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Abstract

This paper identi�es U.S. monetary and �scal dominance regimes using machine learn-

ing techniques. The algorithms are trained and veri�ed by employing simulated data from

Markov-switching DSGE models, before they classify regimes from 1968-2017 using ac-

tual U.S. data. All machine learning methods outperform a standard logistic regression

concerning the simulated data. Among those the Boosted Ensemble Trees classi�er yields

the best results. We �nd clear evidence of �scal dominance before Volcker. Monetary

dominance is detected between 1984-1988, before a �scally led regime turns up around the

stock market crash lasting until 1994. Until the beginning of the new century, monetary

dominance is established, while the more recent evidence following the �nancial crisis is

mixed with a tendency towards �scal dominance.
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1 Introduction

Since the last �nancial crisis, U.S. total debt-to-GDP ratio has increased by 40 percentage

points from about 64% in 2008 to 104% in 2019. Moreover, the de�cit-to-GDP ratio in

2009 was the highest since the Korean war in the 1950s. At the same time, the conduct

of monetary policy was characterized by the nominal interest rate being stuck at the zero

lower bound and unconventional asset purchase programs. This situation brings back con-

cerns of what Leeper (1991) calls the �scal theory of the price level (FTPL). It states that

if the central bank is passive (does not �ght actively in�ationary pressures), the price level

might increase to stabilize real outstanding government debt that is not backed by future

primary surpluses. Hence, price level changes would not be under control of the monetary

authority anymore - a situation that is usually called a �scal dominance (FD) regime. In

contrast, a situation where the monetary authority responds actively to in�ation while the

�scal authority commits to adjust passively its primary balance to stabilize public debt is

known as monetary dominance (MD).

The concepts of MD and FD are of a purely theoretical nature. In reality, the true domi-

nant regime is unobservable and unknown. Distinguishing between both regimes therefore

serves as a useful classi�cation application for machine learning techniques since these are

shown to be good classi�ers in other areas like engineering.

We contribute to the literature �rst established by Sargent and Wallace (1981) by pro-

viding and applying a new approach for classifying MD/FD regimes in reality. Speci�-

cally, the approach consists of four steps. First, we simulate both regimes using a simple

Markov-switching dynamic stochastic general equilibrium (MS-DSGE) model as the data

generating process (DGP). Second, we use the simulated data to train di�erent machine

learning classi�ers. Third, we evaluate the predictive performance of the trained classi�ers

and their robustness with respect to changes in the underlying DGP. Fourth, the trained

classi�ers are used to identify regimes from 1968 to 2017 with actual U.S. data. We �nd

that all machine learning methods outperform a standard logistic regression with respect

to in- and (pseudo-)out-of-sample prediction accuracy using simulated MS-DSGE data.

Among the machine learning methods, it is the Boosted Ensemble Trees (AdaBoost) clas-

si�er that produces the most reliable predictions with an accuracy rate of about 90%. By

applying this trained classi�er, we identify historical U.S. regimes from 1968-2017 that

support the existing literature. In the literature there exist several papers that try to

classify historical periods into FD or MD regimes using di�erent approaches.

Favero and Monacelli (2005) estimate �scal policy rules by Markov-switching (MS) regres-
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sions for the period 1960-2002. Davig and Leeper (2011) also estimate Markov-switching

�scal and monetary policy rules over the period from 1948-2008 and incorporate the re-

sults in a calibrated DSGE model in order to investigate government spending multipliers.

Martin (2015) approaches the interplay between �scal and monetary dominance from a

di�erent perspective. He uses the number of meetings and o�cial phone conversations be-

tween the U.S. President and the Fed Chairman as a proxy for central bank independence.

Kliem et al. (2016a,b) analyze the monetary-�scal policy interaction by the low-frequency

relationship between in�ation and the �scal stance. The majority of related papers, how-

ever, tackles the question by estimating MS-DSGE models with Bayesian methods (see

e.g. Bianchi (2012); Bianchi and Ilut (2017); Chen et al. (2019)). Lately, some studies

also account for the zero lower bound constraint. Gonzalez-Astudillo (2018), for example,

estimates censored MS policy rules and Bianchi and Melosi (2017) estimate a MS-DSGE

adding a �scally-led zero lower bound regime.

Within this literature, there is a broad consensus of a FD regime during the 1970s. How-

ever, there is mixed evidence on the switching point. For example, Davig and Leeper

(2011) and Bianchi and Ilut (2017) �nd an explosive regime with both policies being ac-

tive after the appointment of Volcker as the Fed chairman in 1979. MD is established only

in early to mid 1980s. Chen et al. (2019), however, �nd that �scal policy was active until

1995 with monetary policy behaving passive between 1988 and 1992. The era under U.S.

president Clinton is usually associated with an active monetary regime accomodated by

the �scal authority (see e.g. Davig and Leeper (2011), Bianchi (2012), Chen et al. (2019)).

In the early to mid 2000s, �scal policy is found to be active again in Davig and Leeper

(2011) and Chen et al. (2019). Concerning the more recent periods, Gonzalez-Astudillo

(2018) and Bianchi and Melosi (2017) provide evidence for FD after the �nancial crisis.

We also �nd clear evidence of FD pre-Volcker with our method, while MD is �nally estab-

lished only in 1984 until 1988. The FD regime is further found to be in place around the

stock market crash and the early 1990s recession and after the Dot-com-Bubble crisis in

the early 2000s. The evidence for the periods thereafter is mixed with a tendency to FD

after the �nancial crisis.

Machine learning gains more and more attention in economics. Recent applications in-

clude forecasting of macroeconomic variables (e.g. Teräsvirta et al. (2005)), early warning

predictions for �nancial crises (e.g. Beutel et al. (2018) and Alessi and Detken (2018)), for

recessions (e.g. Ng (2014)) or for default risks (e.g. Badia et al. (2020) and Khandani et al.

(2010). However, to the best of our knowledge, this paper is the �rst one applying machine
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learning techniques to classify an unobserved economic state using simulated DSGE data.

Concerning our new approach, we would like to highlight four advantages with respect to

the existing literature. First, it allows an easier and faster real-time classi�cation of the

current regime since the trained algorithm is ready to predict within seconds, given new

data of the explanatory variables is available. Second, our classi�er is trained and the per-

formance is veri�ed in the �rst place by using large simulated MS-DSGE datasets, where

we know when each regime is in place. Third, and relatedly, due to the simulation, there

does not exist a curse of dimensionality because we are not restricted by the time span of

our series. Fourth, our procedure focuses on the (nonlinear) interactions of all endogenous

variables, while other approaches usually employ only a subset in order to estimate policy-

rule parameters and transition probabilities. Thus, given the same DSGE model structure

and taken this model as �the truth�, it is possible that our preferred machine learning clas-

si�er predicts di�erent regimes than would be implied by directly estimating the model by

e.g. Bayesian methods. By experimenting with the number of variables included as pre-

dictors, we show that using more information yields overall a better performance in terms

of classi�cation accuracy. Our preferred classi�er, AdaBoost, is the one that best exploits

all given information. Moreover, we can show which variables are especially important to

distinguish between both regimes. The AdaBoost classi�er attributes a relatively equal

importance to all variables slightly favoring interest rate and debt.

The remainder of the paper is organized as follows. Section 2 describes the machine learn-

ing methods we employ to classify MD/FD regimes. In Section 3 we present the DSGE

models used to simulate data for both regimes as well as the actual U.S. data. In Section

4 we show and discuss the results including robustness checks and variable importance.

Section 5 concludes.

2 Methodology

In this section, we describe our approach to classify MD and FD regimes. Speci�cally,

we explain the idea of supervised learning and the di�erent classi�cation methods as well

as our hyperparameter choices. It is a brief overview based on James et al. (2013) and

Friedman et al. (2001).

3



2.1 Supervised Learning - Classi�cation

Our approach is based on machine (statistical) learning. Statistical learning can be dis-

tinguished into unsupervised and supervised learning. Unsupervised learning is used for

�nding relationships between variables or observations when no dependent, also called

response variable, is given (e.g. principal component analysis, clustering). Supervised

learning can be applied when the response variable is given. Generally, it comprises di�er-

ent methods to estimate the function f of y = f(x) + ε, where y is the response variable

and x are independent/ predictor variables, also called �features�. Since we want to identify

(predict) FD/ MD regimes, our response variable takes on categorical values. Hence our

task is a binary classi�cation problem instead of a regression problem, where the response

variable is numerical.1 While the exact form of f needs to be known for inference about

the relationship between x and y, it is not of interest when the focus lies solely on predic-

tion (i.e. ŷ = f̂(x)). We therefore apply parametric as well as nonparametric methods.

In total, we consider 6 di�erent methods (Logistic, K-Nearest Neighbors, Decision Trees,

Random Forest, Boosting and SVM).2 Among them, the logistic model is the most widespread

approach in the economics literature. Still, there exist several papers with economic ap-

plications of the other classi�cation methods as well: For example, Khandani et al. (2010)

employ decision trees to forecast consumer credit default risks, while Badia et al. (2020)

rely on the random forest technique to predict �scal crises. Ng (2014) explores boosting

as a tool for indicating recessions and to identify relevant predictors. Alessi and Detken

(2018) base their �nancial crisis early warning system on random forest, whereas Beutel

et al. (2018) compare the performance of all mentioned methods (except boosting) for the

same task and �nd that the logistic model outperforms the others. Since the best per-

forming method is not known in advance and surely depends on the speci�c application,

we include all of these most common models in our comparison.

In the following, we want to give a brief overview of these methods, focusing on the role

of hyperparameters and pointing out advantages and drawbacks.

1We restrict our analysis to the binary response. The related literature distinguishes four regimes (i.e. both
policies active/passive and only one active, one passive) in total. However, the two missing regimes refer to
regions where the MS-DSGE model is explosive or indeterminate. Generally, our precedure can be extended to
the multinomial case.

2We also considered arti�cial neural networks with a single hidden layer structure. However, since their accuracy
was not superior to the other machine learning methods, we do not include them in the paper.
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Logistic Model (Logit)

The logistic model is the standard model for a binary response variable y.3 It relies on

the assumption that y is driven by a latent process y∗ that depends linearly on the ex-

planatory variables, i.e. y∗ = Xβ + ε. Moreover, the estimation errors ε are assumed to

follow a logistic distribution. The conditional probability P (y = 1|X) = εXβ

1+εXβ
then gives

class probabilities, where β̂ can be estimated using nonlinear least squares or maximum

likelihood for prediction. Class assignment then follows the largest probability. While

being based on a clear statistical model and easy to interpret, the logistic model has the

main drawback of being restricted to that pre-speci�ed functional form.

K-Nearest Neighbors (KNN)

The KNN method is a two-step approach by Cover and Hart (1967). First, given a posi-

tive integer K and test observation x0, it identi�es the K closest (nearest) observations of

the training sample. The closeness between two observations is usually measured by the

Euclidean distance. We de�ne the resulting neighborhood as N0. Second, it estimates the

conditional probability P (y = 1|X = x0) as a fraction of points in N0 whose response val-

ues equal 1, i.e. P̂ (y = 1|X = x0) =
1
K

∑
i∈N0

I(yi = 1), where I is the indicator function.

The test observation is then assigned to the class with the largest probability. The choice

of the hyperparameter K is related to a bias-variance trade-o�. Selecting K = 1 yields

an overly �exible model with low bias, but high variance when using di�erent data (vice

versa for K →∞). In contrast to the logistic model, the KNN method has the advantage

that no pre-speci�ed functional form nor an assumption on the underlying distribution is

necessary. However, it su�ers strongly from the curse of dimensionality.

Decision Trees (Tree)

The idea of decision trees by Breiman et al. (1984) is to split the predictor space into

smaller regions by binary choices. Graphically, these trees consist of a root, interior nodes

(branches) and �nal nodes (leafs). At the root and at each interior node observations are

assigned to the following left or right subtree according to a decision rule. The rule simply

compares the value of a single explanatory variable xi to a threshold τi. By repeating

the same procedure, observations are passed down the tree until they reach a �nal node.

At every leaf, the class probability is then given by the respective fraction of assigned

3Strongly speaking, the logistic regression also belongs to the statistical learning classi�ers (cf. James et al.
(2013)). However, since it does not involve a hyperparameter choice and does not require much computational
e�ort, we do not call it a statistical learning classi�er. As a widely spread method, it rather serves as our
benchmark model.
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observations from the training sample. Jointly choosing the variables x and thresholds τ

is a computationally infeasible task, such that approximation algorithms are used. The

so-called �recursive binary splitting� approach is a top-down approach. It chooses the splits

such that the purity (measured for example by the Gini index or deviance) of the subtrees

(the gain from each considered split) is maximized. The algorithm is further subject to

potential stopping criteria, that generally limit the complexity of the tree. These are e.g.

a minimal number of observations per leaf or a maximum number of leafs. This hyperpa-

rameter again involves a bias-variance trade-o�. Higher tree complexity with more splits

yields a lower bias but higher variance and vice versa. One advantage of decision trees is

as for KNN its non-parametric nature. Additionally, the method includes an automatic

variable selection by choosing the predictors to split on. At the same time, decision trees

are so-called �weak learners�, i.e. they are generally instable across time and across di�er-

ent samples.

Ensemble Trees

Ensemble techniques were developed to improve weak learners. They are based on the idea

of reducing prediction errors by averaging over a large number of di�erent trees. Thereby,

the heterogeneity between trees should be large to decrease variance, while maintaining

homogeneity within trees. The two most popular approaches of combining trees are so-

called Random forests (RF) (cf. Breiman (1996, 2001)) and Boosting (AdaBoost) (cf.

Freund and Schapire (1999)).

Random Forests (RF)

RF consist of two parts. The �rst one is called Bagging (Bootstrap aggregation). It means

that B individual trees are grown, where B refers to the number of drawn bootstrap sam-

ples from the data. Each individual tree is large (that means low bias, but high variance)

and the variance is reduced by averaging over all individual trees. The second part involves

a further decorrelation of the individual trees by randomly considering only a subset of

m variables for the splitting decision at each node. Thus, the hyperparameters of this

method are the following. First, the number of bootstraps (trees) B has to be chosen,

which should be su�ciently large in order to guarantee convergence. The second is the

number of predictors m to perform the split. Third, usual hyperparameters controlling

the complexity of individual trees (e.g. minimal number of observations per leaf) have to

be selected.
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Boosting (AdaBoost)

Boosting refers to growing trees sequentially. Instead of bootstrapping, each tree is grown

based on information from previously grown trees. Thereby, a decision tree is �tted to

the residuals from the current given model. The new decision tree is then added into the

previous �tted model and the residuals are updated again. Each of the trees is usually

rather small determined by the hyperparameter d, the maximum number of splits in each

tree. Together with the learning rate parameter λ , it makes boosting a rather slow learn-

ing approach.4 The third tuning parameter is the number of trees T . In contrast to RF,

boosting can over�t using too many trees. However, a very small learning rate needs a

large number of trees.

Support Vector Machines (SVM)

The idea of support vector machines is to separate data linearly into 2 classes such that

the distance between classes gets large. Depending on the dimensionality of the data,

the decision boundary is a point (1-d data), a line (2-d data) or a hyperplane (3-d or

higher data). Given the data is linearly separable, there is an in�nite space of possible

hyperplanes. In the end, the approach boils down to a constrained optimization problem:

It chooses the hyperplane that maximizes the distance between the closest observation of

each class to the hyperplane subject to the constraint that each observation lies on the

correct side of the hyperplane. The described distance is called �margin� (maximal margin

classi�er) and the closest observations are called �support vectors� since these determine

the solution to the optimization problem solely.

Most of the time, however, linear separability does not hold. Then, the approach of sup-

port vector classi�ers is to enlarge the feature space by nonlinear transformations, e.g. by

higher-order polynomial terms or interactions. However, enlarging the feature space in

that way increases the number of parameters immensely. To overcome this issue, SVM

use kernel functions instead, which is also known as the �kernel-trick� in the literature (cf.

Shalev-Shwartz and Ben-David (2014)). Basically, kernels are functions that describe the

similarity between two observations. The default kernel function is the radial (Gauÿ) ker-

nel, K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2), where xi and x′i are two (distinct) observations

and p denotes the number of features. The hyperparamater γ determines the complexity

with larger values leading to a lower bias and higher variance, vice versa. Another hy-

perparameter comes in when allowing for misclassi�cations by adding a penalty term for

4We use the adaptive boosting method (AdaBoostM1 in Matlab) for training the ensemble. The learning rate
λ ∈ (0, 1] controls the shrinkage in each iteration step.
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misclassi�ed observations to the loss function, also called �soft margin constraint�. The

hyperparameter C then determines the cost of violations to this constraint. The trade-o�

involved here again consists of lower bias (i.e. smaller margins, less misclassi�cations) and

higher variance vs. higher bias (i.e. larger margins, more misclassi�cations) and lower

variance.

SVM are quite robust with respect to outliers and noise in the data. At the same time,

their performance crucially hinges on the choice of the hyperparameters. Further draw-

backs are the lack of interpretability and the large memory usage in terms of computational

e�ort.

As outlined in this section, the models' complexities depend crucially on the choice of

hyperparameters. In all cases, this choice involves a bias-variance trade-o�, i.e. more

�exible models (less bias) vs. simpler models (less variance). Appendix A describes how

and which hyperparameters are selected in our case.

3 Data

Supervised learning involves splitting available data (response and predictors) into training

and validation/ test sets. The training set is then used to estimate the respective parame-

ters of each approach and the validation set is employed to choose hyperparameters and/

or to estimate the error rate. When the trained algorithms produce satisfying results, they

can be used for prediction with new data (with unknown responses).

When dealing with FD and MD, we face the problem that there is no actual data for

the response variable. The concept of FD and MD regimes is a rather theoretical one. It

stems from a shared government budget balance of both authorities. However, in reality

we cannot observe the true regime. Still, in state-of-the art DSGE models, we can explic-

itly di�erentiate between both regimes by determining corresponding parameters. Hence,

we can use these Markov-Switching-DSGE (MS-DSGE) models as our data generating

process and thereby gather training data for the supervised learning classi�ers.

In this section, we shortly present the MS-DSGE model that is used to simulate training

data. Then we describe the actual U.S. data employed for the identi�cation of historical

regimes.
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3.1 Data Generating Process

This section lays out a conventional new Keynesian model that serves as our data gener-

ating process.5 Further we present the benchmark calibration and how the FD and MD

regimes are simulated using the model.

3.1.1 Model

Households:

The representative household maximizes its expected life-time utility where the period

utility function is given by

Ut =

(
ln(Ct)−

N1+φ
t

1 + φ
)

)
. (1)

The household derives utility from consumption Ct and disutility from labor Nt. The

households' budget constraint is

Ct +Bt =WtNt(1− τ lt ) +
Rt−1Bt−1

πt
+ Tt, (2)

with Bt denoting government bonds, Wt wages, τ lt labor income taxes, Rt gross nominal

interest rate, πt in�ation and Tt pro�ts from the �rm.

Firms:

The production side consists of a continuum of competitive �rms, where each �rm produces

its good j according to the production function

Yt(j) = exp(At)Nt(j), (3)

where Yt denotes the output produced with a given level of technology At and hours

worked Nt(j) as the only input factor. Technology evolves according to an exogenous

AR(1) process:

ln(At) = ρa ln(At−1) + εAt , εAt ∼ N (0, σ2a). (4)

The �nal goods are sold by monopolistically competitive retailers, where price setting is

subject to nominal rigidities. Following Calvo (1983), each period only a fraction (1 - θ)

5We consider a very basic model without including e.g. labor market or �nancial frictions. How such restrictions
would in�uence the classi�cation problem is left for future research at this stage.

9



of all retailers is allowed to reset optimally their prices (Pt(j)). There is no indexation of

those retailers who cannot reoptimize their prices. Pro�ts of �rm j are then given by (in

nominal terms)

Tt(j) = (Pt(j)−MCt(j))

(
Pt(j)

Pt

)−εd
Yt(j). (5)

Real marginal costs are given by the following expression

MCt(j) =
Wt(j)

At
, (6)

while the demand for good j is expressed by

Yt(j) = Yt

(
pt(j)

Pt

)− 1+εd

εd

, (7)

where Pt denotes the aggregate price level and εd is the demand elasticity.

Government:

The governments' budget constraint takes the following form:

Bt =

(
Bt−1Rt−1

πt

)
+Gt − τ ltWtNt (8)

The government can accumulate debt Bt in form of government bonds. Every year, debt

is increased by interest payments, i.e. the previous years' debt multiplied by the previous

years' nominal interest rate which is given by Rt−1. The in�ation rate is given by πt and

government spending in the current period by Gt. Labor income taxes (with τ lt as the

tax rate applied to wages Wt multiplied by hours worked Nt) reduce the de�cit and hence

government debt. In this model, the tax rate follows a simple AR(1) process for simplicity,

while government spending responds in a rule-based manner. We focus on the government

spending rule for now. It is persistent and has an anticyclical component which is linked to

last period's debt level. If debt is higher than its long run trend b∗, government spending

is accordingly cut back, in order to return to the long-run equilibrium path. If government

debt (denoted in deviations from its own steady state and in absolute terms, not relative to

GDP6) is below its long-term equilibrium value, government spending can be increased.7

6The analysis does not change if the debt-to-GDP ratio is included as a target variable or if another variable
such as GDP is included in the government spending rule.

7It is also assumed that the long-run structural growth of the economy is zero, so the interest growth di�erential
is assumed to be positive.
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The rule can be expressed in log-linearized form arount the steady state (denoted by small

case letters) as follows:

gt = ρggt−1 − δb(st)(bt−1) + εgt , εgt ∼ N (0, σ2g), (9)

where εgt is a �scal policy shock. The parameters ρg and δb ≥ 0 denote the intensity of the

response of government spending to its own lag and the deviation of debt from its long-run

trend, respectively, The parameter δb depends on the regime st in period t, which will be

speci�ed in the next subsection. Monetary policy is conducted by the central bank which

follows a Taylor-type rule and reacts to its own nominal interest rate lag as well as to

deviations of in�ation and output from its respective target. The coe�cient on in�ation

φπ is regime dependent similar to the coe�cient on debt in the government spending rule.

Hence, the log-linearized monetary policy rule around the steady state is given by:

rt = ρrrt−1 + φπ(st)πt + φyyt + εrt , εrt ∼ N (0, σ2r ), (10)

with εrt being a monetary policy shock.

Market clearing and Monetary Policy:

Total demand by the government and by households in the form of consumption must

fully absorb the output of the �rms:

Yt = Ct +Gt. (11)

Market clearing in the bond market implies that all bonds issued by the government are

bought by the households in the economy.

3.1.2 Calibration and Solution

In order to quantify the point beyond which debt is no longer stationary we have to

calibrate all model parameters which will be explained in this section. The model is

calibrated to a quarterly frequency where most parameters are taken from the literature.

Table 1 presents the respective parameters. The Calvo-parameter is chosen to be 0.75,

which means that 25% of all �rms can choose to reset their prices each quarter. The

discounting parameter β is calibrated to 0.99 to arrive at an annual real interest rate of

4%. The autoregressive parameters are all set to uniform values of 0.9 and the standard
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deviations of all shocks to 0.01.

The coe�cient on output in the Taylor rule is �xed at 0.5. However, the two key parameters

for our analysis are the state-dependent policy rule parameters. Speci�cally, MD and FD

are de�ned in the model by the pair-values of (δb(st), φπ(st)). Under MD (st = 1), we

assume δb = 0.1 and φπ = 1.5. That means, �scal policy reacts to last periods' government

debt with a coe�cient larger than the real interest rate, while monetary policy adjusts

the nominal interest rate more than one-for-one with in�ation. Under FD (st = 2), δb = 0

and φπ = 0.5, i.e. the �scal authority does not stabilize its debt level and the central bank

responds only sluggishly to in�ation.

Table 1: Calibrated Parameters of the model

Description Parameter Value

Impatience β 0.99

Disutility of labor φ 1

Calvo prices θ 0.75

Steady state tax rate τss 0.3

Coe�. on in�ation in TR φπ st = 1 : 1.5
st = 2 : 0.5

Coe�. on output in TR φy 0.5

Coe�. on debt in gov.spending δb(s) st = 1 : 0.1
st = 2 : 0

AR parameter tax ρt 0.7

AR parameter gov. spending ρg 0.7

AR parameter technology ρa 0.7

AR parameter interest rate ρr 0.7

Steady state ratios Css/Yss 0.7

Gss/Yss 0.3

Gss/Bss 0.6

Std.deviation technology σa 0.01

Std.deviation gov. spending σg 0.01

Std.deviation interest rate σr 0.01

Std.deviation labor tax rate στl 0.01

Note: This table summarizes all calibrated parameters. Most of them are taken from the literature. δb and φπ
can take take two values depending on the prevalent regime.

All log-linearized model equations are stated in the Appendix B. The solution of the

Markov-switching problem is achieved using the code developed by Farmer et al. (2009).

The initial scale is set to 0 and the convergence criterion to 1 ∗ 10−9.

3.1.3 MS-DSGE Model Simulation

Our model allows for endogenous regime switches between MD and FD. The corresponding

transition probabilities between the two regimes are given by the matrix

P =

 p11 1− p22

1− p11 p22

 =

0.9 0.1

0.1 0.9

 , (12)

12



where 1 and 2 refer to MD and FD, respectively. Expressed in general analytical terms,

the two regimes follow a Markov chain which is described as

pij = P [st = j|st−1 = i] (13)

with i, j = 1, 2. It means that given the previous period's regime, the probability of

remaining in the same regime this period is 90%. The conditional probability of switching

to the other regime is 10%. The probabilities p11 and p22 are directly related to the

average length of time for which each policy is being pursued. This relation is given by

1/(1−pii) = 1/0.1 = 10, i = 1, 2. Hence, the FD and MD regimes are assumed to be quite

persistent with an average duration of 10 periods.

In order to generate data, we draw randomly from the four shocks given their distribution.

Each period, households and �rms expect �scal and monetary policy to either remain the

same or change given the transition probabilities. The fact that a random switch might

occur is entering their decisions-making. In contrast to reality, households and �rms

observe the current regime. In total, we have 11 endogenous variables in our model. For

these variables, we simulate time series over 10000 periods, where 5000 build the training

dataset and the other half is used for testing the predictive performance.8

3.2 Actual U.S. Data

All statistical learning algorithms are trained using 5000 periods of the simulated MS-

DSGE data. In order to use the trained models for classifying new data, we need data

on the same predictor variables as in the training set. We use the following endogenous

variables of the MS-DSGE model in our estimation: Output, Consumption, Labor, Wages,

Technology, Nominal Interest Rate, In�ation, Government Spending, Taxes, Government

Debt. Marginal Cost is also an endogenous variable of the DSGE model. However, we

do not include it in the training set since there is no actual U.S. data available for that

variable. Table 7 in the Appendix C presents the corresponding actual U.S. data that

we employ for classifying historical regimes. We use quarterly U.S. data from 1966:Q1-

2017:Q4, which is determined by data availability.

The training data is simulated by exposing the MS-DSGE model economy to di�erent

shocks. Hence, the variables represent deviations from its steady state values. Since

training data and new data that is used for prediction must be comparable, we have to

8By using simulated time series, we have the advantage that we are not confronted with a curse of dimensionality
that might exist using actual macroeconomic time series of much shorter length.
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transform the actual U.S. data into deviations from steady state. Therefore, we employ

the Hamilton (2018) �lter (with lag length p = 4 and forecast horizon h = 8) in order to

extract the cyclical component of each time series. As pointed out by Hamilton (2018),

this procedure allows a better match between DSGE simulated data and actual data

compared to the Hodrick-Prescott �lter.9 Tables 8 and 9 in Appendix C show standard

deviations and correlations of the variables in�ation, interest rate, debt and output from

the actual data and compare it to the implied moments of the MS-DSGE model in total

and conditional on each regime. In�ation and interest rate volatility are matched best by

the MS-DSGE conditional on the MD regime. The MS-DSGE implies a larger volatility

in both cases though. Conditional on FD, the volatility of debt is close but below the

one of the actual data. The standard deviation of output implied by the model is clearly

undersized compared to the actual data. Concerning the implied correlation between the

four variables, the model performs quite well in general, except for the pair of in�ation

and output.

4 Results

4.1 Performance on Simulated MS-DSGE Data

4.1.1 In-sample

In order to train the di�erent machine learning algorithms, we use half of the simulated

periods from our baseline MS-DSGE model. The sample consists of 47% MD and 53% FD

regimes. Table 2 reports the accuracy for this in-sample data across all trained classi�ers.

The best performance is indicated in bold.

The standard logit model performs poorly. It correctly classi�es only about 53% of the

training observations. The KNN method improves on that with a validation accuracy

about 87%, which can be further increased to 92% and 98% by using the decision tree

method and SVM, respectively. Both ensemble tree methods, RF and AdaBoost, perfectly

classify the training data with an accuracy rate of 100%.

4.1.2 (Pseudo-)Out-of-sample

Since the trained classi�ers shall be used for prediction, the focus lies on the out-of-sample

rather than in-sample performance. Hence, we use four simulated test datasets in order

9As a cross-check, however, we also try the Hodrick-Prescott �lter (with λ = 1600). See Section 4.4.
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Table 2: In-sample Accuracy

Method Accuracy

Logit 0.53

KNN 0.87

Tree 0.92

RF 1.00

AdaBoost 1.00

SVM 0.98

Note: Accuracy on training data set from baseline MS-DGSE model.

to check the classi�ers' generalization ability.

The �rst one comprises further simulated periods of the baseline MS-DSGE model, that

were not used for training. However, DSGE models can never fully represent reality.

We need to account for parameter uncertainty in our data generating process and to

check the classi�ers robustness with respect to changes in the data. Therefore, the three

additional test sets stem from modi�ed versions of the baseline MS-DSGE model. The

�rst modi�cation is a lower Calvo parameter of θ = 0.7. The second one assumes a

sharper response of the central bank with respect to in�ation under the MD regime, i.e.

φπ(s1) = 2.5. For the third test dataset we change the transition probabilities to p11 = 0.92

and p22 = 0.88. Each test dataset consists of 5000 simulated periods.10 All resulting

confusion matrices across methods and for each test sample are shown in Tables 8 and 9

in the Appendix D. Table 3 summarizes the results by presenting di�erent performance

measures averaged over the four test samples. The AdaBoost method outperforms the

others over all categories11, while RF is overall the second best performing model. The

standard logistic model yields a remarkably low speci�city of 0.39, i.e. of all true �scal

dominance regimes, it correctly classi�es (on average) only 39%.

10The share of MD regimes in the four test sets is 50%, 47%, 47% and 56%, respectively.
11AUC refers to the area under the receiver operating characteristic curve (ROC). It plots the sensitivity against
against (1-speci�city) for di�erent conditional probability classi�cation thresholds. AUC takes on values between
0 and 1, where 1 means perfect performance and 0.5 corresponds to an uninformative classi�er.
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Table 3: Averaged Out-of-Sample Performance Measures

Method Accuracy TPR TNR PPV NPV AUC

Logit 0.50 0.39 0.61 0.50 0.50 0.50

KNN 0.86 0.97 0.75 0.79 0.96 0.95

Tree 0.83 0.88 0.78 0.80 0.87 0.91

RF 0.90 0.95 0.86 0.87 0.94 0.98

AdaBoost 0.95 0.97 0.92 0.92 0.97 0.99

SVM 0.86 0.84 0.87 0.87 0.85 0.95

Note: Di�erent performance measures averaged over the four test samples. TPR, TNR, PPV, NPV, AUC

denote true positive rate, true negative rate, positive predictive value, negative predictive value and area under

the curve, respectively, with positive corresponding to MD negative to FD. Bold numbers emphasize the best

performing classi�er according to each performance measure.

4.2 Classi�cation of Historical U.S. Regimes

This section presents our results on the classi�cation of historical U.S. regimes and com-

pares it to the existing literature as well as general narratives. Since AdaBoost yields the

best predictive performance using simulated MS-DSGE test data, we trust this trained

classi�er the most when applying it to the actual U.S. data.12 Given the data of Table 7,

we predict the historical regimes from 1968:Q4 to 2017:Q4. Figure 1 shows the smoothed

results by the AdaBoost classi�er.13

We �nd clear evidence of FD at the beginning of our sample until mid 1980s. This

period covers completely the eras of the Fed Chairmen Burns (1970-1977) and Miller

(1978-1979) under the U.S. presidents Ford (1975-1976) and Carter (1977-1980). The

appointment of Volcker as the Fed Chairman in January 1980 and his success in bringing

down in�ation in the following years is usually found to be a turning point in the literature.

Meltzer (2011) for example states that Volcker played a major role in rebuilding central

banks' independence while it accepted its role as a junior partner in the two previous

decades. Still, our preferred classi�er �nds that MD was �nally established only at the

beginning of 1984 until 1988. The �rst half of the presidency of Reagan (1981-1988) with

his expansionary tax reforms is still partly found to be a FD regime. Davig and Leeper

(2011) and Bianchi and Ilut (2017) �nd both policies being active from 1980-1983. The

results of Chen et al. (2019) imply that �scal policy was active from the end of 1981

12The predicted regimes of the second and third best performing classi�ers (RF and SVM) are shown in Appendix
E.

13We smooth the results by restricting a regime change to occur only if the new regime lasts for at least 4 quarters
in a row.
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Figure 1: Predicted U.S. Regimes by the AdaBoost Classi�er

Note: Predicted U.S. Regimes according to the trained Boosted Trees classi�er. Dark-shaded areas correspond

to the �scal dominance regime, while light-shaded areas belong to the monetary dominance regime. The

black-dotted vertical lines represent the appointment date of the respective Fed Chairman.

until even 1995, while monetary policy acted less conservatively until 1983 and around

1988-1991. Overall, our results largely coincide with the ones of Chen et al. (2019) for

the period of 1980-1994, which falls into the Fed chairmanship of Greenspan (1988-2005)

and U.S. presidency of Bush sen. (1989-1992). The end of this period was characterized

by a recession following the stock market crash in 1989. Starting only one year after the

appointment of Clinton in 1993, our preferred classi�er �nds clear evidence for MD until

the third quarter of 2001, which might be a result of the De�cit Reduction Act. The

Dot-Com Bubble led to expansionary tax reforms during the �rst half of the �rst half of

the 2000s under U.S. president Bush jun. The AdaBoost classi�er predicts these periods

as a FD regime. We �nd mixed evidence for the periods prior to the crisis with one year

(2005:Q3-2006:Q2) of FD and MD until the beginning of the crisis. Since then, FD is found

to be the prevalent regime until mid of 2016. This period overlaps with the Feds' large

scale asset purchase programs and the zero lower bound (ZLB) phase. These quantitative

easing (QE) programs are often critized as monetization of government debt. Since our

data generating MS-DSGE model neither incorporates a ZLB nor any QE measures the

results have to be interpreted with caution. Still, the results are similar to the ones

of Gonzalez-Astudillo (2018) and Bianchi and Melosi (2017). Gonzalez-Astudillo (2018)
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estimate MS policy rules where the Taylor rule is allowed to be censored at the ZLB and

�nds FD after the �nancial crisis until the end of its sample in 2015. Bianchi and Melosi

(2017) estimate a three-regime MS-VAR, where the third regime refers to a �scally-led

ZLB regime. They �nd this regime to be in place starting with the �nancial crisis until

their sample end in 2014. Our sample ends with a classi�ed MD regime until the fourth

quarter of 2017. Table 10 in the Appendix compares our results to the �ndings of related

literature.

4.3 Inspecting the Classi�cation Mechanism

In this section, we take a deeper look at the classi�cation mechanism of the trained Ad-

aBoost model. Speci�cally, we analyze which variables are important for the algorithm to

distinguish MD from FD.

We start by visualizing the data that was used for training the classi�ers. Figure 2 presents

the Parallel Coordinates Plot (PCP) of the training dataset. The PCP allows to inspect

multidimensional data by plotting each observation as a sequence of its (standardized)

coordinate values against their coordinate indices (variable names). In Figure 2, blue

(orange) sequences belong to observations from the FD (MD) regime. This visualization

shows that variables like interest rate, debt or in�ation have high informational content

for distinguishing between FD and MD. High interest and in�ation rates, for example,

are only found under the FD regime. In contrast, technology and taxes do not help a lot

for di�erentiating the two regimes. So far, this �nding is not really surprising since the

variables appearing in the policy reaction functions (9) and (10) should of course have

predictive content since the two regimes are de�ned in these equations. Still, because of

the endogeneity of all variables in the DSGE model, there is more information in the other

variables as well, that can be used by the classi�ers.

Figures 3 and 4 present the relative variable importance for AdaBoost and RF, respectively.

The predictor importance is estimated by dividing the sum of changes in impurity due to

splits on the respective variable by the number of interior nodes (branches). Node impurity

is measured here by the Gini Diversity Index (GDI), i.e. 1 −
∑
i
p2(i), where p(i) is the

fraction of observations at that node belonging to class i. The GDI is equal to 0 for a

node with only one class and positive otherwise. The results are shown in relative terms,

where the predictor with the largest variable importance estimate is set to 100%.

The most important predictor for the AdaBoost classi�er is the nominal interest rate fol-

lowed by debt and consumption. Output, taxes and in�ation, government spending and
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Figure 2: Parallel Coordinates Plot of Training Data

Note: Parallel Coordinates Plot of baseline MS-DSGE training dataset. Blue (orange) observations belong to

the Fiscal (Monetary) Dominance Regime.

technology are almost equally important ranging from ca. 52-62% of the benchmark im-

portance measure. Labor and wages are the two least important variables for AdaBoost.

Comparing this result to the PCP, it is especially interesting that taxes are middle ranked

since one would actually not expect high informational content by eyeballing. For the RF

classi�er, the most important variable is in�ation, followed by debt, government spending

and the interest rate. Missing only output, these are exactly the variables from the policy

reaction functions. Interestingly, all other variables are rather unimportant for the RF

classi�er with taxes and wages ranked last. In contrast, for AdaBoost the variable impor-

tance is distributed more uniformly.

In order to check how the predictive performance depends on the included variables, we

also experiment with the number of predictors. Speci�cally, we once train the classi�ers

with only 2 predictors (i.e. in�ation and debt) and once with 4 predictors (i.e. in�ation,

debt, interest rate and government spending).14 We compare the averaged accuracy over

the four test datasets (see Section 4.1.2) in Figure 5.

Note, that the logistic classi�er is not included in the Figure since it yields a poor averaged

accuracy of around 50% irrespective of the predictor subset. Using only in�ation and debt

14See Tables 5 and 6 in Appendix A for the chosen hyperparameters in these cases.
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Figure 3: AdaBoost: Relative Variable Importance

Note: Relative variable importance of the AdaBoost classi�er. Variable importance is estimated by the average

change of node impurity due to splits on the corresponding predictor. Node impurity is measured by the Gini

diversity index. The variable with the largest importance measure is set as a benchmark (100%) in order to get

relative measures.

as predictors, all machine learning classi�ers perform remarkably well with an average

accuracy of ca. 75%. Increasing the number of predictors to four by further including

the nominal interest rate and government spending rises the average accuracy by about 7

percentage points (PP). Interestingly, the smaller the predictor subset, the more equal is

the performance across classi�ers. The AdaBoost classi�er is the one that bene�ts most

from including all 10 endogenous variables with an increase in average accuracy by 13 PP.

This result supports the view that the AdaBoost classi�er is the one that best exploits all

given information in the predictors to distinguish MD from FD regimes.

4.4 Robustness

In the last section in�ation was described as one key variable to di�erentiate between both

regimes. To check the robustness of our results with respect to the in�ation measure,

we repeat the classi�cation exercise of the actual regimes using the GDP de�ator and

Personal Consumption Expenditure (PCE) instead of CPI in�ation. All other variables

stay unchanged. Figures 6 and 12 (in Appendix E) present the predicted U.S. regimes
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Figure 4: RF: Relative Variable Importance

Note: Relative variable importance of the RF classi�er. Variable importance is estimated by the average

change of node impurity due to splits on the corresponding predictor. Node impurity is measured by the Gini

diversity index. The variable with the largest importance measure is set as a benchmark (100%) in order to get

relative measures.

according to AdaBoost with GDP de�ator and PCE in�ation, respectively.

Overall, the predicted U.S. regimes are robust with respect to the in�ation measure. We

only see small deviations for the periods between 1985-1988 and around the �nancial crisis.

Using the GDP de�ator, we get more FD regimes for the �rst and more MD regimes for

the latter period.

Additionally, we check robustness with respect to the �lter method used to extract the

cyclical component. Figure 7 shows the predicted regimes by AdaBoost employing the

Hodrick-Prescott (HP) �lter (with λ = 1600) to the actual data instead of the Hamilton

�lter. Using the HP �lter allows us to classify periods going back to 1966 since there are

no excluded lags as with the Hamilton �lter.

Before 1970, we �nd mainly MD to be the prevalent regime. Although, using the HP �lter

the AdaBoost classi�er predicts shorter MD regimes for the rest of the sample, the timing

roughly coincides with our baseline result. The predicted regimes using the two di�erent

�lter methods only clearly diverge at the end of the sample. This could be due to the HP

�lters' usual problem of biasedness at the interval borders.
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Figure 5: Averaged Out-of-Sample Accuracy for Di�erent Predictor Subsets

Note: Averaged accuracy over the four test samples for each classi�er given di�erent predictor subsets.

Figure 6: Predicted U.S. Regimes by the AdaBoost Classi�er with GDP De�ator

Note: Predicted U.S. Regimes according to the trained Boosted Trees classi�er using GDP de�ator as the

in�ation measure. Dark-shaded areas correspond to the �scal dominance regime, while light-shaded areas

belong to the monetary dominance regime. The black-dotted vertical lines represent the appointment date of

the respective Fed Chairman.
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Figure 7: Predicted U.S. Regimes by the AdaBoost Classi�er with HP-Filter

Note: Predicted U.S. Regimes according to the trained Boosted Trees classi�er using the HP �lter to extract

the cyclical component. Dark-shaded areas correspond to the �scal dominance regime, while light-shaded areas

belong to the monetary dominance regime. The black-dotted vertical lines represent the appointment date of

the respective Fed Chairman.

5 Conclusion

Due to its non-observability, the exact interaction of monetary and �scal policy is both

an interesting research area as well as an area of mere speculation. Speci�cally in periods

with high levels of government debt, central banks' independence might not be guaranteed.

Our paper contributes to this literature and provides a new technique that allows to clas-

sify regimes in real-time using machine learning techniques. It is trained to understand

state-of the art Markov-switching DSGE models with respect to the underlying regime

and its predictions are based on the (nonlinear) interactions of (all) endogenous variables.

Applying it to U.S. data, we corroborate the �nding of �scal dominance in the 1970s until

early 1980s. The period around the stock market crash determines the next turning point

from monetary to �scal dominance, before the monetary dominance regime is prevalent

from 1994 until mid 2001. We �nd mixed evidence for the more recent years. There is

ample room for further research using machine learning techniques. Particular interest-

ing avenues concerning this paper's application would be to incorporate the time-series

dynamics of the data and to expand the analysis on other countries or currency unions.
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Appendix

A Choice of Hyperparameters

We select the hyperparameters by 10-fold cross-validation of the training data and Matlabs'

Bayesian optimization routine. Tables 4- summarizes the chosen hyperparameters of each

method.

Table 4: Optimized Hyperparameters

Method Hyperparameter Value

KNN Number of neighbors K 10

Tree Max. number of splits 232

RF Number of bootstraps B 500

Number of predictors to split on 9

Min. leaf size 1

AdaBoost Number of trees T 499

Learning rate λ 0.56496

Max. number of splits 144

SVM Cost of violations to soft margin constraint C 988.21

Kernel scale γ 3.2373

Note: Chosen hyperparameters by 10-fold cross-validation and Bayesian optimization. The number of

boostraps B was chosen exogenously since it does not involve an over�tting issue.
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Table 5: Optimized Hyperparameters with In�ation and Debt as the Only Predictors

Method Hyperparameter Value

KNN Number of neighbors K 159

Tree Max. number of splits 78

RF Number of bootstraps B 500

Number of predictors to split on 2

Min. leaf size 53

AdaBoost Number of trees T 11

Learning rate λ 0.0013069

Max. number of splits 77

SVM Cost of violations to soft margin constraint C 1.5678

Kernel scale γ 0.35848

Note: Chosen hyperparameters by 10-fold cross-validation and Bayesian optimization, when only in�ation and

debt are included as predictors. The number of boostraps B was chosen exogenously since it does not involve

an over�tting issue.

Table 6: Optimized Hyperparameters with In�ation, Debt, Interest Rate and Government
Spending as the Only Predictors

Method Hyperparameter Value

KNN Number of neighbors K 40

Tree Max. number of splits 132

RF Number of bootstraps B 500

Number of predictors to split on 4

Min. leaf size 25

AdaBoost Number of trees T 84

Learning rate λ 0.98072

Max. number of splits 14

SVM Cost of violations to soft margin constraint C 1.1414

Kernel scale γ 1.168

Note: Chosen hyperparameters by 10-fold cross-validation and Bayesian optimization, when only in�ation,

debt, interest rate and government spending are included as predictors. The number of boostraps B was chosen

exogenously since it does not involve an over�tting issue.
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B Log-Linearized Model Equations

ct = ct+1 − (rt − Etπt+1)

nt = wt − ct

wt = yt +mct − nt

nt = yt − at +
τ lss

1− τ lss
τt

at = ρaat−1 + εat

πt = βπt+1 +
(1− θ)(1− βθ)

θ
mct

yt =
Css
Yss

ct +
Gss
Yss

gt

bt =
1

β
(bt−1 − πt + rt−1) +

Gss
Bss

gt −
τ lssWssNss

Bss
(τ lt + wt + nt)

τ lt = ρtτ
l
t−1 + εtt

gt = ρggt−1 − δyyt − δbbt−1 + εgt

rt = ρrrt−1 + φππt + φyyt + εrt

C Data
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Figure 8: Standard Deviations of Selected Variables from Actual and Simulated Data

Note: The �gures show standard deviations of in�ation, interest rate, debt and output from actual U.S. data

(yellow) and from simulated MS-DSGE data. Orange (grey) bars belong to simulated MS-DSGE data

conditional on the �scal (monetary) dominance regime, while the blue ones correspond to the total simulated

data set. All variables represent deviations from steady state.

Figure 9: Correlations between Selected Variables from Actual and Simulated Data

Note: The �gures show correlations between the variables in�ation, interest rate, debt and output from actual

U.S. data (yellow) and from simulated MS-DSGE data. Orange (grey) bars belong to simulated MS-DSGE

data conditional on the �scal (monetary) dominance regime, while the blue ones correspond to the total

simulated data set. All variables represent deviations from steady state.
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D Confusion Matrices for Test Datasets

Baseline

Logit
Predicted
FD MD

True
FD 0.50 0.03
MD 0.44 0.03

KNN
Predicted
FD MD

True
FD 0.41 0.12
MD 0.01 0.46

Tree
Predicted
FD MD

True
FD 0.46 0.07
MD 0.01 0.46

RF
Predicted
FD MD

True
FD 0.53 0.00
MD 0.00 0.47

AdaBoost
Predicted
FD MD

True
FD 0.53 0.00
MD 0.00 0.47

SVM
Predicted
FD MD

True
FD 0.51 0.02
MD 0.00 0.47

Table 8: Confusion matrices across methods (rows) corresponding to test dataset from baseline
MS-DSGE model (column).
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Calvo Sharper Response Transition

Logit
Predicted
FD MD

True
FD 0.26 0.27
MD 0.23 0.24

Predicted
FD MD

True
FD 0.26 0.27
MD 0.23 0.24

Predicted
FD MD

True
FD 0.22 0.22
MD 0.30 0.26

KNN
Predicted
FD MD

True
FD 0.40 0.13
MD 0.01 0.46

Predicted
FD MD

True
FD 0.40 0.13
MD 0.01 0.46

Predicted
FD MD

True
FD 0.34 0.10
MD 0.02 0.54

Tree
Predicted
FD MD

True
FD 0.43 0.10
MD 0.06 0.41

Predicted
FD MD

True
FD 0.43 0.10
MD 0.05 0.42

Predicted
FD MD

True
FD 0.34 0.10
MD 0.06 0.50

RF
Predicted
FD MD

True
FD 0.47 0.06
MD 0.04 0.43

Predicted
FD MD

True
FD 0.47 0.06
MD 0.01 0.46

Predicted
FD MD

True
FD 0.39 0.06
MD 0.02 0.53

B-
Trees

Predicted
FD MD

True
FD 0.49 0.03
MD 0.00 0.47

Predicted
FD MD

True
FD 0.50 0.03
MD 0.00 0.47

Predicted
FD MD

True
FD 0.41 0.03
MD 0.03 0.53

SVM
Predicted
FD MD

True
FD 0.42 0.11
MD 0.00 0.47

Predicted
FD MD

True
FD 0.43 0.10
MD 0.01 0.46

Predicted
FD MD

True
FD 0.43 0.02
MD 0.29 0.26

Table 9: Confusion matrices across methods (rows) corresponding to di�erent test datasets
from modi�ed MS-DSGE models (columns).
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E Predicted U.S. Regimes

Table 10: Comparison of U.S. Regimes Found in the Literature

US 

Presi-

dent

Fed 

Chair

FM05

DL11

TY11

B12

M15

BEA16

KEA16

BI17

BM17

GA18

CEA19

HH19

Year 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

FM05

DL11

TY11

B12

M15

BEA16

KEA16

BI17

BM17

GA18

CEA19

HH19

Year 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Bush sen.Johnson Nixon Ford Carter Reagan

Greenspan Bernanke Yellen Powell

Martin Burns Miller Volcker

Bill Clinton Bush jun. Obama Trump

Note: This table compares the historical U.S. regimes found in the literature over the period from 1963-2020.
It neither claims completeness nor an exact representation of the results since some of them are drawn by
eye-balling of the respective graphs or aggregated over quarterly results. Blue-marked (orange-marked) periods
denote monetary (�scal) dominance. Yellow-marked periods comprise either indetermined, explosive or
optimal �scal policy regimes, while white means that there are no results available. Besides the U.S. presidents
and Fed chairs, each row corresponds to the �ndings of a di�erent paper. The abbreviations denote:

FM05 = Favero and Monacelli (2005),
DL11 = Davig and Leeper (2011),
TY11 = Traum and Yang (2011),
B12= Bianchi (2012),
M15 = Martin (2015),
BEA16 = Bhattarai et al. (2016),
KEA16 = Kliem et al. (2016a),
BI17 = Bianchi and Ilut (2017),
BM17 = Bianchi and Melosi (2017),
GA18 = Gonzalez-Astudillo (2018),
CEA19 = Chen et al. (2019) and

HH19 = Hinterlang and Hollmayr (2019)(the �ndings of this paper).
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Figure 10: Predicted U.S. Regimes by the RF Classi�er

Note: Predicted U.S. Regimes according to the trained Random Forest classi�er. Dark-shaded areas correspond

to the �scal dominance regime, while light-shaded areas belong to the monetary dominance regime. The

black-dotted vertical lines represent the appointment date of the respective Fed Chairman.

Figure 11: Predicted U.S. Regimes by the SVM Classi�er

Note: Predicted U.S. Regimes according to the trained SVM classi�er. Dark-shaded areas correspond to the

�scal dominance regime, while light-shaded areas belong to the monetary dominance regime. The black-dotted

vertical lines represent the appointment date of the respective Fed Chairman.
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Figure 12: Predicted U.S. Regimes by the AdaBoost Classi�er with PCE In�ation

Note: Predicted U.S. Regimes according to the trained Support Vector Machine classi�er using PCE as the

in�ation measure. Dark-shaded areas correspond to the �scal dominance regime, while light-shaded areas

belong to the monetary dominance regime. The black-dotted vertical lines represent the appointment date of

the respective Fed Chairman.
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