

The Banca d'Italia and Federal Reserve Board joint virtual conference, 12 Nov 2020

Nicolas Woloszko OECD Economics Department & Innovation LAB

DATA & PREPROCESSING

Google Trends for Nowcasting

Extensive country coverage: <u>46 OECD countries + G20 + Partners</u>

- Search Intensity Indices for <u>categories</u> ⁺ <u>topics</u> of search keywords
- Covering multiple economic sectors:
- **Consumption**. Eg: Food & Drink, Tourist Destinations, Vehicle Brands, Home Appliances
- Labour market. Eg: Unemployment benefits, Developer Jobs, Temporary jobs
- Housing & Debt. Eg: Real Estate Agencies, Credit & Lending, Forbearance
- Business services & dynamism. Eg: Venture Capital, Commercial Vehicles, Bankruptcy
- Industrial activity. Eg: Maritime Transport, Agricultural Equipment, Agrochemicals
- *Economic sentiment*. Eg: Economic crisis, Public debt, Economy News
- **Poverty**. Eg: Food bank, Social Services

Data preprocessing

- **Multiple sampling** using the API in order to reduce sampling variance.
- Addressing breaks in the data due to changes in the data collection process in January 2011 and January 2016.
- Use of log difference with the same month of the past year in order to get rid of seasonality
- The bias caused by changes in the denominator is addressed using a specific method

MODEL & SIMULATIONS

A neural panel model of GDP growth for 46 countries

- Modelling the relationship $y_{iq} = f(GT_{iq}, \mathbb{I}_i)$. Two steps:
 - 1) **f** is <u>estimated</u> using a **neural network** trained on quarterly observations
 - f <u>applied</u> to weekly Google Trends series and predicts estimates of YoY growth rate in weekly GDP.

Why a neural panel model ?

- Country-specific model would have more variables (250) than observations (60)
- Linear panel models may suffer from bias caused by cross-country heterogeneity
- Our neural panel model with country dummies exploits a large sample (2700 quarterly obs.) while capturing cross-country heterogeneity

Feature value

Low

Model interpretability techniques can provide insights into the inner workings of the models.

A recent method ('SHAP') (Lundberg and Lee, 2017), decomposes the predictions made by any algorithm into variable contributions (their "SHAP values") using Shapley Values (from the field of Game Theory)

With a linear model, the SHAP value for observation i and variable x_j is simply equal to $\beta_j * x_{ij}$.

Capturing cross-country heterogeneity

Partial dependency plot:

variable contribution (using Shapley Values) against variable value.

In a linear setting: it would show the $X\beta$ straight line against the value of X.

The algorithm captures cross-country heterogeneity: the Weekly Tracker more sensitive to searches for « unemployment » in Argentina than in the UK.

FORECAST SIMULATIONS

The model performs well in forecast simulations

Simulations are ran in pseudo-real time (**out-of- sample**) at M-1

On average, **the Trends tracker is 37% more accurate than an AR(4)** across countries

Forecast simulations: quarterly model

Focus on 2020 Q2

The tracker captures the downturn in all 46 countries but one (KOR) :

- 30 (out of 46) projections are « accurate » (by a 4pp margin)
- Mean absolute forecast error is **3.8pp** (= 34% of the mean value)

Benchmarking against another high-frequency indicator: Google Mobility reports

THE OECD WEEKLY TRACKER

Weekly Tracker: selected AMEs

60

40

Canada

Japan

South Africa

60

40

Brazil

Early insights for Q4

SECTORAL ANALYSIS

Variable contributions to GDP growth prediction

Simple means in yoy growth rates of GT categories picked up by the model as strong GDP predictors

- Consumption goods: Food & Drink, Vehicle Brands, Energy & Utilities, Vehicle Shopping, Camera & Photo Equipment, Music Equipment & Technology, Home Appliances, etc
- Consumption services: Performing Arts, Travel, Sports, Restaurants, Arts & Entertainment, etc

Search intensity for selected consumption items 2020-08, yoy, OECD+G20

A. Selected consumption **services**

B. Selected consumption goods

MANY THANKS !

Extracting the common trend

- 1) Log transformation: $svi_{ct} = sv_{ct} svt_t + C_c$.
- 2) <u>HP Filter</u> in order to extract long-term trends.
- 3) PCA is used to extract the common term, that is the log total search volume
- The resulting common term is substracted from each series

