

## Effects of Carbon Taxation on Corporate Ratings The Case of the German Wholesale Power Market

Dominik Schober, Anna Silberbach

work-in-progress

## **Motivational Background**

Markets price (climate) risk efficiently – but only absent market failure ...

With respect to climate risk analysts face informational problems:

- (1) Uncertainty of future market environment / policy measures
  - → Usual approaches: aggregate modelling, strong assumptions about future
  - → Typical tools: IAM / CGE + financial models + intermediaries' portfolios
- (2) Asymmetrical/incomplete information
  - → Data on risk exposure typically only sector-based
  - → Usual approaches: imputation of (sectoral) values

## **Motivational Background**

### How will measured individual CCR change in detailed, more informed analyses?

A detailed model of specific (transition) risk can ...

- $\Rightarrow$  reduce uncertainty:
  - confidence about implementation of policy (since specifics are known)
  - take into account non-linearities, market-specifics (by modelling market mechanism)
  - individual firm modelling incl. immediate microeconomic firm-level reactions

#### $\Rightarrow$ reduce asymmetric information/elicitation:

 transparency allows individual risk assessment on basis of microlevel data (technology and financial statements)

Also: ESCB min standards: *individual credit ratings* shall consider climate risk

D. Schober, A. Silberbach

## **Motivational Background**

Why <u>electricity</u>, why <u>CO<sub>2</sub></u> price policies? (...power is key for the climate transition)

- Extreme **transparency** of the market: most credible case for microeconomic foundation available
- CO<sub>2</sub> pricing is one of the most **important and salient policy instruments** of the climate transition
- CO<sub>2</sub> pricing is **visible**, **relatively simple**, under a number of restrictions first best instrument

<u>Real policy experiment</u>: EU legal packages stimulating CO<sub>2</sub> price (April 2018, June 2021)

### **Research Design and Methods**

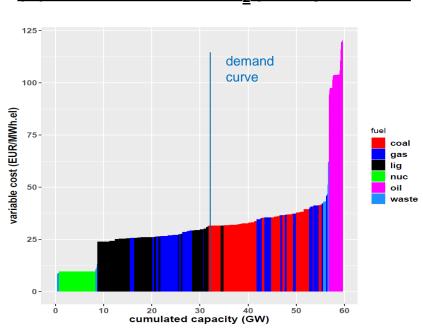
Ex post dimension useful for identification, ex ante dimension allows simulation

**Ex post**: What have been <u>historical vs counterfactual effects</u> on cash flows (CFs) and ratings of electricity generating companies?

- CO<sub>2</sub> price acts heterogeneously on firms according to CO<sub>2</sub> intensity of portfolio
- Micro-model allows quantification of firm-CFs from electricity at 8 and 80 €/tCO<sub>2</sub>
  - We can add this CF difference to the 2017 rating: Counterfactual Rating(2017 +)
- **TBD** Test of underpricing CO<sub>2</sub> risk:  $H_0$ :  $\varepsilon = |Rating(2017 +) Rating(2021)| = 0$ ?
- ➤ Compare simulated to actual rating migration → if markets price correctly, difference is noise!

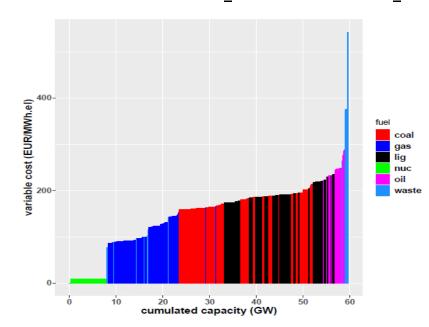
**Ex ante**: What should be the <u>effects of an increase to  $200 \notin /tCO_2$  on ratings?</u>

- Simulation of 200€/tCO<sub>2</sub> policy with assumed probability 1
- Necessary rating adoption


D. Schober, A. Silberbach

## Step (I): Wholesale electricity market model

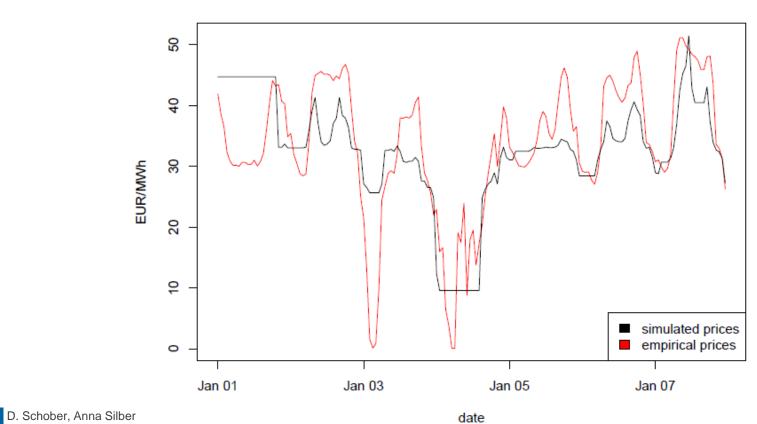
- Goal: derive CF (margin=revenue-cost) effects of market changes for each individual firm
- microeconomic model of the German power market (wholesale day-ahead market  $\rightarrow$  reference market)
- Total cost minimization model typical assumption in techno-economic models for policy analysis (possibly realistic → very transparent market, overcapacities to some degree)
- <u>Inputs</u>: input prices (coal, oil, gas, nukes), load, renewable infeed, technical restrictions (plant capacity, plant efficiency, operating restrictions, detailed technology information such as combined heat and power (CHP) production)
- <u>Outputs</u>: market price, operating hours of power plants, plant costs


 $\Rightarrow$  we can then calculate yearly margins and balance sheet implications

### Step (I): supply curve / stack – the merit order



#### (A) Base scenario: CO<sub>2</sub> price year 2020


#### (B) Stress scenario: CO<sub>2</sub> price 200 €/tCO<sub>2</sub>



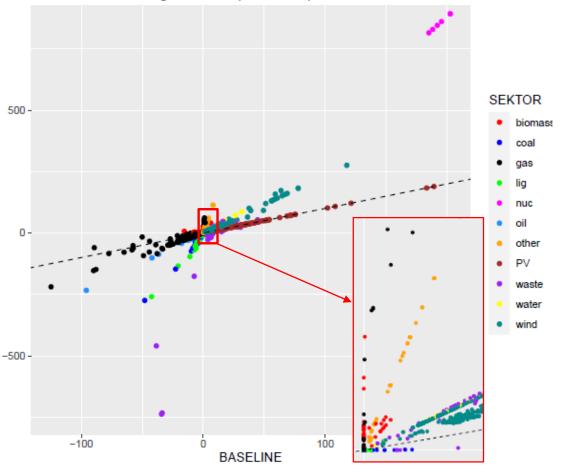
D. Schober, A. Silberbach

Seite 7

## Step (I) : wholesale power price



wholesale power prices 2020


## Step (II): Contribution Margins

Contribution margins show how gross profits vary with respect to chosen scenario:

- nuclear power plants reap highest benefits (take full advantage from rising electricity prices)
- renewables already protected by feed-in tariffs → gain only when prices exceed guaranteed compensations (wind vs. solar power)

STRESS

 gas plants gain/<u>lose</u> according to combined heat and power characteristic



#### contribution margins 2020 (mio EUR)

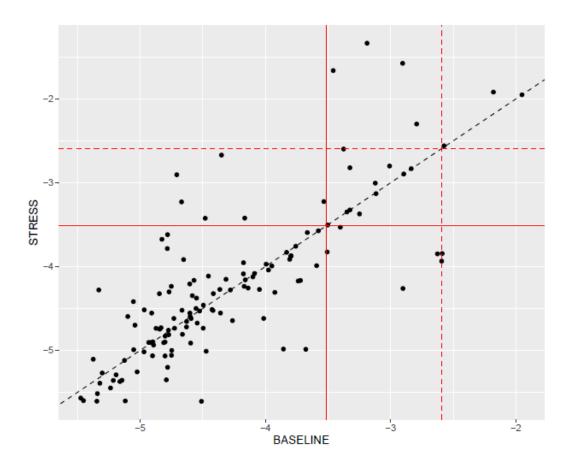
D. Schober, Anna Silberbach

## Step (II): Balance Sheet Projection and Rating

Two steps are necessary for the balance sheet projection:

- (1) estimation of cost and revenue from power production in the disclosed financial statement of the enterprise under baseline conditions
- (2) estimation of cost and revenue from power production in a stress scenario

The difference is posted to the financial account, which then in turn serves as input for a statistical rating procedure.


D. Schober, Anna Silberbach

## **RESULTS:** rating migration

Price surge for EUA to 200 EUR would have perceptible consequences for migration of ratings

| <= 1  | 0     | >=1   |
|-------|-------|-------|
| 26.3% | 48.9% | 24.8% |

- majority remains within the high quality grades (lower left)
- six lose BBK's creditworthiness rating (upper left)
- five gain BBK's creditworthiness rating (lower right)



D. Schober, Anna Silberbach

## Conclusions

> Heterogeneous outcomes of rating movements (taxation produces winner as well as losers)

➤ Highly non-linar effects:

- unequal impacts for different technologies and within same technology !
- firms have individual technology mix in their portfolios

> sectoral approach might be inaccurate in the majority of cases

Further analysis to be done:

> How do financial markets include this information?

# Thank you!

Angaben zum Referenten, Ordnungsmerkmal, Ortsangabe 19. Oktober 2022 Seite 13