nescessarily reflect the official views of Norges Bank and should not be reported as such.

²All Souls College, University of Oxford

³ London Business School, CEPR and NBER

Motivation


- **Our question:** To what extent are idiosyncratic shocks to borrowers a source of risk for banks and the economy?
- None, if banks are well-diversified
- What if portfolios are **concentrated**?
 - A few firms makes up a disproportionately large fraction of the credit portfolio ("single name concentration risk")
- Interesting and important question both **academically** and from a **regulatory perspective**
 - How plausible is the assumption of perfect diversification against idiosyncratic risk?
 - Source of idiosyncratic bank returns (Mendicino et.al 2020, Jamilov 2021)
 - Risk-management of large exposures

Data

We combine annual administrative/supervisory data from three sources

- 1. Matched firm-bank data from the Norwegian Tax Authority
 - covers all limited liability companies
 - yearly interest paid (R_t) and end-of-year stock of debt (D_t)
 - loan-level (we aggregate to relationship \times year level)
- 2. Firm data from a credit rating agency on the universe of Norwegian limited liability companies
 - ratings, balance sheet and income statement data
- 3. Supervisory bank data
 - Balance sheet and income statement data on all Norwegian banks
 - Time period: 2003 2015
 - $\,\approx$ 330'000 firm $\times \, bank \times \, year$ observations

Loan size distribution is concentrated

- 80 % of outstanding corporate credit in 20 % of the loans (Pareto Principle)

Estimating firm performance shocks

Extract **unexplained variation in value added (VA)** for firm *j*, operating in (two-digit) sector *s*, located in county *z* at time *t*

$$\ln VA_{j,t} = \beta_1 \ln K_{j,t} + \beta_2 \ln W_{j,t} + \lambda' \mathbf{X}_{j,t} + \alpha_j + \gamma_{s(j),z(j),t} + \epsilon_{j,t}$$

- where
 - K is book capital, W is wage-bill
 - Firm characteristics (X): liquidity, leverage, credit rating, age and age²
 - Firm and sector × region × year fixed effects
- $\epsilon_{j,t} \equiv$ "idiosyncratic firm shock"

Shock properties

- $\epsilon_{j,t}$ is idiosyncratic
 - $\epsilon_{i,t}$ on average uncorrelated across firms and across time \rightarrow Correlations
 - Results robust to extracting latent common factors from $\epsilon_{i,t}$ Shock properties
- $\epsilon_{j,t}$ is not just noise
 - Link to narrative evidence for bottom 1 %
 - Strong correlation with loan-level returns

Relationship-level impact: setup

Estimate impact of $\epsilon_{j,t}$ on loan-level returns by regressing

$$\mathsf{RoL}_{i,j,t} = \beta \epsilon_{j,t} + \alpha_{i,t,\tau(j),z(j),s(j)} + \nu_{i,j,t}$$

where

- τ captures credit line vs. other loans
- $\alpha_{i,t,(\cdot)}$ is a bank x sector x year x loan-type x county FE
- ν_{i,j,t} is
 - clustered at firm-year level
 - corrected for estimated regressor bias
- Standardize $\epsilon_{i,t} \Rightarrow \beta$: pp. impact on loan return from a 1 SD idiosyncratic firm shock

Relationship-level impact: idiosyncratic shocks correlate with loan returns

	(1)	(2)	(3)
	Depender	nt Variable: F	Return on Loan
$\epsilon_{j,t}$	0.334	0.335	0.361
	(0.016)	(0.017)	(0.018)
Bank x Sector x Year FE	No	Yes	No
Bank x Sector x Year x Loan-type x County FE	No	No	Yes
Number of Observations	333'289	317'186	292'825
R ²	0.001	0.127	0.184
	7.42%	7.43%	7.47%
SD(RoL)	7.26%	7.27%	7.20%

Latent factor extraction

Bank level outcomes

- Can banks diversify this risk?
- We compute a "Granular Credit Shock" for each bank×year

$$ar{\epsilon}_{i,t} \equiv \sum_{j\in J(i)} s_{i,j,t} \epsilon_{i,j,t}$$

- $s_{i,j,t}$ is the share of the relationship between bank *i* and firm *j* in *i*'s credit portfolio in year *t*
- Estimate

$$Y_{i,t} = \beta \bar{\varepsilon}_{i,t} + \alpha_i + \eta_t + \nu_{i,t}$$

- Y_{i,t}: interest income relative to total debt for the corporate loan portfolio ("RoA")
 - other outcomes: writedowns, income from hedging instruments
- Identification:

$$\mathbb{E}\left(\nu_{i,t}|\bar{\epsilon}_{i,t},\alpha_{i},\eta_{t}\right)=\mathbf{0}$$

Threats to identification

- Threat to identification: Unobserved bank $\times \, \text{year}$ factors
 - Example: Change in credit supply: $Y_{i,t} \uparrow$ and $\bar{\epsilon}_{i,t} \downarrow$
- Our approach: Granular Instrumental Variable (GIV)
 - Gabaix & Koijen (2020)
- Main idea: exploit the fat-tailedness of the loan-size distribution

GIV: Granular Instrumental Variable

$$Y_{i,t} = \beta \underbrace{\sum_{j=\varepsilon_{i,t}}^{\equiv \overline{\varepsilon_{i,t}}}}_{j,j,t} + \alpha_i + \eta_t + \nu_{i,t}$$

Suppose: $\epsilon_{j,t} = \delta v_{i,t} + u_{j,t}$.

- $u_{j,t}$ is truly exogenous

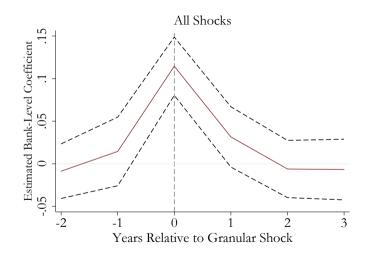
GIV: Granular Instrumental Variable

$$Y_{i,t} = \beta \underbrace{\sum_{j=\varepsilon_{i,t}}^{\Xi \overline{\varepsilon_{i,t}}}}_{j,t} + \alpha_i + \eta_t + \nu_{i,t}$$

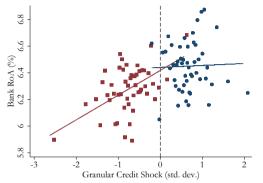
Suppose: $\epsilon_{j,t} = \delta v_{i,t} + u_{j,t}$.

- $u_{j,t}$ is truly exogenous

Solution: purge out $v_{i,t}$ by constructing a GIV

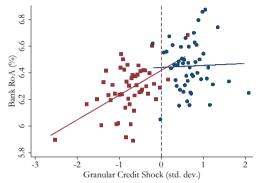

$$GIV_{i,t} \equiv \sum_{j} s_{i,j,t} \epsilon_{j,t} - \sum_{j} \frac{1}{N_{i}} \epsilon_{j,t} = \sum_{j} s_{i,j,t} u_{j,t} - \sum_{j} \frac{1}{N_{j}} u_{j,t}$$

- Results robust to allowing loading δ to be heterogeneous across firms \bullet Heterogeneous δ \bullet First stage


Identification with the GIV

- Exclusion restriction: $\forall i, t : \sum_{j=1}^{N} \mathbb{E} \left[s_{i,j,t} u_{j,t} v_{i,t} \right] = 0$
- Potential concern: firm shock and loan shares are correlated
- Alleviated due to two factors
 - By construction: $\epsilon_{i,t}$ is orthogonal to firm size
 - Loan shares $s_{i,j,t}$ based on debt in t-1 and t

Dynamic bank response



Bank-level portfolio returns

- Granular Credit Shock \downarrow by 1 s.d \Rightarrow RoA \downarrow by 11.6 bsp
- Granular Credit Shocks explains 8.6 % of dispersion in RoA across banks Table
- Asymmetric effects: Granular Credit Shock (<0) \downarrow by 1 s.d \Rightarrow RoA \downarrow by 19.4 bsp.

Bank-level portfolio returns

- Granular Credit Shock \downarrow by 1 s.d \Rightarrow RoA \downarrow by 11.6 bsp
- Granular Credit Shocks explains 8.6 % of dispersion in RoA across banks Table
- Asymmetric effects: Granular Credit Shock (<0) \downarrow by 1 s.d \Rightarrow RoA \downarrow by 19.4 bsp.
- No evidence of hedging
 More
- Not driven by "small-N". Effect increases degree of portfolio concentration. Table

Firm spillover: credit supply

- Shocks to granular borrowers impact bank outcomes
- What are the implications for bank lending?
- Run Khwaja-Mian (2008) regression

 $\Delta Y_{i,j,t} = \beta \Delta \bar{\epsilon}_{i,t} + \alpha_i + \alpha_{j,t} + \nu_{j,i,t}$

- Y_{i,j,t} is either log(loan volumes) or log(interest paid)
- Sample: Firms borrowing from multiple banks
 - $\alpha_{i,t}$ is firm × year FE
 - Identifying assumption: credit demand fixed at the firm \times year level
- Focus primarily on non-granular borrowers
 - Loan-share below median or in the 1st quartile

Spillovers to non-granular borrowers: lower credit growth

	(1)	(2)	(3)	(4)	(5)	(6)		
	Dependent Variable: Δ Loan volume							
Δ Granular Credit Shock	0.023	0.022	0.165	0.625	0.168	0.717		
	(0.043)	(0.043)	(0.129)	(0.288)	(0.136)	(0.311)		
Firm x Year FE	Yes	Yes	Yes	Yes	Yes	Yes		
Bank FE	No	No	No	No	Yes	Yes		
Non-Granular Firms (50%)	No	No	Yes	No	Yes	No		
Non-Granular Firms (25%)	No	No	No	Yes	No	Yes		
Instrumented by GIV	No	Yes	Yes	Yes	Yes	Yes		
Observations	15279	15279	3449	348	3413	322		

- Granular credit shocks $\downarrow \Rightarrow$ credit volumes \downarrow

Spillovers to non-granular borrowers: higher interest payments

	(1)	(2)	(3)	(4)	(5)	(6)		
	Dependent Variable: Δ Interest flow							
Δ Granular Credit Shock	-0.004	-0.017	-0.361	-0.341	-0.421	-0.634		
	(0.064)	(0.066)	(0.189)	(0.417)	(0.190)	(0.448)		
Firm x Year FE	Yes	Yes	Yes	Yes	Yes	Yes		
Bank FE	No	No	No	No	Yes	Yes		
Non-Granular Firms (50%)	No	No	Yes	No	Yes	No		
Non-Granular Firms (25%)	No	No	No	Yes	No	Yes		
Instrumented by GIV	No	Yes	Yes	Yes	Yes	Yes		
Observations	15279	15279	3449	348	3413	322		

- Granular credit shocks $\downarrow \Rightarrow$ interest rates \uparrow

Taking stock

- Textbook credit supply shock: quantities \downarrow , prices \uparrow
- Does it matter for the real economy?
 - Bank loans are primary source of non-equity external finance
 - Sticky firm-bank relationships
- Restrict attention to non-granular firms (\approx 15% of aggregate capital stock)
- Estimate

$$\Delta Y_{j,t} = \alpha_{s(j),t,\kappa(j)} + \beta \Delta \bar{\epsilon}_{i(j),t} + \eta_{j,t}$$

- $\kappa(j)$ denotes credit rating
- Threat to identification: Production network spillovers
- Robustness: Estimate on sample of "sufficiently downstream firms"
 - Compute demand of all other sectors for sector z's output ("inter-sector exposures")
 - Restrict attention to sectors where the max inter-sector exposure is within the 1st quartile

Spillovers to non-granular borrowers: lower capital investments

	(1) ∆Log(capital)	(2) ∆Log(sales)	(3) ∆Log(wage bill)	(4) ∆Log(Cash)
Δ Granular Credit Shock	0.241 (0.095)	0.001 (0.031)	0.007 (0.040)	0.142 (0.146)
Instrumented by GIV	Yes	Yes	Yes	Yes
Year-Sector-Rating FE	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes
Bank FE	Yes	Yes	Yes	Yes
Non-Granular Firms (50%)	Yes	Yes	Yes	Yes
Observations	39861	44547	45452	43994

- Granular credit shock $\downarrow \Rightarrow$ Capital growth \downarrow for non-granular clients \blacktriangleright Robustness

Spillovers to non-granular borrowers: higher probability of bankruptcy

Probit Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		Pro	bability o	f bankrup	tcy _t		Ever bankrupt
Δ Granular Credit Shock _t	-0.609	-0.680					
	(0.110)	(0.196)					
Δ Granular Credit Shock _{t-1}			-0.322	-0.965	-1.081		
			(0.123)	(0.203)	(0.346)		
Δ Granular Credit Shock _{t-3}						-0.703	
						(0.239)	
Δ Granular Credit Shock _t							-1.273
							(0.281)
Non-Granular Firms (50%)	No	Yes	No	Yes	No	Yes	Yes
Non-Granular Firms (25%)	No	No	No	No	Yes	No	No
Instrumented by GIV	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	61819	35965	50897	29451	15220	16648	35965

- Granular credit shock $\downarrow \Rightarrow$ Bankruptcy propensity \uparrow for non-granular clients \rightarrow Robustness

Summary

We provide causal empirical evidence on the role of single name concentration risk

1. Shocks to granular borrowers impact bank outcomes

1 sd shock $\downarrow \Rightarrow$ bank RoA \downarrow 11.6 bps Concave relationship. No evidence of insurability/hedging

2. Banks respond by cutting credit and increasing interest rates to **non-granular firms** 1 sd shock $\downarrow \Rightarrow$ credit to non-granular clients \downarrow , interest payments \uparrow

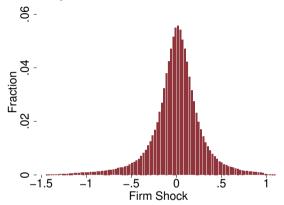
3. Impacted non-granular firms cut investment; bankruptcies go up

1 sd shock $\downarrow \Rightarrow$ investment \downarrow 24 bps, bankruptcy prob. \uparrow 60-90 bps Non-granular firms \geq 15% of agg. capital

In the paper: Portfolio concentration is a common features across sectors and countries

Additional material

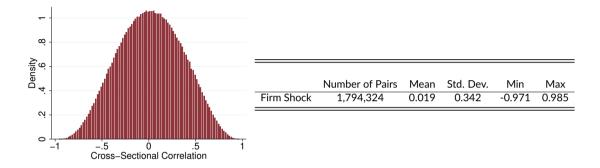
Loan writedowns


Table: Bank Loan Portfolio Writedowns

	(1)	(2)
	Write	downs
Granular Credit Shock	-0.016	-0.015
	(0.009)	(0.011)
Bank FE	Yes	Yes
Year FE	Yes	Yes
Bank Controls	Yes	Yes
Instrumented by GIV	No	Yes
Observations	1184	1184

Firm heterogeneity, loan-level

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
			Depen	dent Variab	le: Return d	on Loan		
Baseline	0.361 (0.018)							
Shock x Low Leverage _{t-1}		0.345 (0.020)						
Shock x High Leverage _{t-1}		0.450						
Shock x High Assets _{t-1}			0.345 (0.018)					
Shock x Low Assets _{t-1}			0.976					
Shock x High Equity $_{t-1}$				0.352 (0.020)				
Shock x Low Equity $_{t-1}$				0.410				
Shock x Long Debt Duration $t-1$,,	0.289 (0.020)			
Shock x Short Debt Duration $_{t-1}$					0.753			
Shock x Low Bank Reliance $t-1$					(,	0.314 (0.022)		
Shock x High Bank Reliance _{t-1}						0.497		
Shock x High Credit Rating $_{t-1}$						(,	0.250 (0.025)	
Shock x Low Credit Rating $_{t-1}$							0.483	
Shock x Old Firms $_{t-1}$							(,	0.313 (0.020
Shock x Young Firms $_{t-1}$								0.576
Bank x Sector x Year x Loan-type x County FE	Yes	Yes						
Additional controls	Yes	Yes						
Observations	292825	292825	292825	292825	292825	292825	292825	29282
R ²	0.167	0.167	0.167	0.167	0.167	0.167	0.167	0.167


Properties of the shock $\epsilon_{j,t}$

- Average pairwise correlation = 0 correlations
- Results robust to further extraction of latent factors

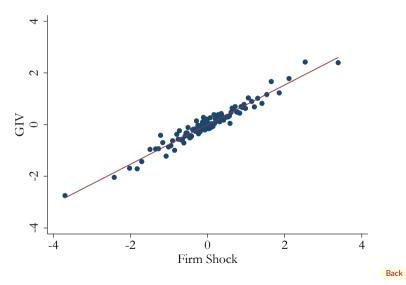
$$\epsilon_{j,t} = \delta_{j,t}^{x \prime} \eta_t^x + \delta_j^{\prime} \eta_t + \mathbf{U}_{j,t} \tag{1}$$

Pairwise cross-sectional correlation of firm shocks

All pairwise cross-sectional correlation coefficients for idiosyncratic firm shocks. The sample includes a balanced panel of firms over 2003-2015.

The average is \sim 0: little evidence of cross-firm network effects

	(1)	(2)	(3)
	Depender	nt Variable: I	Return on Loan
Firm Shock	0.334 (0.016)	0.335 (0.017)	0.361 (0.018)
Bank x Sector x Year FE	No	Yes	No
Bank x Sector x Year x Loan-type x County FE	No	No	Yes
Number of Observations	309,192	293,571	271,950
R^2	0.001	0.127	0.184
E(RoL) SD(RoL)	7.42% 7.26%	7.43% 7.27%	7.47% 7.20%


Idiosyncratic firm shocks have a large effect on individual loan outcomes

RHS variable is standardized; LHS in levels

Loan Outcomes with Factor Extraction

	(1)	(2)	(3)
	Dep. Va	r.: Return	on Loan
(1) Firm Shock: $\check{\epsilon}_{j,t}$	0.307	0.307	0.333
	(0.016)	(0.017)	(0.018)
(2) Firm Shock: $u^1_{i,t}$	0.279	0.279	0.299
	(0.016)	(0.017)	(0.018)
(3) Firm Shock: $u_{i,t}^2$	0.239	0.237	0.255
,	(0.016)	(0.017)	(0.018)
Bank x Sector x Year FE	No	Yes	No
Bank x Sector x Year x Loan-type x County FE	No	No	Yes

First-stage

Bank outcomes: heterogeneous δ

- We address remaining endogeneity concerns due to heterogeneous δ by estimating latent time-varying bank controls η_{it}
 - PCA on the firm shocks $\varepsilon_{i,j,t}$ for each bank
 - Use the first two factors as additional control variables

	(1)	(2)	(3)	(4)	
	OLS	Instrumented with GIV			
	Pooled	Pooled	Positive	Negative	
Baseline	0.136 (0.027)	0.117 (0.030)	0.056 (0.087)	0.176 (0.072)	
w/ latent bank controls	0.135 (0.024)	0.118 (0.029)	0.059 (0.067)	0.177 (0.066)	

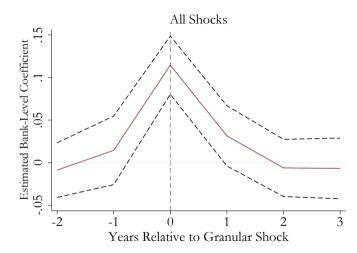
Bank level outcome

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
		Dependent Variable: Bank Return on Loans (RoA)							
	0	LS			Instrument	ed with Gl	V		
	Pooled	Pooled	Pooled	Positive	Negative	Pooled	Positive	Negative	
Granular Credit Shock	0.129 (0.029)	0.136 (0.027)	0.116 (0.031)	0.016 (0.094)	0.194 (0.074)	0.117 (0.030)	0.056 (0.087)	0.176 (0.072)	
Bank FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Bank Controls	No	Yes	No	No	No	Yes	Yes	Yes	
Observations	1211	1211	1211	508	694	1211	508	694	
R^2	0.752	0.770	0.599	0.646	0.569	0.627	0.683	0.590	
𝔼(<i>RoA</i>)	6.350%	6.350%	6.350%	6.460%	6.289%	6.350%	6.460%	6.289%	
Sd(RoA)	1.354	1.354	1.354	1.403	1.295	1.354	1.403	1.295	

• Heterogeneous δ • Writedowns • Bank heterogeneity • Back

(noisy) impact on loan writedowns

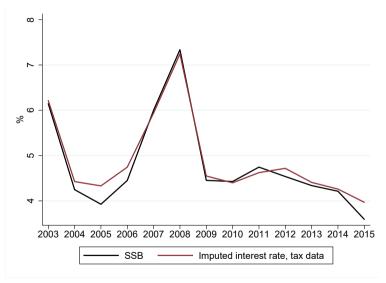
	(1)	(2)
	Write	downs
Granular Credit Shock	-0.014	-0.013
	(0.009)	(0.011)
Bank FE	Yes	Yes
Year FE	Yes	Yes
Bank Controls	Yes	Yes
Instrumented by GIV	No	Yes
Observations	1184	1184


Table: Bank Loan Portfolio Writedowns

No evidence of hedging

	(1)	(2)	(3)	(4)	(5)	
Dependent Variable: Δ Income from	Fees	Derivatives	Equity	Bonds	Dividends	
			Pooled			
Granular Credit Shock	0.219	-0.658	-1.323	0.163	0.173	
	(0.131)	(1.214)	(1.477)	(0.140)	(0.631)	
Bank FE	Yes	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	Yes	
Observations	1211	344	1058	1197	1174	
	Negative Shocks Only					
Granular Credit Shock	0.330	-0.133	-3.420	0.461	-0.209	
	(0.236)	(2.944)	(5.466)	(0.470)	(0.170)	
Bank FE	Yes	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	Yes	
Observations	697	197	606	690	680	

No association between granular credit risk and banks' non-interest income


Dynamic bank response

Bank heterogeneity

	(1)	(2)	(3)
Shock x Few Loans $_{t-1}$	0.135		
	(0.046)		
Shock x Many Loans $_{t-1}$	0.090		
	(0.030)		
Shock x Low HHI_{t-1}		0.068	
		(0.040)	
Shock x High HHI_{t-1}		0.138	
		(0.039)	
Shock x Low Risk Weights $_{t-1}$			0.104
			(0.042)
Shock x High Risk Weights $t-1$			0.137
			(0.040)
Bank FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
Instrumented by GIV	Yes	Yes	Yes
Observations	1211	1211	1208

RoL in data vs. SSB

Firm spillovers: credit price

	(1)	(2)	(3)	(4)	(5)	(6)
Δ Bank Shock	-0.004	-0.017	-0.361	-0.341	-0.421	-0.634
	(0.064)	(0.066)	(0.189)	(0.417)	(0.190)	(0.448)
Year x Sector x County x Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Bank FE	No	No	No	No	Yes	Yes
Non-Granular Firms (50%)	No	No	Yes	No	Yes	No
Non-Granular Firms (25%)	No	No	No	Yes	No	Yes
Instrumented by GIV	No	Yes	Yes	Yes	Yes	Yes
Observations	15279	15279	3449	348	3413	322

Network effects

	(1)	(2)	(3)	(4)	(5)	(6)
	Capital	Capital	Capital	Sales	Wage bill	Cash
∆Bank Shock	0.089	0.311	0.383	0.004	-0.099	0.165
	(0.061)	(0.190)	(0.650)	(0.075)	(0.108)	(0.290)
E(dependent variable)	-0.088	-0.093	-0.101	0.019	0.025	0.065
SD(dependent variable)	0.579	0.641	0.712	0.333	0.357	0.917
Year-Sector-county FE	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Non-Granular Firms (50%)	No	Yes	No	Yes	Yes	Yes
Non-Granular Firms (25%)	No	No	Yes	No	No	No
Instrumented by GIV	Yes	Yes	Yes	Yes	Yes	Yes
Observations	17002	7480	2736	8250	8474	8279

Back to balance sheet outcomes
 Back to firm bankruptcy

Network effects

Probit Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Probability of bankruptcy _t Ever bankru							
Δ Bank Shock _t	-0.170 (0.255)	0.184 (0.440)	0.281 (0.655)					
Δ Bank Shock _{t-1}				-0.203 (0.271)	-1.154 (0.444)	-2.435 (0.714)		
Δ Bank Shock $_{t-3}$							-0.777 (0.511)	
Δ Bank Shock _t								-0.833 (0.664)
Non-Granular Firms (50%)	No	Yes	No	No	Yes	No	Yes	Yes
Non-Granular Firms (25%)	No	No	Yes	No	No	Yes	No	No
Instrumented by GIV Observations	Yes 13590	Yes 8209	Yes 4704	Yes 11391	Yes 6795	Yes 3855	Yes 4097	Yes 8209