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1 Introduction

Why are some firms more productive than others, and why do such productivity differentials persist over

time? Research has investigated several avenues to answer this question, exploring the potential role of

the quality of capital and labor, innovation, competition, and lately managerial practices as determinants of

productivity (Syverson, 2011). In particular, the literature on managerial practices (Bloom and Van Reenen,

2007; Bloom, Brynjolfsson, Foster, Jarmin, Patnaik, Saporta-Eksten, and Van Reenen, 2019) has highlighted

the contribution of managerial decisions concerning human resources to productivity. However, the man-

agerial practices related to human resources analyzed in this literature focus on workers’ incentives, via pay

for performance, promotions and monitoring, and neglect managerial policies governing the allocation of

workers to jobs within the firm, which in principle can be a very important determinant of productivity. This

shortcoming probably reflects the fact that the measurement of managerial practices in these studies is based

on replies to surveys regarding the way managers run their firms’ operations, monitoring, incentives and

targets; however, it would be very difficult to use self-reported information to evaluate whether managers

allocate workers to their best possible use within the firm.

In this paper, we shed light into this black box, by combining administrative employer-employee matched

data with machine-learning (ML) techniques, and bringing them jointly to bear on the measurement of the

quality of job-worker matches within firms. We then validate the resulting measure of job assignment qual-

ity (JAQ) by exploring its correlation with firm performance in terms of productivity and profitability, as

well as with workers’ wages over their careers.

Specifically, we proceed in four steps. First, we estimate via a ML algorithm how workers’ charac-

teristics map into jobs in the most productive firms (which should be better at allocating workers, other

things equal). Second, we predict worker suitability for each job based on the function estimated via the

ML algorithm. Third, we measure whether a worker’s actual job coincides with the job that she is predicted

to be most suited for within the firm (eJAQ) and show that eJAQ is positively and significantly associated

with workers wages and with labor market experience. Fourth, we build JAQ by aggregating worker level

indicators of match quality, and show that it has a significant, sizeable and robust positive correlation with
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measures of firm performance, even when controlling for the firm-level variables generally associated with

productivity (industry, capital and labor, ownership) and the workers’ characteristics used to predict JAQ.

We also show that managerial quality plays a key role in the extent to which firms are able to achieve

good worker-job matches in the allocation of their human resources. Upon constructing two distinct JAQ

measures for rank-and-file workers and for managers, we show that the former is positively and significantly

correlated with the latter, as well as with the average experience of the firm’s management team, even when

only within-firm variation is exploited. Interestingly, the quality of rank-and-file workers’ allocation rises

significantly when turnover leads to an improvement of the allocation of management, and this tends to

occur in the wake of a deterioration in the allocation of rank-and-file workers. Conversely, when manage-

rial turnover results in a worse assignment of managers, it is associated with a persistent disruption in the

allocation of rank-and-file workers.

The measure proposed in this paper not only uncovers a hitherto neglected dimension of managerial

practices and shows that it correlates with firm productivity, but can be applied more widely in testing

predictions in corporate finance, organization theory, labor economics, and corporate governance. Moreover,

it can be constructed for any country and time period where employer-employee administrative data exist

and include workers’ job assignments, without requiring either expensive surveys (Bloom and Van Reenen,

2007; Bloom et al., 2019) or detailed expert evaluations of the skills required for each job, such as those

contained in the O*Net data (Lise and Postel-Vinay, 2020; Guvenen, Kuruscu, Tanaka, and Wiczer, 2020).

Our proposed measure may also provide a benchmark for human resource practitioners wishing to assess

the quality of firms’ job assignment in a given industry and firm size class. 1

In robustness exercises we show that our measure can be constructed using other learning sets to train

the ML algorithm. In particular, one may suspect that our approach to construct and validate JAQ is vitiated

by circularity: as explained above, we first train the ML algorithm to assign workers to jobs based on data

for the most productive firms, and then investigate whether JAQ correlates with firm productivity. The

first counter to this criticism is that the correlation between JAQ and productivity is estimated dropping the

1We are planning on providing an easy to use statistical package to construct our measures.
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observations used to train the ML algorithm. However, the correlation between JAQ and productivity may

still arise because both variables are driven by a third unobserved factor, e.g., the quality of management.

To address this concern, we re-train our ML algorithm using a random subsample of firms, so as to calibrate

the reference rule on the basis of the average firm in our sample. We find that also the resulting measure of

job assignment quality correlates significantly with productivity across firms. To further address this issue,

we estimate yet another assignment rule using observations referring to the least productive firms and still

find that job assignment quality correlates positively with productivity: this further dispels the concern that

the correlation between these two variables is driven by unobserved heterogeneity, as in this case circularity

should produce a negative correlation.

Our paper is related to an emerging strand of literature that exploits ML to address research questions

in labor and finance,2 such as the appointment of board of directors (Erel, Stern, Tan, and Weisbach, 2021),

the screening of resumes in recruitment (Li, Raymond, and Bergman, 2020), the measurement of corporate

culture based on earnings call transcripts (Li, Mai, Shen, and Yan, 2020), and internal labor markets and

hierarchies in matched employer-employee data (Huitfeldt, Kostøl, Nimczik, and Weber, 2021). In contrast,

we use ML to generate a measure of the quality of job-worker matches within firms to test predictions on

the correlation between corporate events and the internal organization of firms.

This paper also relates to the literature on the mismatch between workers and jobs and its consequences

for the evolution of workers’ careers (Perry, Wiederhold, and Ackermann-Piek, 2016; Fredriksson, Hensvik,

and Skans, 2018; Lise and Postel-Vinay, 2020; Guvenen et al., 2020). Perhaps most closely related to

our study is Fredriksson et al. (2018), who investigate the impact of job mismatch on starting wages and

subsequent labor market outcomes, measuring mismatch as the absolute distance between senior workers’

and new hires’ talent. Our measure of job assignment quality differs from that used in this study in two main

respects: (i) we rely on a ML-estimated function rather than on average characteristics of senior workers to

determine the efficient allocation of workers across jobs; (ii) by the same token, our method applies just as

well to the allocation of senior workers as to that of junior ones, while the other method only applies to junior

2For surveys on how ML can be applied to economics research in general, see for instance Varian (2014), Mullainathan and
Spiess (2017), or Abadie and Kasy (2019).
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ones. The latter point is key to our objective of evaluating the correlation between job assignment quality

and firm productivity, as this exercise requires measuring job assignment quality for all the employees of

each firm.

The road map reads as follows. The next section describes our data and Section 3 details how we

construct JAQ. Section 4 relates JAQ to firm performance and Section 5 provides robustness checks using

alternative learning samples. Section 6 explores the relationship between the quality of rank-and-file worker-

job matches and the quality of management, especially in the wake of managerial turnover. The last section

concludes.

2 Data

To develop and estimate the JAQ measure proposed in this paper we use Swedish registry data. This data

set is ideal for our purposes for at least two reasons. First, it allows us to observe for a relatively long

period the entire population of workers and firms in Sweden, including a number of variables regarding

workers’ job histories, such as occupations and wages over their career. Second, despite their institutional

differences, labor markets are surprisingly similar in their functioning in Scandinavian countries, Belgium,

France, Germany, Italy, the Netherlands and the United States (Lazear and Shaw, 2009), which bodes well

for the external validity of our results.

The bulk of our data come from the Statistics Sweden LISA database that covers the whole Swedish

population of individuals who are at least 16 years old and reside in Sweden at the end of each year. This

longitudinal matched employer-employee database integrates information from registers held by various

government authorities. We have data for the 1990–2010 interval but our analysis focuses on the 2001–10

interval since occupation information is not available prior to 2001. However, we draw on 1990–2000 data

in constructing worker job histories.

The estimation of a worker’s suitability for a given job is based on the same type of information that

would typically be included in individual resumes available to managers assigning workers to jobs, namely,

background information, education, and past work experience. Background information, drawn from LISA,
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includes age, gender, an indicator for immigrant status, residence municipality and a mobility indicator

equal to one for workers employed in a county different from the county of birth. As for education, we

observe both the education level (basic, high school, vocational, or university) and the education subject (no

specialization, law, business and economics, health and medicine, natural sciences, teaching, engineering,

social sciences, services, or other specializations). Finally, past work experience is captured by labor market

experience (measured as years since graduation), tenure at the current firm, number of firms and number of

two-digit industries where an individual previously worked, total number of unemployment days since 1992

(when the unemployment data starts in LISA), years of experience in each occupation, years of experience

in each 2-digit industry, and years of experience in each decile of the distribution of firms’ number of

employees or total assets.

The firm-level variables drawn from LISA are firm age, 2-digit industry, size (measured by the number of

employees), sales, and total assets, as well as ownership categories measured by indicators for the firm being

a state-owned firm, a listed firm, or a family firm. Information on listed status is drawn from the Statistics

Sweden’s FRIDA database, and the indicator of family firm status is obtained by combining information

on firm ownership from FRIDA with info on board members and CEOs from the Swedish Companies

Registrations office and the multi-generational register on biological parent-child relationships. Following

Keloharju, Knüpfer, and Tåg (2020), a family firm is defined as one managed or owned by at least two

members of the same family.

We identify jobs based on workers international ISCO-88 (COM) classification of occupations, based

on data provided primarily by official wage statistics yearly surveys of around 11,000 companies. Compa-

nies with more than 500 workers are surveyed every year and the remainder is a random sample of firms.

Occupation data is gathered for around a million workers each year. The second source is a yearly survey

sent out by mail to around 30,000–47,000 companies that are not selected for inclusion in the official wage

statistics survey (a total of around 150,000 private sector companies per year). The surveys are sent out on

a rolling basis: all 150,000 companies are surveyed at least once in five years time. In total, over our entire
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sample period over 90% of workers are sampled at least once.3

Our main sample includes firms with at least 30 employees, that are active at some point between 2001

and 2010 and report positive total assets and sales. Since information about a worker’s specific occupation

is not always available, we restrict the sample to firms with at least 10 workers for whom we do observe the

current occupation.

3 Measuring JAQ

Suppose that managers strive to allocate workers to jobs so as to maximize productivity, by picking a job

assignment function that maps observable worker and firm characteristics to jobs within the firm. However,

firms may deviate from the most efficient assignment rule, incurring in errors that reduce their productivity,

because of managerial shortcomings and/or internal information frictions. For brevity, hereafter we refer to

this assignment function as the “rule”.

In order to judge the job allocation quality (JAQ) of a firm it is necessary to estimate this rule. In

principle, this can be done using a random subsample of firms. However, insofar as the rule maximizes

productivity, the firms that apply it most rigorously should incur in fewer errors and feature the highest

productivity. Hence, the rule can be observed with the least noise for the most productive firms.

Accordingly, we use a machine learning (ML) algorithm to estimate the rule using only observations

that refer to firms in the top decile of the productivity distribution. The benchmark provided by this ML

prediction enables us to measure how close the job allocation adopted by any given firm is to that predicted

by the estimated rule. To check the robustness of our findings, we also estimate the rule on the basis of a

random subsample of firms in Section 5. Insofar as a random sample should feature more frequent errors in

allocating workers to jobs, the resulting estimate of the rule should be less precise than that estimated using

the top-productivity decile.

3See Tåg (2013) and Tåg, Åstebro, and Thompson (2016) for additional details and descriptive statistics on occupations and
hierarchical structures within firms.

6



3.1 Mapping workers’ characteristics to jobs via machine learning

In our framework, talented managers use the job assignment rule J = g(X ,Z) to identify the job J to which

each worker is best assigned, based on workers’ observable characteristics, X , and on firm’s characteristics

Z. We do not observe g, but we can recover it by estimating the conditional probabilities P(J|X ,Z) for firms

that are likely to adhere most closely to the rule, i.e., the most productive firms.

We do not impose any particular restriction or parametric form on g, and allow for the possibility that

firms in different classes rely on different rules. Hence, the conditional probabilities to be estimated are

denoted by P(J|X ,Z) = PZ(J|X). Firms are sorted in 9 classes, according to their size and industry. There

are three size classes, based on firms’ median number of employees N over the sample period: (i) small

(N ≤ 50); (ii) medium (51 < N ≤ 250); (iii) large firms (N > 250); and three industries: (i) manufacturing;

(ii) wholesale and retail; (iii) real estate, renting and business activities. Hence, the firm’s characteristics Z

reduce to a variable identifying to which of the 9 size-industry classes a firm belongs.

Within each size-industry class, we define the “learning sample” used to estimate the conditional prob-

abilities PZ(J|X) as the subsample of firms in the top decile of the productivity distribution. More precisely,

in order to include in the learning sample only firms that are consistently more productive, for each size-

industry class we (i) estimate a model of value added per employee with firm fixed effects and calendar

year effects, (ii) consider the distribution of fixed effects for firms present in the 2010 subsample and (iii)

select firms that belong to the top decile of this distribution. We then use 2010 data referring to these firms

to train our algorithm: being the last year available in our sample, it contains the longest job histories that

can be exploited to learn the way firms allocate employees to jobs. Using data for these firms, we estimate

class-specific conditional probabilities P̂Z(J|X) to predict workers’ allocation to jobs in remaining firms –

referred to as the “main sample” – within the corresponding class.

Table 1 compares the characteristics of the workers included in the learning sample and in the main

sample: the workers included in the former sample earn higher wages, are more educated and have fewer

days of unemployment and longer tenure than workers included in the latter sample. These differences

are consistent with the fact that the learning sample includes more productive firms, where workers can be
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expected to be of better quality and feature more productive matches, hence fewer separations.

Insert Table 1 here

Despite these differences, the two samples are sufficiently similar as to have common support: this is

shown by Figure 1, which displays the distributions of the predicted wages for workers in the two samples for

each size-industry class. For both samples, the predictions are obtained from wage regressions estimated on

the main sample, whose explanatory variables are the worker characteristics included in the ML algorithm.

The figure shows that the support of the two distributions overlaps considerably for all size-industry classes,

even though the distribution of the learning sample places more weight on high predicted wages than that of

the main sample. The evidence just described supports our assumption that the learning sample can be used

to estimate an allocation rule that is relevant also for workers in firms included in the main sample.

Insert Figure 1 here

Within each of the nine learning samples, one for each size-industry class, we estimate the conditional

probabilities via the Random Forests algorithm (Breiman, 2001).4 There are three advantages to using Ran-

dom Forests (RF) in our setting: (i) they are among the best performing algorithms for classification (Zhang,

Liu, Zhang, and Almpanidis, 2017);5 (ii) they feature few-to-none tuning hyperparameters, dramatically re-

ducing total estimation time;6 (iii) they easily handle multi-class classification problems and mixed-type

characteristics (continuous and categorical), which are relevant in our data.7

Occupations are not all equally frequent in the sample, i.e., they suffer from unbalancedness. Hence

we adjust our estimation procedure by forming a balanced subsample via bootstrap, under-sampling more

4As implemented by Robnik-Sikonja and Savicky (2020) with the R language.
5Although some of the measures we build rely on the full set of estimated conditional probabilities PZ(J|X), our main measure of

job assignment quality relies solely on workers’ classification into their most suitable jobs. Moreover, we use a bagging procedure
for estimation, which significantly mitigates possible calibration issues related to the estimation of conditional probabilities (Wallace
and Dahabreh, 2012).

6Hyperparameters are parameters set by the researcher to control the learning process, such as the number of trees and the
number of features selected at each a node in random forest algorithms. Compared with other algorithms, such as neural networks,
random forests require fewer parameters to be specified, making them relatively easier to tune. This reduces the overall estimation
time due to the limited need to estimate multiple models in order to choose the best performing one.

7To deal with categorical variables with a high number of levels, we use the coding proposed by Micci-Barreca (2001).
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frequent occupations, and use this subsample to train a random forest with 50 trees. This is repeated 100

times and the results from the 100 random forests are averaged together—a strategy that combines ideas

from EasyEnsemble proposed by Liu, Wu, and Zhou (2008) and Balanced RF in Chen Chao (2004).

We evaluate the performance of our algorithm via an average of the F1 scores, computed across jobs

(labeled as the macro F score in Sokolova and Lapalme (2009)), with weights equal to job frequencies to

address the unbalancedness of the sample.8 Table 2 shows the average F1 scores computed via a stratified 10-

fold cross-validation: the learning sample is randomly partitioned in 10 subsamples, where each subsample

has the same job frequencies as the initial sample, and the algorithm is trained using 9 subsamples and

tested on the remaining one; the procedure is repeated until all of the 10 subsamples are used as a test set,

so as to obtain a total of 10 pairs of weighted F1-scores (where each pair refers to a training set and to the

corresponding test set). These 10 weighted F1-scores are used to compute the mean and standard errors in

Table 2.

Insert Table 2 here

The upper panel of the table shows that the weighted F1 score of the algorithm on the training sets is

between 71% and 81%. The bottom panel refers to the test sets and shows an average F1 score ranging

between 61% and 77%. In both cases, the algorithm performs better for employees of large firms. This

performance is reassuring, considering that a random allocation of workers to jobs would at most achieve

an average weighted F1-score of 2/(K + 1) times, where K is the total number of jobs. Since the minimal

number of jobs in our training and test sets is 46, the maximal weighted F1 score resulting from a random

allocation of workers to jobs in our sample would be 4.3% at most.9

8The F1 score for a given class is computed as the harmonic mean of the estimator’s precision and recall scores for such class.
The precision score is defined as the ratio between the number of instances correctly identified as belonging to the class and the
total number of instances that the estimator attributes to the class: it indicates the ability to estimate the class “precisely”. The recall
score is defined as the ratio between the number of instances correctly identified as belonging to the class and the total number of
instances belonging to the class: it indicates the ability of the estimator to retrieve instances of that class.

9This can be seen as follows. Denote job frequencies by πk, k = 1 . . .K. If the algorithm were to assign workers to jobs at
random with equal probability, the probability of assigning a worker to a given job is 1/K. Hence, the precision and recall for class
k, in large samples, are roughly πk and 1/K, respectively, so that the F1 score for class k is 2πk/(Kπk + 1), and the weighted F1
score is 2∑k π2

k /(Kπk + 1). The maximal value of this expression is 2/(K + 1), which is achieved when πs = 1 for some s and
πk = 0 for s ̸= k.

9



Having completed the cross-validation of the algorithm, we re-estimate it on the whole learning sample

in order to predict each worker’s suitability to each job, using the observations in the main sample.

3.2 Job assignment quality at employee level

Using the mapping of employee characteristics to jobs estimated via the ML algorithm just described, we

construct an employee-level measure of job assignment quality (eJAQ), which equals 1 if the employee’s

job coincides with the most suitable one, i.e., the job to which the algorithm assigns the highest conditional

probability for that worker, and 0 otherwise. Formally, if Ĵi is the job predicted for worker i and Ji is

the actual job held by that worker, then eJAQi = 1{Ji=Ĵi}. This indicator is the key building block of our

measure of job assignment quality at firm level (JAQ), which is simply obtained by averaging eJAQ across

the employees of the same firm in a given year.

In this section we corroborate the validity of eJAQ as a measure of workers’ job assignment quality.

First, it is natural to expect that the likelihood of being assigned to a suitable job increases over time, as

managers learn about workers’ characteristics (Fredriksson et al., 2018), and workers themselves adapt their

skills via on-the-job training (Guvenen et al., 2020). Second, insofar as an improvement in job allocation

generates productivity gains, these are likely to be partly appropriated by workers in the form of higher

wages. Hence, one can expect wages to be positively related to eJAQ.

Both predictions find support in our data. Figure 2 shows the binned scatter plot of eJAQ against labor

market experience: the likelihood of being assigned to the job predicted by the ML algorithm increases with

experience, as the goodness of worker-job matches almost doubles (from 35% to 63%) over the span of a

50-year working life. The largest gain (about 17 percentage points) occurs in the first 5 years of a worker’s

career: this accords with the intuition that learning is faster for junior workers, and that their reallocation to

more suitable jobs is easier than for senior employees (Farber and Gibbons, 1996)

Insert Figure 2 here

Moreover, better matches between workers and jobs are systematically associated with higher compen-

sation, suggesting that assigning workers to the right jobs brings about efficiency gains. This is shown in
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Table 3, where Panel A reports the estimates of the following earnings regression:

wit = α j +βeJAQit + γXit +δZ f (i,t)+λt +uit (1)

where wit is the logarithm of annual earnings of worker i in year t; α j are job indicators; eJAQit is a dummy

variable that equals 1 if worker i is allocated to her most suitable job in year t, and 0 otherwise; Xit are

all the workers’ characteristics included in the ML algorithm; Z f (i,t) are the characteristics of the firm f

that employs worker i in year t (e.g., 2-digit industry dummies, firm age, indicators for family firm, listed

company, presence of a human resources manager), and λt are year dummies.

Insert Table 3 here

Column 1 of Panel A reports the estimate of β in a version of equation (1) that includes only job

and year effects and the machine learning variables. The resulting estimate is 0.014: a worker allocated

to her most suitable job (JAQit = 1) is estimated to earn 1.4% more than a mismatched worker with the

same characteristics or with the same job (eJAQit = 0). The estimate of β drops to 0.7% in a specification

that also controls for 2-digit industry dummies and firm characteristics (column 2). A similar result is

obtained considering only within-worker variation in eJAQit (column 3): the estimated β in a specification

that includes worker, jobs and year effects is 0.8% and highly statistically significant. These findings are

broadly in line with the −1% estimate of the coefficient of job mismatch in earnings regressions reported in

Table 7 in Fredriksson et al. (2018), despite the differences in the methodology and the sample used.

We also construct a continuous measure of employee-level job match quality (Suitability) by estimating

the probability that the algorithm assigns to the actual job held by worker i, that is, prob(Ji), and explore its

correlation with labor earnings in Panel B of Table 3 to provide a robustness check of the results obtained

using the eJAQ indicator. This alternative measure is a gauge of a worker’s fit for her actual job compared

to other jobs that she might perform, while eJAQ is a binary measure of whether the employee is assigned

to her best possible job or not. To better understand the difference between the two measures, suppose that

a worker’s suitability to a position as “travel attendant” and as “cashier” are 0.5 and 0.48, respectively: for
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such a worker eJAQ equals 1 if assigned to the first position, and 0 if assigned to the second, although the

worker is almost equally suited to both positions; in contrast, the Suitability measure captures how fit the

worker is to perform a job that is not her ideal one.

The estimates shown in Panel B of Table 3 indicate that labor earnings are also positively and signifi-

cantly correlated with this second measure of job match quality over workers’ careers. The 0.18 coefficient

estimate in column 1 indicates that a 10 percentage points increase in a worker’s Suitability is associated

with a 1.8% increase in labor earnings. This effect drops to 0.3% in the specification with industry fixed

effects and firm-level controls shown in column 2, and 0.05% in that with worker fixed effects, but in both

cases is precisely estimated.

3.3 Job assignment quality at firm level: JAQ

The next step in the analysis is to average eJAQit for all the employees i of any firm f in a given year t:

we refer to the resulting firm-level measure of job allocation quality as JAQ. As our approach builds on the

assumption that firms differ in their ability to assign workers to jobs, we expect to observe heterogeneity in

JAQ across firms.

Insert Figure 3 here

Figure 3 shows the kernel density estimate of firm-level JAQ for firms in the main sample and in the

learning sample. As expected, the density of JAQ in the main sample assigns greater probability mass to

lower values than the corresponding density for the learning sample. Moreover, the dispersion in JAQ across

firms in the main sample exceeds that in the learning sample. This is as expected, for two reasons. First, the

learning sample is used to train the ML algorithm at the core of our JAQ measure, so that by construction this

sample features a better fit between firms’ observed choices and the estimated allocation rule. Second, our

learning sample is formed by firms in the top productivity decile: insofar as their higher productivity results

from fewer mistakes in applying the most efficient allocation rule, they should feature more concentrated

JAQ than firms in the main sample. In the limit, if there were no noise in the estimation procedure, the

12



learning sample should feature no dispersion in JAQ (i.e., we should observe JAQ = 1 for all firms), while

there should be dispersion in JAQ in the main sample, reflecting deviations from the efficient rule.

4 JAQ and Firm Performance

This section explores how the heterogeneity in JAQ correlates with firm performance, as measured by sales

per employee, value added per employee, and operating return on assets (OROA): we wish to determine

whether JAQ captures meaningful variation in the quality of workforce allocation, rather than just statis-

tical noise or heterogeneity along observable determinants of firm productivity. Our exercise parallels the

approach used by Bloom et al. (2019) to validate their measure of structured management practices, by

investigating their correlation with various indicators of firm performance.

Insert Figure 4 here

Figure 4 shows that firm-level productivity correlates positively with JAQ. The estimates in the two

top panels refer to main-sample firms, and those in the two bottom ones to learning-sample ones. The

left-side panels of the figure show the binned scatter plot of value added per employee against JAQ, and

the right-side ones show log sales per employee against JAQ, in each case controlling for year and 2-digit

industry dummies. A positive relationship is evident in the two top graphs, providing preliminary evidence

that main-sample firms tend to feature higher productivity insofar as they allocate employees more closely

along the rule estimated from the learning sample. The two lower panels instead show that no correlation

between productivity and JAQ emerges for firms in the learning sample. This is to be expected, as for these

firms variation in JAQ should only reflect sampling variability stemming from random deviations from the

estimated allocation rule. This can be easily illustrated by considering an extreme example: if firms in the

learning set were to adhere perfectly to a common deterministic allocation rule, then JAQ would equal 1

for all of them, and would feature no relationship with productivity. To the extent that the variation in JAQ

detected in the learning sample reflects firms’ random deviations from the same allocation rule, one would

not expect it to feature a systematic relationship with firm productivity.
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Table 4 explores further the firm-level correlation between productivity (as well as profitability) and

JAQ, controlling for other determinants of productivity. All the specifications presented in the table include

year dummies and municipality dummies: the first control for aggregate movements in productivity, the

second for productivity differentials across locations. The latter may arise not only from location-related

technological advantages, but also from those stemming from access to deeper and more diversified local

labor markets. Hence, the relationship between productivity and JAQ captured by our estimates is not driven

by differences in the availability of workers or labor market conditions across firms’ locations.

In Panel A of Table 4, column 1 reports the OLS estimates of a regression of log sales per employee on

JAQ controlling only for year dummies. We find a highly significant coefficient of 0.540, implying that a

10-percentage-point increase in JAQ is associated with a 5.5% increase in sales per employee. Equivalently,

a one-standard-deviation increase in JAQ (0.27) is associated with a 15.7% increase in sales per employee.

To put this estimate in perspective, Bloom et al. (2019) find that a one-standard-deviation increase in their

management score is associated with a 26.2% increase in sales per employee. The difference in magnitude

between the two estimates may reflect the fact that JAQ focuses on the gains stemming from the efficient

allocation of employees, while the score constructed by Bloom et al. (2019) is a broader synthetic indicator

of management practices.

Insert Table 4 here

In column 2 of Table 4, the dependent variable is value added per employee, and the coefficient of

JAQ is again positive and highly significant: a 10-percentage-point increase in JAQ is associated with an

average increase in value added per employee of 1.85%, the sample mean of the dependent variable being

0.64. Instead, profitability, as measured by operating return on assets, is not significantly correlated with our

measure of efficient job allocation, as shown in column 3 of the table.

One may suspect that the correlation between productivity and JAQ reflects other firm characteristics

such as their size, sector or input mix. However, this is not the case, as shown by the estimates in columns

4, 5 and 6 of the table, which refer to specifications that control for 2-digit industry indicators, log number

of employees, log capital, and the fraction of employees with at least a college degree. The estimated
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coefficients of JAQ in columns 5 and 6 drop in magnitude, but remain positive and significantly different

from zero.

To check whether the estimates reported in Table 4 are driven by unobserved heterogeneity across firms,

we estimate the models in columns 1-3 including firm fixed effects, in addition to the year effects: the

relationship of log sales per employee with JAQ is robust to the inclusion of firm fixed effects. Instead this

does not apply to its relationship with value added per employee, possibly because adding firm fixed effects

greatly reduces the variation in JAQ (the standard deviation of the residual variation in JAQ is 0.08, against a

total standard deviation of 0.27), and exacerbates the attenuation bias from measurement error. For brevity,

we do not report these additional estimates.

A possible concern in the previous specifications is that the firms being compared may have different

occupation structures. Two otherwise comparable firms may structure their internal hierarchy in a different

fashion: if for instance a firm has an inefficiently large number of managerial positions relative to technical

ones compared to other firms in its industry, and those managerial positions are harder to fill with suitable

employees, it is likely to end up both with lower productivity and lower JAQ, creating a spurious correlation

between the two variables. To take this concern into account, Panel B of Table 4 reports the estimates of the

following specification:

y f t = θ0 +θ1JAQ f t +θ2Fj f t +θ3Z f t +λt + γh +u f t (2)

where y f t is log(sales/employees), value added per employee or operating return on assets, Fj f t is the fraction

of workers in firm f assigned to job j in year t; Z f t are the characteristics of firm f in year t, namely their age,

family firm status, state-owned status, listed firm status, an indicator for the presence of a human resources

(HR) manager, its log number of employees and its log of total assets; λt are year dummies, and γh are

2-digit-industry dummies. In columns 1, 2 and 3 of Panel B this specification is estimated omitting the firm

characteristics Z f t , while in columns 4, 5 and 6 these are also included. The results are qualitatively similar

to those in Panel A: the estimated coefficients of JAQ drop in magnitude, but remain positive and statistically

significant in columns 1, 2, 4 and 5.
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An additional concern is that firms with higher JAQ may feature higher-quality workers, irrespective of

the job they are allocated to, thus creating a spurious correlation between JAQ and productivity. To address

this concern, in Panel C of Table 4 we augment specification (2) with the workers’ characteristics included

in the machine learning algorithm, averaged across all workers employed in firm f in year t. In columns 1,

2 and 3 we control for year effects, occupation structure and workers’ characteristics. Columns 3, 4, and 5

also add industry dummies and firm characteristics. The coefficient of JAQ remains positive and statistically

significant also in these very conservative specifications, even though in some of them it drops further in

magnitude.10

To check the robustness of these results, in Table 5 we repeat the estimation of the specifications shown

in Table 4 upon measuring worker-job match quality by the firm-level average of the Suitability variable

described in Section 3.2. The estimated coefficient of this variable is positive and significantly different

from zero in all the specifications of the productivity regressions, but not of the profitability regressions, in

line with the results of the previous table. The baseline estimates shown in columns 1 and 2 of Panel A

imply that a 10 percentage points increase in firm-level suitability of workers to jobs is associated with a

13 percentage points increase in log sales per employee of 13 percentage points and a 3.2 percentage points

increase in value added per employee. These results are qualitatively robust to the addition of other controls,

even though they drop considerably in size.

Insert Table 5 here

5 Basing JAQ on alternative learning samples

The construction and validation of JAQ performed up to this point may be criticized for its potential circu-

larity: as explained in Subsection 3.1, we train the ML algorithm to assign workers to jobs in firms from the

top decile of the productivity distribution, and then check whether the JAQ measure thus obtained correlates

with firms’ productivity. The obvious counter to this criticism is that the correlation between JAQ and pro-

10The results reported in Table 4 are obtained using the main sample. Upon estimating the same specifications with the learning
sample, no robust relationship between JAQ and productivity emerges, consistently with what is shown in Figure 4.
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ductivity is tested on the main sample, and not on the learning sample used to train the algorithm, and indeed

the correlation is present only for the main and not for the learning sample, as shown in Section 4. How-

ever, one may still fear that JAQ correlates positively with productivity for spurious reasons, for instance

because both variables are influenced by common unobserved factors. One such driver could be the quality

of management: firms in the top decile of the productivity distribution may be disproportionately run by

good managers, so that estimating the rule used to allocate workers to jobs on the basis of the observations

for these firms would produce a positive correlation between the implied JAQ and firm productivity, both of

them being really driven by managerial quality.

To address this concern, we redefine the learning sample used to train our ML algorithm as a 10%

random draw of firms (in the same size-industry class) from our entire sample. In this way, we effectively

calibrate the rule with which firms allocate employees to jobs on the basis of the behavior of the average firm

in our sample. We refer to the resulting measure of job allocation quality as JAQR, where the R superscript

is a mnemonic for “random”. Also JAQR correlates significantly with productivity across firms, as shown

by the binned scatter plots in the two top panels of Figure 5. In the top left-hand-side graph, productivity

is measured by value added per employee, while in the right-hand-side graph it is measured by log sales

per employee. Unreported regressions show that the correlation between this alternative JAQR measure and

firm productivity is statistically significant, robust to the inclusion of firm and worker controls, and similar

in magnitude to that estimated in Panel C of Table 4.

Insert Figure 5 here

Interestingly, the main difference between the two top panels of Figure 5 and the corresponding graphs

based on the previous JAQ measure, shown in the upper part of Figure 4, is that now the positive correlation

appears to be present especially for firms in the bottom and middle portion of the productivity distribution,

rather than for the entire support of the distribution. As a result, the relationship between the two variables

has an inverse-U shape. This is precisely as expected: since now the rule reflects the behavior of the average

firm, the firms that adhere most closely to this rule (i.e., those with the highest value of JAQR) cannot hope

to achieve more than an average productivity level. Still, adhering more closely to such an allocation rule is
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associated with productivity improvements for the typical firm in the sample, because it reduces the errors

that firms would otherwise make in allocating their employees. This applies in particular to firms in the

lowest part of the support of the JAQR distribution, i.e., those that adhere the least to the estimated rule: for

such firms, an increase in JAQR corresponds to a productivity gain.

To address the above-described circularity issue in an even more direct fashion, we estimate yet another

assignment rule drawing the learning sample from the bottom decile of the productivity distribution, re-

sulting in a third measure of job allocation quality, which we label as JAQB (for “bottom”). Clearly, if an

unobserved variable such as managerial quality were to generate a spurious correlation with productivity,

calibrating JAQB on the behavior of the least productive firms should produce a negative correlation with

productivity. This is not what we find, as shown in the two bottom panels of Figure 5. Firm performance

on average is still positively and significantly related to JAQB, especially for firms with low levels of JAQB;

however, the inverse-U shape of the relationship is even more evident than in the previous case. This is a

natural consequence of the rule being calibrated upon the least productive firms, so that firms that adhere

closely to such rule are bound to have low levels of productivity. This is yet one more piece of evidence that

job assignment quality matters for firm performance.

6 Impact of management quality and turnover on job-worker matches

The results presented so far are consistent with our ML algorithm capturing a best-practice rule to allocate

workers to jobs, whose adoption is correlated with higher firm-level productivity. Why don’t all firms in

our sample follow such a best-practice rule? As workers’ hiring, assignment to jobs and promotions are

typically management decisions, it is natural to inquire whether workers’ assignment to jobs is systemat-

ically related to managerial quality in our data. This immediately begs another question, namely, how to

measure managerial quality based on the observed characteristics of managers. In line with the approach of

this paper, a synthetic measure of a firm’s managerial quality should be the frequency with which they are

assigned to their managerial task in the most productive firms. Another, simpler measure of the quality of

firm’s managers is their average work experience in managerial positions.
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Hence, to investigate this issue, for each firm and date we split JAQ into its two components, one

measuring the quality of rank-and-file employees’ assignment to jobs (R&F-JAQ) and the other measuring

the quality of managers’ allocation to their respective jobs (M-JAQ). The first is the average eJAQ for all

workers that hold non-managerial positions in a given firm at a given date, while the latter is the average

eJAQ for the corresponding firm’s managers. Next, we investigate the firm-level relationship between these

two variables, as well as R&F-JAQ and managerial experience.

Table 6 presents the results of the corresponding regressions, which are based on data from 2003 to

2010: data for 2001 and 2002 are omitted in order to enable the JAQ measure to condition on at least two

years of experience for all workers. In columns 1 to 3 M-JAQ refers both to top managers (CEOs and firm

directors) and to middle managers, whereas in columns 4 to 6 they only refer to top managers. Columns

1 and 4 display results from baseline regressions whose dependent variable is the job allocation quality of

rank-and-file employees (R&F-JAQ), and whose explanatory variable is the allocation quality of managers

(M-JAQ), including only year effects. The correlation is positive and significantly different from zero in

both regressions: 10 percentage points increase in the quality of managers’ allocation is associated with

a 1.5 percentage points increase in the quality of rank-and-file workers’ allocation; when the quality of

managers’ allocation refers only to the firm’s top management, the coefficient halves in size, indicating that

also middle management is quite important for the correct allocation of workers to their jobs.

Insert Table 6 here

The specifications shown in columns 2 and 5 also include firm fixed effects and the average experience

of the firms’ managers (Manager exp), and those shown in columns 3 and 6 additionally include industry

fixed effects, municipality fixed effects and firm controls (age, family firm status, state-owned status, listed

firm status, an indicator for the presence of a human resources manager, its log number of employees and its

log of total assets). In both of them, managerial experience appears to contribute positively and significantly

to R&F-JAQ, but the coefficient of M-JAQ remains as large as in the baseline regressions. Importantly,

these regressions are based only on within-firm variation in the relevant variables: they indicate that a firm’s

improvements in allocating of rank-and-file employees to jobs tend to occur when the firm improves its

19



management’s quality and experience.

Since it is natural to expect marked improvements in managerial quality and experience to result from

the hiring of better managers and/or the dismissal of incompetent ones, our next step is to test whether the

allocation of rank-and-file workers improves upon incumbent managers being replaced with more suitable

ones, and worsens upon them being replaced with less suitable ones. To perform this test, the first step is to

measure the change in managers’ quality associated with their turnover, relative to the counterfactual level

of managerial quality associated with no turnover.

Letting τ denote a year in which managerial turnover occurs in a given firm (meaning that at least one of

its managers changes), we measure the concomitant change in managerial quality, denoted by ∆M-JAQτ , as

the difference between the average quality of the firm’s new management team, M-JAQτ , and the weighted

average of the mean quality of retained managers in year τ and the mean quality of dismissed managers in

year τ −1. Formally, the change in managerial quality associated with turnover is

∆M-JAQτ = M-JAQτ −
∑

Nr
τ

i=1 eJAQr
iτ +∑

Nd
τ−1

j=1 eJAQd
jτ−1

Nr
τ +Nd

τ−1
, (3)

where eJAQr
iτ denotes the quality of retained manager i in year τ , eJAQd

jτ−1 denotes the quality of dismissed

manager j in year τ − 1, Nr
τ the number of managers retained in year τ and Nd

τ−1 the number of managers

dismissed in year τ−1. The fractional term in expression (3) measures the counterfactual level of managerial

quality in the absence of managerial turnover, which is based on the assumption that the average quality of

dismissed managers would have remained the same if they had not been dismissed. Importantly, this measure

is designed so as to only track changes in the quality of the managerial team associated with changes in its

composition: it disregards the change in the average quality of retained managers between years τ and τ −1,

as this change would occur irrespective of managerial turnover. Indeed, ∆M-JAQτ is zero by construction if

no managers are dismissed (Nd
τ−1 = 0) and no managers are hired.

We then define a “positive turnover event” to occur for a given firm in year τ if in that year expression

(3) turns positive for the first time for that firm, and this rise in managerial quality is persistent over time, i.e.,
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is never subsequently reversed, or more than reversed. Symmetrically, a “negative turnover event” occurs in

year τ if in that year expression (3) turns negative, and this drop in managerial quality is persistent over time.

This is done to purge the event of interest from the confounding effects of sequences of transitory changes in

managerial quality associated with turnover. In our data, 1,360 firms (20.8% of the total) experience positive

turnover events, 3,124 (47.7%) experience negative ones, and the remaining 2,065 (31.5%) experience none.

Our final step is to investigate whether such positive and negative managerial turnover events are associ-

ated with significant changes in the allocation quality of rank-and-file workers. To this purpose, we estimate

the parameters of the treatment effects of these managerial turnover events on R&F-JAQ, exploiting vari-

ation in treatment timing. To estimate the dynamic treatment effects of interest, we employ the estimator

proposed in Callaway and Sant’Anna (2021). This estimator bypasses the pitfalls related to the interpretation

of the TWFE estimators – see for instance de Chaisemartin and D’Haultfœuille (2020), Goodman-Bacon

(2021), Borusyak and Jaravel (2017), Athey and Imbens (2022), Sun and Abraham (2021), and Baker, Lar-

cker, and Wang (2022). It is particularly well-suited to our setting because it focuses on recovering treatment

effect dynamics with variation in the timing of the treatment. Figure 6 show the estimated dynamic treat-

ment effects on rank-and-file workers around managerial turnover events, respectively associated with an

increase (chart a) or a decrease (chart b) in the JAQ of the relevant firm’s management.

Insert Figure 6 here

The chart on the left shows that replacement of incumbent managers with better ones tends to occur in

the wake of sharp and statistically significant deterioration in the allocation of rank-and-file workers to jobs

(by about 5 percentage points on average), and are followed by a significant and persistent improvement

over the subsequent five years, starting at 10 percentage points at the time of the event, and increasing fur-

ther subsequently. Conversely, the chart on the right indicates that replacement of incumbent managers with

worse ones tend to occur in firms starting from a normal level of managerial quality, but are associated with

a strong, persistent and statistically significant deterioration in the allocation of rank-and-file workers–by

about 15 percentage points on impact and 10 percentage points after three years. Overall, this evidence sug-

gests that persistent changes in managerial quality are an important driver of changes in workers’ allocation,
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and therefore – for better or for worse – of organizational change within firms.

In principle, the organizational changes brought about by new management may consist mainly of re-

allocating of the existing employees to different tasks or rather of changes in the composition of the firm’s

workforce via new hires and/or dismissals. Moreover, the reliance on one or the other of these strategies

may differ depending on whether the new managerial team is better or worse than the preexisting one ac-

cording to our metric. To investigate this point, we define three comparable outcome variables: (i) the

change in the average allocation quality of rank-and-file employees (∆R&F-JAQ); (ii) the change in the

fraction of correctly allocated employees within the set of retained employees (∆R&F-JAQr), and (iii) the

change in the fraction of correctly allocated employees among retained employees that change jobs in year

t (∆R&F-JAQc). While the first of these three variables is simply the change in the variable R&F-JAQ used

as dependent variable in the estimates of Figure 6, the other two are computed by averaging the eJAQ of the

relevant set of workers around positive and negative turnover event dates. For each of the three variables,

Table 7 shows the estimates obtained with the Callaway-Sant’Anna method at event-time (i.e. the time-0

parameter) of the treatment effects of the positive and negative managerial turnover events, respectively.

Insert Table 7 here

While the estimates reported in the first column of Table 7 show that positive and negative manage-

rial turnover events respectively trigger a 14-percentage-points rise and a 13-percentage-points drop in the

overall allocation quality of rank-and-file workers, the second column shows that about two thirds of these

changes in allocation quality stem from the change in the allocation quality of retained workers, the remain-

ing third then being attributable to new hires and/or dismissals. The estimates shown in the third column

indicate that these changes in the quality of the allocation of retained workers are the result of workers being

reassigned to new jobs, rather than from the change in the match quality spontaneously arising from work-

ers’ learning by doing. Indeed, in the wake of positive turnover events all of the improvement in retained

workers’ match quality stems from management reassigning these workers to different jobs, and in the wake

of negative events the deterioration in match quality due to mistaken reallocation of retained workers is

twice as large as the total deterioration of match quality, i.e. it also eats into the spontaneous improvement
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in match quality due to workers’ learning by doing. In conclusion, most of the changes in the ability of al-

locating firm’s employees is due to the improved or worsened ability in reallocating pre-existing workforce

across occupations, both when the new management is better than the previous one and when it is worse.

7 Conclusions

This paper contributes new results to the issue why some firms are persistently more productive than others.

We focus on managerial policies governing the allocation of workers to jobs within the firm and develop a

job-worker allocation quality measure by combining administrative employer-employee matched data with

ML techniques.

We validate this measure by exploring its correlation with workers’ wages over their careers, firm perfor-

mance, and with managerial turnover. Our evidence shows that workers earn significantly more as they are

better allocated to jobs over their careers, and that firms are more productive if they achieve better worker-

job matches. The quality of management appears to play a key role in the efficient assignment of workers

to jobs: rank-and-file workers’ allocation improves significantly when managerial turnover leads to better

assigned and more experienced managers, while the opposite occurs when turnover leads to lower-quality

management. In both cases, most of the improved ability in workforce allocation is due to better or worse

ability of the management in re-allocating retained employees.

The measure proposed in this paper can be constructed for any linked employer-employee data that

include workers’ occupations, without requiring either expensive surveys or detailed expert evaluations of

the skills required for each job, and can be applied to explore the effect of corporate restructurings (such as

those resulting from private equity interventions, mergers and acquisitions, changes in corporate control or

initial public offerings) on workers’ allocation and on their careers.
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Figure 1: Common support of worker characteristics for each size-industry class
These figures show the distributions of the predicted wages for workers in the learning sample (blue lines) and the main sample
(red lines) for each size-industry class. Classes 1, 2 and 3 refer to small firms respectively in Manufacturing, Retail and Real
Estate; classes 4, 5 and 6 correspond to medium firms and classes 7, 8 and 9 to large firms in each of the three industries. For both
samples, the predictions are obtained from wage regressions estimated on the main sample using as explanatory variables the worker
characteristics included in the ML algorithm. These are age, gender, an indicator for immigrant status, residence municipality, a
mobility indicator equal to one for workers employed in a county different from the county of birth, education level (basic, high
school, vocational, or university), education subject (no specialization, law, business and economics, health and medicine, natural
sciences, teaching, engineering, social sciences, services, or other specializations), labor market experience (measured as years
since graduation), tenure at the current firm, number of firms and number of two-digit industries where an individual previously
worked, total number of unemployment days since 1992 (when the unemployment data starts in LISA), years of experience in each
occupation, years of experience in each 2-digit industry, and years of experience in each decile of the distribution of firms’ number
of employees or total assets. The figure shows that the support of the two distributions overlaps considerably for all size-industry
classes.
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Figure 2: Worker-level job allocation quality (eJAQ) by labor market experience
This figure shows the binned scatter plot of an indicator for being assigned to the job predicted by the ML algorithm (eJAQ) against
years of labor market experience.
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Figure 3: The distribution of JAQ
This figure shows the kernel density estimate of JAQ for firms in the main sample (blue line) and in the learning sample (red line).
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Figure 4: The correlation between productivity and JAQ
The figure shows binned scatter plots of productivity (y-axis) against JAQ (x-axis) controlling for year and industry fixed effects.
The two top figures refer to the main sample and the two bottom ones to the learning sample. The left-hand graphs measure
productivity using value added per employee and the right-hand side figures using the log of sales per employee. Both measures of
productivity show a strong correlation with JAQ in the main sample.
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Figure 5: Correlation between productivity and JAQ with different learning samples
The figure shows binned scatter plots of productivity against JAQ when the learning sample is drawn either randomly (top panels)
or from the bottom decile of the productivity distribution (bottom panels). In the left-hand-side graphs productivity is measured by
value added per employee, while in the right-hand-side graphs it is measured by log sales per employee. All graphs refer to the
main sample and the associations are positive using both alternative learning samples.
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Figure 6: Response of rank-and-file workers’ JAQ to positive (left) or negative (right) managerial turnover events
The figure shows shows the coefficients on event time dummies estimated with the method by Callaway and Sant’Anna (2021)
explaining the JAQ of rank-and-file workers with event time dummies around managerial turnover events respectively associated
with a persistent increase in the JAQ of the relevant firm’s management (left panel) and with a persistent decrease in the JAQ of the
relevant firm’s management (right panel), controlling for year and firm fixed effects.
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Table 1: Descriptive statistics

This table reports the summary statistics of the individuals included in the main sample and in the learning sample. Our total sample
includes firms with at least 30 employees, that are active at some point between 2001 and 2010 and report positive total assets and
sales. Since information about a worker’s specific occupation is not always available, we restrict the sample to firms with at least
10 workers for whom we do observe the current occupation. The main sample contains 7,180,365 observations at the individual
level and the learning sample 81,390 observations.

Mean P50 P10 P25 P75 P90 SD

Panel A: Main sample

Labor income (TSEK 2017) 330.05 305.59 132.78 234.08 390.54 521.77 206.03
University degree 0.13 0.00 0.00 0.00 0.00 1.00 0.34
Age 40.49 40.00 24.00 31.00 50.00 58.00 12.19
Female 0.35 0.00 0.00 0.00 1.00 1.00 0.48
Immigrant 0.14 0.00 0.00 0.00 0.00 1.00 0.34
Mobility (lives where born) 0.64 1.00 0.00 0.00 1.00 1.00 0.48
Labor market experience 19.46 18.00 3.00 8.00 29.00 39.00 13.05
Tenure 4.99 3.00 0.00 1.00 8.00 13.00 5.08
# industries worked in 2.30 2.00 1.00 1.00 3.00 4.00 1.27
# jobs held 2.99 3.00 1.00 2.00 4.00 5.00 1.72
# unemployment days since ’92 192.46 0.00 0.00 0.00 243.00 626.00 349.44

Panel B: Learning sample

Labor income (TSEK 2017) 444.78 389.02 221.95 309.10 505.68 691.86 315.90
University degree 0.21 0.00 0.00 0.00 0.00 1.00 0.41
Age 42.45 42.00 27.00 34.00 51.00 58.00 11.36
Female 0.32 0.00 0.00 0.00 1.00 1.00 0.47
Immigrant 0.14 0.00 0.00 0.00 0.00 1.00 0.35
Mobility (lives where born) 0.62 1.00 0.00 0.00 1.00 1.00 0.49
Labor market experience 20.55 20.00 4.00 10.00 30.00 39.00 12.62
Tenure 6.95 5.00 0.00 2.00 11.00 19.00 6.41
# industries worked in 2.64 2.00 1.00 1.00 4.00 5.00 1.44
# jobs held 3.42 3.00 1.00 2.00 5.00 6.00 1.96
# unemployment days since ’92 182.10 0.00 0.00 0.00 220.00 576.00 344.07

33



Table 2: Performance of the algorithm

Weighted average of job-specific F1 scores (standard errors in parentheses), weighted by job frequencies, for each size-industry
class. Training and test set results are obtained via a stratified 10-fold cross validation; mean and standard errors are computed
across the 10 cross validated pairs of scores obtained for the training and the test sets, respectively. The weighted F1 score of
the algorithm on the training sets is between 71% and 81% and on the test sets between 61% and 77%. This performance can be
benchmarked against that resulting from a a random allocation of workers to jobs in our sample, which would result in a 4.3%
maximal weighted F1 score.

Size Manufacturing Wholesale Real Estate

Tr
ai

ni
ng

Large
0.8014 0.7702 0.8133

(0.0014) (0.0039) (0.0039)

Medium
0.7244 0.7042 0.7795

(0.0015) (0.0034) (0.0031)

Small
0.7195 0.7532 0.7896

(0.0035) (0.0018) (0.0034)

Te
st

Large
0.7678 0.7253 0.7678

(0.0076) (0.0089) (0.012)

Medium
0.6676 0.6264 0.7156

(0.0072) (0.0074) (0.0039)

Small
0.6084 0.6579 0.6774

(0.0092) (0.0108) (0.0099)
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Table 3: Individual labor earnings and eJAQ

This table displays the relationship between eJAQ and labor earnings for workers in the main sample. The worker controls (used

in the ML algorithm) are age, gender, an indicator for immigrant status, residence municipality, a mobility indicator equal to one

for workers employed in a county different from the county of birth, education level (basic, high school, vocational, or university),

education subject (no specialization, law, business and economics, health and medicine, natural sciences, teaching, engineering, so-

cial sciences, services, or other specializations), labor market experience (measured as years since graduation), tenure at the current

firm, number of firms and number of two-digit industries where an individual previously worked, total number of unemployment

days since 1992 (when the unemployment data starts in LISA), years of experience in each occupation, years of experience in each

2-digit industry, and years of experience in each decile of the distribution of firms’ number of employees or total assets. The firm

controls are firm age, size (measured by the number of employees), sales, and total assets, as well as ownership categories measured

by indicators for the firm being a state-owned firm, a listed firm, or a family firm. Standard errors clustered at worker level are

shown in parentheses and three stars denote statistical significance at the one percent level.

(1) (2) (3)
Log(earnings) Log(earnings) Log(earnings)

Panel A
eJAQ 0.014∗∗∗ 0.007∗∗∗ 0.008∗∗∗

(0.000) (0.000) (0.000)

Panel B
Suitability 0.180∗∗∗ 0.032∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)

Year and job FE ✓ ✓ ✓
Worker controls (used in ML) ✓ ✓
Industry FE ✓
Firm controls ✓
Worker FE ✓

Observations 7,180,365 7,180,365 7,180,365
LHS mean 6.326 Mean earnings 330.05
LHS SD 0.658 SD earnings 206.03
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Table 4: Firm performance and JAQ

This table displays results from regressions on the association between productivity and JAQ. Panel A refers to our baseline
specification. The results in Panel B control for firms’ occupation structure (the fraction of workers in firm f assigned to job j in
year t) and firm controls (age, family firm status, state-owned status, listed firm status, an indicator for the presence of a human
resources (HR) manager, its log number of employees and its log of total assets). Panel C adds controls for worker characteristics
(listed in the notes to Table 3). Standard errors clustered at firm level are shown in parentheses and three stars denote statistical
significance at the one percent level.

(1) (2) (3) (4) (5) (6)
Log(sales/emp) VA/emp OROA Log(sales/emp) VA/emp OROA

Panel A
JAQ 0.521∗∗∗ 0.125∗∗∗ -0.003 0.159∗∗∗ 0.039∗∗∗ 0.007

(0.030) (0.009) (0.006) (0.016) (0.007) (0.005)
log(cap/emp) 0.400∗∗∗ 0.107∗∗∗ -0.009∗∗∗

(0.011) (0.005) (0.002)
log(emp) 0.017∗∗∗ 0.018∗∗∗ 0.005∗∗∗

(0.006) (0.003) (0.002)
Share emp w/ college 0.194∗∗∗ 0.301∗∗∗ -0.006

(0.040) (0.021) (0.013)

Industry dummies ✓ ✓ ✓
Year dummies ✓ ✓ ✓ ✓ ✓ ✓
Municipality dummies ✓ ✓ ✓ ✓ ✓ ✓

Panel B
JAQ 0.209∗∗∗ 0.061∗∗∗ 0.006 0.109∗∗∗ 0.028∗∗∗ 0.003

(0.020) (0.008) (0.005) (0.016) (0.008) (0.006)

Industry dummies ✓ ✓ ✓ ✓ ✓ ✓
Year dummies ✓ ✓ ✓ ✓ ✓ ✓
Municipality dummies ✓ ✓ ✓ ✓ ✓ ✓
Occupations ✓ ✓ ✓ ✓ ✓ ✓
Class FE ✓ ✓ ✓ ✓ ✓ ✓
Firm controls ✓ ✓ ✓

Panel C
JAQ 0.093∗∗∗ 0.038∗∗∗ 0.004 0.055∗∗∗ 0.025∗∗∗ 0.004

(0.019) (0.008) (0.005) (0.016) (0.008) (0.006)

Industry dummies ✓ ✓ ✓
Year dummies ✓ ✓ ✓ ✓ ✓ ✓
Occupations ✓ ✓ ✓ ✓ ✓ ✓
Workers X ✓ ✓ ✓ ✓ ✓ ✓
Firm Z ✓ ✓ ✓
Class dummies ✓ ✓ ✓ ✓ ✓ ✓

Observations 50,107 50,107 50,107 50,107 50,107 50,107
No. firms 7,232 7,232 7,232 7,232 7,232 7,232
LHS mean 0.525 0.639 0.067 0.525 0.639 0.067
LHS SD 0.788 0.304 0.178 0.788 0.304 0.178
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Table 5: Firm performance and worker suitability

This table displays results from regressions on the relationship between productivity and firm-level suitability, defined as the average
of worker-level suitability for a given firm. Panel A refers to our baseline specification. The results in Panel B control for firms’
occupation structure (the fraction of workers in firm f assigned to job j in year t) and firm controls (age, family firm status, state-
owned status, listed firm status, an indicator for the presence of a human resources (HR) manager, its log number of employees and
its log of total assets). Panel C adds controls for worker characteristics (listed in the notes to Table 3). Standard errors clustered at
firm level are shown in parentheses and three stars denote statistical significance at the one percent level.

(1) (2) (3) (4) (5) (6)
Log(sales/emp) VA/emp OROA Log(sales/emp) VA/emp OROA

Panel A
Suitability 1.219∗∗∗ 0.316∗∗∗ -0.011 0.436∗∗∗ 0.097∗∗∗ 0.021∗

(0.060) (0.019) (0.012) (0.035) (0.016) (0.012)
log(cap/emp) 0.397∗∗∗ 0.107∗∗∗ -0.009∗∗∗

(0.011) (0.005) (0.002)
log(emp) 0.022∗∗∗ 0.019∗∗∗ 0.006∗∗∗

(0.006) (0.003) (0.002)
Share emp w/ college 0.152∗∗∗ 0.292∗∗∗ -0.008

(0.040) (0.021) (0.013)

Industry dummies ✓ ✓ ✓
Year dummies ✓ ✓ ✓ ✓ ✓ ✓
Municipality dummies ✓ ✓ ✓ ✓ ✓ ✓

Panel B
Suitability 0.591∗∗∗ 0.138∗∗∗ 0.011 0.339∗∗∗ 0.058∗∗∗ 0.007

(0.042) (0.019) (0.012) (0.034) (0.017) (0.012)

Industry dummies ✓ ✓ ✓ ✓ ✓ ✓
Year dummies ✓ ✓ ✓ ✓ ✓ ✓
Municipality dummies ✓ ✓ ✓ ✓ ✓ ✓
Occupations ✓ ✓ ✓ ✓ ✓ ✓
Class FE ✓ ✓ ✓ ✓ ✓ ✓
Firm controls ✓ ✓ ✓

Panel C
Suitability 0.294∗∗∗ 0.078∗∗∗ 0.010 0.231∗∗∗ 0.054∗∗∗ 0.011

(0.043) (0.020) (0.013) (0.036) (0.019) (0.013)

Industry dummies ✓ ✓ ✓
Year dummies ✓ ✓ ✓ ✓ ✓ ✓
Occupations ✓ ✓ ✓ ✓ ✓ ✓
Workers X ✓ ✓ ✓ ✓ ✓ ✓
Firm Z ✓ ✓ ✓
Class dummies ✓ ✓ ✓ ✓ ✓ ✓

Observations 50,107 50,107 50,107 50,107 50,107 50,107
No. firms 7,232 7,232 7,232 7,232 7,232 7,232
LHS mean 0.525 0.639 0.067 0.525 0.639 0.067
LHS SD 0.788 0.304 0.178 0.788 0.304 0.178
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Table 6: Role of management in the allocation quality of rank-and-file employees

This table displays results from regressions whose dependent variable is the job allocation quality of rank-and-file employees
(R&F-JAQ) and whose explanatory variables are the allocation quality of managers (M-JAQ) and their experience in managerial
jobs (Manager exp). In columns 1 to 3 Manager-JAQ refers both to top managers (CEOs and firm directors) and to middle managers,
whereas in columns 4 to 6 they only refer to top managers. The regressions are based on data from 2003 to 2010. All specifications
include year fixed effects; those in columns 2, 3, 5 and 6 include firm fixed effects, and those in columns 3 and 6 include industry
fixed effects, municipality fixed effects and firm controls (age, family firm status, state-owned status, listed firm status, an indicator
for the presence of a human resources (HR) manager, its log number of employees and its log of total assets). Standard errors
clustered at firm level are shown in parentheses and three stars denote statistical significance at the one percent level.

(1) (2) (3) (4) (5) (6)
R&F-JAQ R&F-JAQ R&F-JAQ R&F-JAQ R&F-JAQ R&F-JAQ

M-JAQ 0.149∗∗∗ 0.144∗∗∗ 0.142∗∗∗ 0.077∗∗∗ 0.065∗∗∗ 0.063∗∗∗

(0.004) (0.007) (0.007) (0.003) (0.006) (0.006)

Manager exp 0.034∗∗∗ 0.033∗∗∗ 0.019∗∗∗ 0.019∗∗∗

(0.002) (0.002) (0.002) (0.002)

Industry FEs ✓ ✓

Municipality FEs ✓ ✓

Year FEs ✓ ✓ ✓ ✓ ✓ ✓

Firm FEs ✓ ✓ ✓ ✓

Firm controls ✓ ✓

Observations 31,488 31,488 31,475 22,391 22,391 22,386
No. Firms 5,677 5,677 4,822 4,822
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Table 7: Decomposition of managerial turnover impact on stayers

The table shows the impact of managerial turnover events on allocations of employees staying in the firm. The coefficients
measure the estimated average treatment effect on treated at event time (standard errors in parentheses) obtained using the
Callaway-Sant’Anna method, for positive and negative managerial turnover events, respectively. The first column shows the
estimates obtained when the dependent variable is ∆R&F-JAQ, i.e., the change in the average allocation quality of rank-and-file
employees. The second column shows the estimates obtained when the dependent variable is ∆R&F-JAQr, i.e., the change in the
fraction of correctly allocated employees among those retained by the firm when the event occurs. The third column shows the the
estimates obtained when the dependent variable is ∆R&F-JAQc, i.e., the change in the fraction of correctly allocated employees
for those retained by the firm when the event occurs and reassigned to different jobs.

∆R&F-JAQ ∆R&F-JAQr ∆R&F-JAQc

Positive event
0.1443 0.0935 0.0974
(0.023) (0.019) (0.0765)

Negative event
−0.1317 −0.0953 −0.1897
(0.0171) (0.0128) (0.0519)
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