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Now- and Backcasting Initial Claims with

High-Dimensional Daily Internet Search-Volume Data

Abstract

We generate a sequence of now- and backcasts of weekly unemployment insurance ini-
tial claims (UI) based on a rich trove of daily Google Trends (GT) search-volume data
for terms related to unemployment. To harness the information in a high-dimensional
set of daily GT terms, we estimate predictive models using machine-learning techniques
in a mixed-frequency framework. The sequence of now- and backcasts are made ten
days to one day before the release of the UI figure on Thursday of each week. In a
simulated out-of-sample exercise, now- and backcasts of weekly UI that incorporate the
information in the daily GT terms substantially outperform those based on an autore-
gressive benchmark model, especially since the advent of the COVID-19 crisis. The
improvements in predictive accuracy relative to the autoregressive benchmark generally
increase as the now- and backcasts include additional daily GT data, with reductions in
root mean squared error of up to approximately 50%. Variable-importance measures
reveal that the GT terms become more relevant for predicting UI during the crisis,
while partial-dependence plots indicate that linear specifications are largely adequate
for capturing the predictive information in the GT terms. We are in the process of
creating a website that will provide updated, real-time now- and backcasts of UI on a
daily basis.

JEL classifications: C45, C53, C55, E24, E27, J65

Key words: Unemployment insurance, Internet search, Mixed-frequency data, LASSO,
Elastic net, Neural network, Partial-dependence plot, Variable importance
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1 Introduction

The COVID-19 crisis has created economic upheaval in the United States, including histor-

ically unprecedented levels of unemployment insurance initial claims (UI). After a national

emergency was declared on March 13, 2020 and closures of non-essential retail establishments

were ordered in many parts of the country, UI spiked in late March, reaching a (seasonally

adjusted) record of 6,867,000 for the week ending March 28, 2020. By comparison, the peak

in UI during the Great Recession was “only” 665,000 (for the week ending March 28, 2009).

While UI has subsequently declined, it remains at elevated levels. Because it provides im-

portant information about the US labor market and is reported at the weekly frequency,

UI has become perhaps the most closely watched economic variable during the COVID-19

crisis. Reflecting its relevance and timeliness, Lewis, Mertens, and Stock (2020) include UI

in their recently developed weekly economic indicator for the United States.

In this paper, we use a rich trove of daily internet search-volume data from Google Trends

(GT) to predict UI, with an eye toward improving prediction during the COVID-19 crisis.

Because we cannot know ex ante the most relevant GT search terms for predicting UI, we

employ a high-dimensional set of GT terms related to unemployment. We then rely on

machine-learning techniques to harness the relevant information in the terms. Specifically,

we use daily data for 103 unemployment-related GT terms for the most recent seven days to

generate a sequence of now- and backcasts of a given week’s (Sunday through Saturday) UI,

in anticipation of the release of the figure by the Department of Labor on Thursday of the

following week. The sequence of now- and backcasts incorporates the most recent daily GT

data as they become available, which allows us to investigate the “term structure” of the

flow of information with respect to predictive accuracy. The sequence of now- and backcasts

of week-t UI are made from ten days to one day before the UI release on Thursday of week

t+ 1.
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Each of our predictive models relates UI to its first (or second) lag—in recognition of

the serial correlation in UI—as well as seven days of GT data.1 Each model thus contains

7×103+1 = 722 predictors (or inputs), so that ours is a high-dimensional setting. We begin

with a linear specification for the predictive models underpinning the now- and backcasts. To

guard against overfitting in our high-dimensional setting, we estimate the linear predictive

models via the least absolute shrinkage and selection operator (LASSO, Tibshirani 1996) and

elastic net (ENet, Zou and Hastie 2005). The LASSO and ENet are popular machine-learning

devices, which improve prediction in high-dimensional settings by including a penalty term

in the objective function for estimating the model’s parameters. Intuitively, the penalty term

works to shrink the parameters toward zero, thereby helping to prevent overfitting. Because

their penalty terms include an `1 component, the LASSO and ENet permit shrinkage to zero,

so that they facilitate model interpretation by performing variable selection.

To allow for more complex, nonlinear predictive relationships, we also use artificial neural

networks (ANNs) to generate now- and backcasts of UI based on the 722 predictors. ANNs

contain one or more hidden layers, each of which contains multiple neurons that transmit

predictive signals through the network. Under a reasonable set of restrictions, a single-

layer ANN with a sufficient number of neurons can approximate any smooth function (e.g.,

Cybenko 1989; Funahashi 1989; Hornik, Stinchcombe, and White 1989; Hornik 1991; Barron

1994). Because ANNs with multiple hidden layers are often used in practice, we consider

ANNs with one to three hidden layers (NN1, NN2, and NN3, respectively).2 We fit the ANNs

using the recently developed Adam stochastic gradient descent (SGD) algorithm (Kingma

and Ba 2015).

Our use of mixed-frequency data in the predictive models is a version of the unrestricted

mixed-data sampling (U-MIDAS) approach of Foroni, Marcellino, and Schumacher (2015).

The restricted MIDAS approach (Ghysels, Santa-Clara, and Valkanov 2005) imposes a lag-

1The inclusion of the first or second lag of UI is determined by the timing of the UI release, as detailed
in Section 3.

2ANNs with one or two (three or more) hidden layers are typically referred to as shallow (deep) neural
networks.
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polynomial structure on the higher-frequency data. Instead of somewhat arbitrarily imposing

a lag-polynomial structure ex ante, we harness machine learning to fit the weights for the

individual variables in the predictive models in our high-dimensional setting. The U-MIDAS

framework also allows us to analyze how the flow of information affects the accuracy of

the sequence of now- and backcasts, as each successive element in the sequence includes an

additional day of GT data. In essence, we combine two branches of the economic forecasting

literature, one that applies machine-learning methods (e.g., Diebold and Shin 2019; Kotchoni,

Leroux, and Stevanovic 2019; Medeiros et al. forthcoming) and one that employs mixed-

frequency data (e.g., Clements and Galvão 2008; Foroni and Marcellino 2014; Brave, Butters,

and Justiniano 2019).

We find that the information in our high-dimensional set of daily GT terms is indeed

useful for now- and backcasting weekly UI, even up to ten days before its release date.

This finding holds for both non-seasonally and seasonally adjusted UI data. Specifically,

the predictions for models that include GT terms generate substantial improvements in root

mean squared error (RMSE) vis-à-vis an autoregressive (AR) benchmark model. For an

out-of-sample period spanning the first week of 2019 through the last week of July of 2020,

all of the now- and backcasts based on the daily GT trends deliver a lower RMSE than the

AR benchmark, with reductions in RMSE of up to 53%. The improvement in predictive

accuracy offered by the daily GT terms is dramatic during the advent of the COVID-19

crisis. In sum, our now- and backcasts of weekly UI based on daily GT terms dominate

those based on an AR model that ignores the information in the GT terms, especially during

the COVID-19 crisis.

The now- and backcasts based on linear models estimated via the LASSO and ENet

generally perform better than those based on ANNs for seasonally adjusted UI. For non-

seasonally adjusted UI, the ANNs have a slight performance edge in a number of cases. We

also consider three ensembles for a given now- or backcast of UI.3 The first takes the average

3Ensembles are often refereed to as combinations in the econometrics literature; see Timmermann (2006)
for a survey of forecast combination.
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of the LASSO and ENet predictions, the second is the average of the predictions generated

by the three ANNs, and the last is the average of all five predictions (LASSO, ENet, NN1,

NN2, and NN3). The ensemble approach works quite well, typically producing a reduction

in RMSE vis-à-vis the AR benchmark that is nearly as large as the best individual model

(which we cannot know ex ante).

The term structure of the information flow reveals a pronounced increase in predictive

accuracy as more timely daily GT data are incorporated into the sequence of now- and

backcasts. For the first nowcast, made ten days before the UI release, the GT terms improve

the RMSE vis-à-vis the AR benchmark by approximately 20% (15%) on average for non-

seasonally (seasonally) adjusted UI. For the backcast made three days before the UI release—

which incorporates an additional seven days of GT data—the improvement in RMSE is

around 50% on average for both non-seasonally and seasonally adjusted UI. The best overall

performance obtains when there is full overlap between the seven days of GT terms and the

UI week, corresponding to the backcast made three days before the UI release.

To look inside the “black box” of the fitted ANNs, we compute variable-importance

measures (Greenwell, Boehmke, and McCarthy 2018) and partial-dependence plots (PDPs,

Friedman 2001) for the individual predictors. The variable-importance measures allow us to

see which predictors are the most relevant in the fitted ANNs, as well as the linear models

fitted via the LASSO and ENet. Prior to the COVID-19 crisis, the lag of UI is the most

important predictor in all of the fitted models. With the advent of the crisis, the situation

changes markedly, as GT terms related to the application process for UI benefits become

quite important. In fact, when we include data from the COVID-19 crisis, the GT terms

dominate in the fitted models used to generate the backcast three days before the UI release,

while the lag of UI becomes irrelevant. The PDPs allow us to analyze the strength of the

nonlinearities in the fitted ANNs. The results indicate that the nonlinearities in the fitted

ANNs are relatively weak, so that the fitted linear and nonlinear predictive models are fairly
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“close” to one another. This helps to explain why the now- and backcasts based on the

ANNs do not dominate those based on a linear specification.

We contribute to an emerging literature that uses internet search-volume data to predict

labor market variables. For example, D’Amuri and Marcucci (2017) show that GT search

volume for terms including jobs improves predictions of the US unemployment rate, while

Niesert et al. (2020) find that a broad array of GT terms are useful for predicting unemploy-

ment rates in a collection of developed countries. Borup and Schütte (forthcoming) use a

large number of GT terms and machine-learning tools to improve predictions of US employ-

ment growth. In contrast to these studies, which predict variables available at the monthly

frequency, our target is weekly UI—which has become perhaps the most closely watched

variable since the advent of the COVID-19 crisis—and we use a mixed-frequency approach.

A few recent studies use GT terms to predict UI during the crisis (Larson and Sinclair 2020;

Aaronson et al. 2020). Unlike the present paper, these studies consider only a small number

of GT terms, and they do not utilize machine learning and a mixed-frequency framework.4

The rest of the paper is organized as follows. Section 2 describes the data, while Section 3

explains the information flow for the sequence of now- and backcasts. Section 4 specifies the

predictive models and outlines their estimation. Section 5 reports results for the out-of-

sample exercise. Section 6 interprets the fitted predictive models via variable-importance

measures and PDPs. Section 7 concludes.

2 Data

This section describes the data. The data span the first week of 2008 to the last week of

July of 2020.

4Larson and Sinclair (2020) use a small number of GT terms in panel regressions to nowcast UI across US
states; in contrast to our study, nowcasts based on the GT terms fail to outperform those based on an AR
benchmark. Aaronson et al. (2020) use an event study design based on the sensitivity of UI to hurricanes
to predict UI for the last two weeks of March 2020 using GT terms, while we analyze UI predictions over a
period starting well before the COVID-19 crisis. Choi and Varian (2012) use a small number of GT terms
to predict UI through mid 2011.

5
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2.1 Unemployment Insurance Initial Claims

Our target variable is UI for the United States. UI is available at the weekly frequency, cor-

responding to initial claims for Sunday through Saturday of week t (Weekt). Each Thursday

morning at 8:30 EST, the Department of Labor releases the UI figure for the previous week.

We take this publication lag into account when computing our predictions.5 As detailed in

Section 3, we are careful in tracking the information flow, so that we only use information

available at the time of prediction formation.

The choice between targeting non-seasonally adjusted (NSA) or seasonally adjusted (SA)

data has been the subject of recent debate during the COVID-19 crisis (e.g., Rinz 2020).

The issue is whether the conventional multiplicative seasonal adjustment process overstates

the actual seasonality in the data during the COVID-19 crisis, when UI reached historically

unprecedented levels. To address this issue, we generate predictions for both the NSA and

SA cases.

2.2 Google Trends

Daily search-volume data are obtained from GT, which provides an index of the proportion

of queries for a specific search term within a geographical area. The index is released with

an approximately 36-hour delay. This delay is the result of Google filtering irregular search

activity, such as automated searches or queries that may be associated with attempts to

spam search; see “FAQ about Google Trends data.”6

We construct a high-dimensional set of predictors based on daily GT terms. Starting with

the source term unemployment, we use Google Keyword Planner to obtain the following top

fifteen keywords associated with this term: (1) unemployment, (2) unemployment benefits,

(3) unemployment office, (4) unemployment insurance, (5) file for unemployment, (6) apply

5Compared to other macroeconomic variables (e.g., gross domestic product and consumption), UI data
are subject to relatively minor revisions, as UI is based on government administrative data (rather than
surveys). UI is typically revised only once during the following week.

6Available at https://support.google.com/trends/answer/4365533?hl=en
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for unemployment, (7) unemployment claim, (8) how to file for unemployment, (9) ui on-

line, (10) unemployment application, (11) unemployment weekly claim, (12) unemployment

compensation, (13) unemployment number, (14) unemployment online, (15) employment in-

surance. These “primitive terms” appear quite plausible, as they are associated with the

actions of a person who becomes unemployed. Our out-of-sample period begins in 2019 in

Section 5, so that, to avoid look-ahead bias, the set of primitive terms is based on GT data

through the end of 2018.

We expand each of the primitive terms via a GT feature that provides a list of 25 related

terms, again based on GT data through the end of 2018. We use the top category of related

terms (instead of the rising category). This step adds terms that are specific to individual

US states (e.g., ny unemployment benefits, unemployment benefits california); semantically

related to the primitive terms (e.g., how to apply for unemployment benefits, unemployment

phone number, filing unemployment online, state unemployment office); closely related to

unemployment, such as health care coverage and tax policies (e.g., unemployment health

insurance, unemployment insurance taxes); and narrowly defined (e.g., edd online, which

refers to the Employment Development Department through which unemployment insurance

benefits can be applied for in California). After excluding duplicates, this creates a total of

270 keywords.

After removing low-volume queries (defined as series with less than 95% non-zero values),

we have 103 unique terms at the daily frequency. In the context of predicting employment

growth, Borup and Schütte (forthcoming) find that minor variations in the wording of queries

(like adding or removing an s for a plural or singular version of a word) can have a notable in-

fluence on their predictive power. We cannot know ex ante which specific terms or variations

are the most relevant for predicting UI, so that we include a large number of related terms

and rely on supervised machine learning to place greater weight on those that are deemed

the most relevant. Terms that are specific to individual US states capture idiosyncrasies for
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each state, which is useful if, say, New York is suddenly the main driver of unemployment

claims.

GT only allows for the downloading of daily data in blocks that do not cover the full

sample period, so that we concatenate data from each download to construct complete time

series. The downloaded data for each GT term are scaled to have a value of 100 for the day

with the highest volume. We thus need to adjust the levels of each downloaded block of data

to chain together series that are comparable over time. To accomplish this, we download

seven-month blocks of data, with a month of overlap. For each GT term, we compute the

average daily value for the current and preceding blocks for the overlapping month. We then

use the ratio of the two averages to adjust the levels for all preceding blocks.7

Each block of downloaded GT data covering a particular period is based on a randomized

sample (about 1%) of total search queries during the period. The values for the block

corresponding to the period thus change according to the time and IP address of the request

to download the data. To reduce sampling error, we make ten requests for a particular period

and take the average of the values over the ten downloaded blocks.

Finally, we seasonally adjust each of the GT terms using the popular STL filtering pro-

cedure (Cleveland et al. 1990). To avoid look-ahead bias, we seasonally adjust the GT terms

using data available at the time of prediction formation.

Figure 1 depicts seasonally adjusted UI, along with two selected GT terms (file for un-

employment and unemployment office), starting from the first week of 2020 and extending

through the last week of July of 2020.8 The time stamp on the horizontal axis indicates the

UI release. UI exhibits a dramatic increase for the March 26 release, corresponding to the

week ending March 21, followed by another sharp increase in the next week, leading to an

historical high of approximately 6.9 million for UI for the week ending March 28. UI then

7A simple example illustrates the basic idea. Suppose that the first set of downloaded data for an arbitrary
series is 90 and 99 for periods 1 and 2, respectively; the next set of downloaded is 85 and 76 for periods 2
and 3, respectively. We take the ratio of the values for period 2, 85/99 = 0.86; we then use the ratio to
adjust the period 1 value to 90 × 0.86 = 77.27, which gives us a comparable series of 77.27, 85, and 76 for
periods 1, 2, and 3, respectively.

8These are two of the most important terms for predicting UI in Section 6.
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decreases gradually, although it remains quite elevated from an historical perspective though

July of 2020.

The two GT terms in Figure 1 appear to track UI well. Specifically, the terms start to

increase markedly in the weeks around the sharp increase in UI, and they follow the sub-

sequent downward trajectory fairly closely. Figure 1 suggests that GT terms are relevant

for predicting UI. This is economically intuitive, as individuals are likely to search for infor-

mation about filing for unemployment benefits when they become (or anticipate becoming)

unemployed. Such searches leave a footprint in the search volume of relevant queries, which

we harness to predict UI.

3 Information Flow

Table 1 depicts the flow of information for generating our sequence of predictions. In terms

of notation, we denote the days comprising Weekt by Sundayt, Mondayt, . . . , Saturdayt.

The Department of Labor releases the UI figure for Weekt−1 (UIt−1) on Thursdayt. Since

GT data are released with an approximately 36-hour delay, search-volume data for queries

for, say, Saturdayt are available on Mondayt+1. When generating each prediction, we use

the seven most recently available daily observations for each of the 103 GT terms.

We begin with a prediction of UIt formed on Mondayt, which corresponds to a nowcast

of UIt. After accounting for the 36-hour reporting lag, the seven most recently available

daily observations for the GT terms cover Sundayt−1 through Saturdayt−1. We compute the

nowcast by first using historical data available at the time of prediction formation to estimate

one of the predictive models described in Section 4, which relates UI for a given week to GT

terms for the seven days in the previous week, as well as the second lag of UI. The UI lag

accounts for the strong autocorrelation in UI. We use the second lag, because as indicated

in the last column of Table 1, the most recent UI observation available for computing the

nowcast of UIt is for Weekt−2 (due to the reporting lag for UI). We then plug the values for

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3690832



the GT terms for Sundayt−1 through Saturdayt−1 and most recent UI observation (UIt−2)

into the fitted model to generate the nowcast of UIt.

Next is a prediction of UIt formed on Tuesdayt, which again corresponds to a nowcast. Be-

cause an additional day of GT data is available, this nowcast is based on terms for Mondayt−1

to Sundayt, so that there is now a one-day overlap between the GT terms and UIt; see the

fourth column of Table 1. To compute a nowcast, we first fit a predictive model relating

UI in a given week to GT terms for Sunday of that week and Monday through Saturday

of the previous week (as well as the second lag of UI). We then plug the values for the GT

terms for Mondayt−1 to Sundayt (and UIt−2) into the fitted model. We proceed analogously

to compute the nowcast of UIt formed on Wednesdayt, which is characterized by a two-day

overlap between the GT terms and UIt.

The next three nowcasts in Table 1 are formed on Thursdayt, Fridayt, and Saturdayt. In

addition to incorporating GT data through Tuesdayt, Wednesdayt, and Thursdayt, respec-

tively, the latest available UI release permits us to use UI for Weekt−1. We thus use the first

(instead of the second) lag of UI in the predictive model. Observe that as we move from

Thursdayt to Saturdayt when forming the nowcasts, we go from a three- to a five-day overlap

between the available GT terms and UIt. Otherwise, we compute the nowcasts in the same

manner as the first three nowcasts in Table 1.

The remaining predictions of UIt, formed on Sundayt+1 through Wednesdayt+1, constitute

backcasts. The backcast formed on Mondayt+1 employs the maximal overlap between the

available GT terms and UIt. The backcasts formed on Tuesdayt+1 and Wednesdayt+1 use

GT data for one (two) day(s) from Weekt+1 and six (five) days from Weekt.

The sequence of predictions in Table 1 allows us to investigate the term structure of the

information flow with respect to predicting UI. As we proceed from the nowcast formed on

Mondayt to the backcast formed on Mondayt+1, the degree of overlap between the days used

to predict UIt increases. For the final two backcasts in Table 1, we include GT terms from
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the first one or two days of Weekt+1 when predicting UIt. We are interested in seeing how

the availability of more recent daily GT data affects the accuracy of the now- and backcasts.

4 Predictive Models

The general form of a predictive model is given by

UIt = f (j)
(

UIt−1, g
(j)
t ;θ(j)

)
, (4.1)

where θ(j) is a vector of model parameters specific to f (j),

g
(j)
t︸︷︷︸

7K×1

=

[
g′t−j/7 g′t−(j+1)/7 . . . g′t−(j+6)/7

]′
, (4.2)

gt−i/7 for i = 0, . . . , 6 is a K × 1 vector of GT terms for the (7 − i)th day of Weekt, and

K = 103.9 The fifth column of Table 1 provides the value of j for each of the now- and

backcasts; the data overlap in the fourth column is given by 7−|j|. Based on data availability

for UI, we use UIt−2 in lieu of UIt−1 in Equation (4.1) for the first three nowcasts in Table 1.10

We begin with a linear specification for the predictive model:

UIt = β
(j)
0 + β

(j)
ARUIt−1 + β(j)

g

′
g
(j)
t + ε

(j)
t , (4.3)

where β
(j)
g is a 7K×1 vector of slope coefficients for the daily GT terms and ε

(j)
t is zero-mean

error term. In terms of Equation (4.1), the vector of model parameters is given by

θ(j) =

[
β
(j)
0 β

(j)
AR β

(j)
g

′
]′
. (4.4)

9The vector of GT terms for each day of Weekt is as follows: Sunday, gt−6/7; Monday, gt−5/7; Tuesday,
gt−4/7; Wednesday, gt−3/7; Thursday, g5−2/7; Friday, gt−1/7; Saturday, gt.

10Including additional lags for UI in Equation (4.1) has little effect on the results, so that a single lag
appears sufficient for capturing the autocorrelation in UI.
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There are 7 × 103 + 1 = 722 regressors in Equation (4.3). In our high-dimensional setting,

we use the LASSO and ENet from machine learning to estimate θ(j) in Equation (4.3) when

generating the now- and backcasts.11

Equation (4.3) can be viewed as a U-MIDAS model (Foroni, Marcellino, and Schumacher

2015), as it allows each of the higher-frequency predictors in g
(j)
t to have its own coefficient. A

restricted MIDAS specification imposes a lag-polynomial structure on the daily observations.

We use a U-MIDAS approach for two reasons. First, the daily observations only naturally

align with the calendar week when j = 0 (see Table 1). Second, we employ machine-

learning methods that allow us to flexibly estimate the weights—rather than imposing a

lag-polynomial structure ex ante—while guarding against overfitting.12

4.1 LASSO and Elastic Net

The LASSO (Tibshirani 1996) is a machine-learning device based on penalized regression.

It alleviates overfitting by augmenting the objective function for estimating θ(j) in Equa-

tion (4.3) with an `1 penalty term:

arg min
θ(j)∈R7K+2

1

2T

{
T∑
t=1

[
UIt −

(
β
(j)
0 + β

(j)
ARUIt−1 + β(j)

g

′
g
(j)
t

)]}2

+ λ‖β(j)‖1, (4.5)

where

β(j) =

[
β
(j)
AR β

(j)
g

′
]′
, (4.6)

T is the number of weekly UI observations available at the time of prediction formation,

‖·‖1 is the `1 norm, and λ ≥ 0 is a regularization parameter that controls the degree of

shrinkage. Unlike the `2 penalty in ridge regression (Hoerl and Kennard 1970), the `1 penalty

11When we compute out-of-sample now- and backcasts starting in the first week of 2019, the number
of weekly UI observations available for fitting the predictive model is always less than 722, so that the
conventional ordinary least squares estimator fails.

12Foroni, Marcellino, and Schumacher (2015) find that a “small” difference in sampling frequency between
the higher- and lower-frequency variables (as in our application) favors the U-MIDAS approach.

12

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3690832



in Equation (4.5) permits shrinkage to zero (for sufficiently large λ), so that the LASSO

performs variable selection.

Although the LASSO is effective at selecting relevant predictors in certain environments

(e.g., Zhang and Huang 2008; Bickel, Ritov, and Tsybakov 2009; Meinshausen and Yu 2009),

it tends to arbitrarily select one predictor from a group of highly correlated predictors. The

ENet (Zou and Hastie 2005) is a refinement of the LASSO that mitigates this tendency by

including both `1 (LASSO) and `2 (ridge) components in the penalty term for the objective

function:

arg min
θ(j)∈R7K+2

1

2T

{
T∑
t=1

[
UIt −

(
β
(j)
0 + β

(j)
ARUIt−1 + β(j)

g

′
g
(j)
t

)]}2

+ λPα
(
β(j)

)
, (4.7)

where

Pα
(
β(j)

)
= 0.5(1− α)‖β(j)‖22 + α‖β(j)‖1, (4.8)

‖·‖2 is the `2 norm, and 0 ≤ α ≤ 1 is a blending parameter for the `1 and `2 components of

the penalty term. When α = 1, Pα = ‖β(j)‖1 in Equation (4.8), so that the ENet reduces to

the LASSO. We follow the recommendation of Hastie and Qian (2016) and set α = 0.5.13

After estimating θ(j) in Equation (4.3) via the LASSO or ENet using data available at

the time of prediction formation, we plug the most recently available UI observation and

seven most recently available daily observations for each of the 103 GT terms into the fitted

model to generate a given now- or backcast in Table 1.

4.2 Artificial Neural Networks

We consider feedforward ANNs, the most well-known type of neural networks. ANNs can

approximate complex nonlinear predictive relationships and have proven useful for prediction

in numerous domains. An ANN architecture is comprised of multiple layers. The first, the

13To better guard against overfitting, we tune the regularization parameter, λ, for the LASSO and ENet in
Equations (4.5) and (4.7), respectively, via the extended regularization information criterion (Hui, Warton,
and Foster 2015), which is a refinement of the Bayesian information criterion (Schwarz 1978).

13
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input layer, is the set of predictors, which we denote by x1, . . . , xP0 . One or more hidden

layers follow. Each hidden layer l contains Pl neurons, each of which takes signals from the

neurons in the previous hidden layer to generate a subsequent signal:

h(l)m = g

(
w

(l)
m,0 +

Pl−1∑
j=1

w
(l)
m,jh

(l−1)
j

)
for m = 1, . . . , Pl; l = 1, . . . , L, (4.9)

where h
(l)
m is the signal corresponding to the mth neuron in the lth hidden layer;14

w
(l)
m,0, w

(l)
m,1, . . . , w

(l)
m,Pl−1

are weights; and g(·) is an activation function. The final layer is

the output layer, which translates the signals from the last hidden layer into a prediction:

ŷ = w
(L+1)
0 +

PL∑
j=1

w
(L+1)
j h

(L)
j , (4.10)

where ŷ denotes the prediction of the target variable. For the activation function, we use

the popular rectified linear unit (ReLU) function:

g(x) =


0 if x < 0,

x otherwise.

(4.11)

In response to a sufficiently strong signal, Equation (4.11) activates a neuronal connection

and relays the signal forward through the network.

Considerable judgment is involved in specifying an ANN architecture. A single hidden

layer with sufficient nodes is theoretically sufficient for approximately any smooth function

(under a reasonable set of assumptions). Nevertheless, ANNs with multiple hidden layers

are often used in practice. We consider three ANNs with one, two, and three hidden layers

(NN1, NN2, and NN3, respectively). Following the the popular “square-root” strategy, we

include 26 neurons in the single hidden layer for NN1. Based on the “pyramid” strategy

14For the first hidden layer, h
(0)
j = xj for j = 1, . . . , P0.

14
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(Masters 1993), NN2 (NN3) contains 78 and eight (139, 27, and five) neurons in its first and

second (first, second, and third) hidden layers, respectively.

Fitting (or training) an ANN requires estimating the weights. We fit the ANNs by

minimizing an objective function based on mean squared error for the training sample,

which, to guard against overfitting, we augment with an `1 penalty term. Fitting an ANN

is computationally demanding, and we use the recently developed Adam SGD algorithm

(Kingma and Ba 2015).15

4.3 Ensembles

We also consider various ensemble predictions, which are popular in machine learning. In

recognition of model uncertainty, instead of relying on a prediction from a single model,

we take an average of the predictions generated by multiple models. For each of the now-

and backcasts, we construct three ensemble forecasts. The first (Ensemble-Linear) is an

average of the predictions for the linear models fitted via the LASSO and ENet. The second

(Ensemble-ANN) is an average of the predictions for the fitted NN1, NN2, and NN3 models.

The final ensemble (Ensemble-All) is an average of the predictions for the linear models

fitted via the LASSO and ENet and the fitted NN1, NN2, and NN3 models.

5 Predictive Accuracy

We generate simulated now- and backcasts for UI for the first of week of 2019 through the

last week of July of 2020. Simulating the situation of a forecaster in real time, we proceed

as follows using a rolling-window approach. We first use UI and GT data available for the

15We fit the ANNs via the Adam algorithm in Python using the keras package. To implement the
algorithm, we need to specify a handful of hyperparameters. We set the number of epochs to 700 and use
the keras default of 32 for the batch size. Considering a grid of potential values, we select the regularization
parameter via three-fold cross validation for randomly selected (and non-overlapping) validation samples
with a length of 15% of the estimation sample. To reduce the influence of the starting values for the random-
number generator in the SGD algorithm, we compute an ensemble prediction by fitting a given model ten
different times with a different seed each time and taking the average of the ten predictions.

15
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first week of 2008 through the last week of 2018 to fit the predictive models. We then plug

the most recent UI value and relevant GT values into the fitted models to generate the now-

and backcasts for UI for the first week of 2019. Next, we refit the predictive models using

UI and GT data available for the second week of 2008 through the first week of 2019 and

plug the most recent UI and relevant GT values into the fitted models to compute the UI

now- and backcasts for the second week of 2019. We continue in this manner through the

end of the out-of-sample period. We reiterate that the simulated now- and backcasts only

use information available at the time of prediction formation, as described in Section 3. An

AR model based on the first or second lag of UI is used to generate the benchmark now-

and backcasts, where we also fit the AR models using a rolling-window approach.16 An AR

model is a standard benchmark in the economic forecasting literature.

Panel A (B) of Table 2 reports results for non-seasonally (seasonally) adjusted UI.17

The second column reports the RMSE for the AR benchmark for each of the now- and

backcasts. For the nowcasts formed on Mondayt through Wednesdayt, the RMSE for the

AR benchmark is approximately 1.01 million (1.13 million) for non-seasonally (seasonally)

adjusted UI. Beginning with the nowcast on Thursdayt, the AR model is based on the

first (instead of the second) lag of UI, as the UIt−1 figure becomes available on Thursdayt.

This leads to a substantial reduction in RMSE to 611,730 (761,679) for the non-seasonally

(seasonally) adjusted case.18

The third through tenth columns of Table 2 report the RMSE ratio for the machine-

learning method in the column heading vis-à-vis the AR benchmark. The ratios are all

below one, so that the now- and backcasts based on machine learning—which incorporate

the information in the daily GT terms—always outperform the AR benchmark in terms

16Based on the information flow (see Section 3), the AR benchmark model is given by UIt = α0+α2UIt−2+
εt for the nowcasts formed on Mondayt through Wendesdayt; it is given by UIt = α0 + α1UIt−1 + εt for the
now- and backcasts formed on Thursdayt through Wendesdayt+1. Because they are univariate regressions,
we estimate the AR models via ordinary least squares.

17We assess the accuracy of the now- and backcasts using revised UI data.
18Due to the significant autocorrelation in UI, the AR is a relevant benchmark. Indeed, the AR benchmark

performs substantially better than a näıve model that ignores the autocorrelation in UI and simply uses the
rolling mean to predict UI; the reduction in RMSE is up to 50%.
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of RMSE. The improvements in predictive accuracy are sizable. For the initial nowcast

formed on Mondayt, which is formed ten days before the UI release, the reductions in RMSE

relative to the AR benchmark range from approximately 15% to 20%. The RMSE ratios

decrease nearly monotonically as we move from the nowcast formed on Mondayt to the

backcast formed on Mondayt+1, which uses the largest data overlap (seven days) between

the daily GT terms and weekly UI. For seasonally adjusted UI, there are often additional

improvements in RMSE for the backcasts formed on Tuesdayt+1 and Wednesdayt+1. Overall,

the predictions generally become more accurate in Table 2 as we include additional days of

GT data. The reduction in MSFE vis-à-vis the AR benchmark reaches as high as 53.3% (for

the LASSO backcast formed on Mondayt+1 for non-seasonally adjusted UI).

The different machine-learning methods in Table 2 perform similarly. The LASSO often

provides the most accurate predictions, especially for seasonally adjusted UI. This suggests

that a linear model is largely sufficient for capturing the information in the GT terms; we

address this issue further in Section 6. The ensemble approaches also perform well overall. In

particular, the Ensemble-All approach, which is an average of the LASSO, ENet, NN1, NN2,

and NN3 predictions, often produces close to the lowest RMSE for the individual now- and

backcasts. Because we cannot know ex ante the best method, the Ensemble-All approach

provides a promising practical strategy for now- and backcasting UI.

Figures 2 and 3 provide perspective on the performance of the machine-learning methods

vis-à-vis the AR benchmark over time. The figures show the cumulative difference in squared

errors (CDSE) for a machine-learning method relative to the AR benchmark (Goyal and

Welch 2003, 2008). Each curve allows us to conveniently analyze relative performance for

any subsample by comparing the height of the curve at the beginning and end of the interval

corresponding to the subsample. If curve is higher (lower) at the end of the interval, then the

machine-learning method is more (less) accurate than the AR benchmark for the subsample.

Figure 2 plots CDSE curves for selected now- and backcasts and machine-learning meth-

ods for the full out-of-sample period. The figure includes results for nowcasts formed on

17
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Tuesdayt and Thursdayt (which have one and three days, respectively, of data overap), as

well as the backcast formed on Mondayt+1 (which has the maximum seven days of data

overlap). The machine-learning methods are the LASSO and NN1. The plots in Figure 2

are dominated by sharp increases in the early months of the COVID-19 crisis. This is the

time when we expect the GT terms to provide relevant information for anticipating the in-

creases in UI associated with the crisis. With the onset of the crisis, an historically large

number of people were laid off, many of whom likely became unemployed for the first time

or were rarely unemployed previously. They are less familiar with the application process for

unemployment benefits, so that their Google search histories leave a footprint as they gather

information on applying for unemployment benefits. Our machine-learning, mixed-frequency

approach harnesses the information in daily GT terms to substantially improve prediction

near the start of the COVID-19 crisis.

The CDSE curves in Figure 2 are dominated by the advent of the COVID-19 crisis,

making it difficult to assess the out-of-sample gains in the “normal” period before the crisis.

To examine the pre-crisis period more closely, Figure 3 depicts CDSE curves for the first

week of 2019 through the second week of March of 2020. The curves are predominantly

positively sloped in most cases, so that the LASSO and NN1 outperform the AR benchmark

on a reasonably consistent basis over time outside of the COVID-19 crisis. Taken together,

Figures 2 and 3 indicate that the information in GT terms provide moderate gains during

relatively quiescent times and striking gains during turbulent times.

6 Interpreting the Fitted Models

While the LASSO and ENet facilitate the interpretation of fitted linear models by performing

variable selection, fitted ANNs are black boxes that are difficult to interpret. In this section,

we use PDPs (Friedman 2001) and variable-importance measures (Greenwell, Boehmke, and
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McCarthy 2018) to peer into the black box of the fitted ANNs and compare them to the

fitted linear models.

6.1 Partial-Dependence Plots and Variable Importance

For ease of exposition, we gather the predictors in the 722× 1 vector,

x
(j)
t =

[
UIt−1 g

(j)
t

]′
. (6.1)

Furthermore, we denote the 722× T data matrix by

X
(j)
T =

[
x
(j)
1 · · · x

(j)
T

]′
. (6.2)

Suppose that we are interested in analyzing the marginal effect of a given predictor, x
(j)
s ,

on the expected value of UIt for a fitted model. Letting x
(j)
C(s) = x(j) \ x(j)s , the partial

dependence for x
(j)
s is defined as

PD
(
x(j)s
)

= E
x
(j)
C(s)

[
f̂ (j)
(
x(j)s ,x

(j)
C(s)

)]
=

∫
x
(j)
C(s)

f̂ (j)
(
x(j)s ,x

(j)
C(s)

)
pC(s)(j)

(
x
(j)
C(s)

)
dxC(s)(j) ,

(6.3)

where

pC(s)(j)

(
x
(j)
C(s)

)
=

∫
x
(j)
s

p
(
x(j)
)
dx(j)s , (6.4)

p
(
x(j)
)

is the joint probability density for x(j), and f̂
(
x(j)
)

is the prediction function for the

fitted model. Equation (6.3) gives the marginal relationship between the expected value of

the target and x
(j)
s . It is typically estimated via Monte Carlo integration using the training
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sample, X
(j)
T :

P̂D
(
x(j)s
)

=
1

T

T∑
t=1

f̂ (j)
(
x(j)s ,x

(j)
C(s),t

)
, (6.5)

where Equation (6.5) is evaluated at the training sample values of x
(j)
s (i.e., x

(j)
s,t for t =

1, . . . , T ) or a set of quantiles.

Of course, the PDP for a fitted linear model will have a constant slope, while it will be

a horizontal line for a predictor that is not selected by the LASSO or ENet. By comparing

the PDPs for the fitted ANNs to those for the fitted linear models, we can gauge the relative

importance of nonlinearities in the former.

Greenwell, Boehmke, and McCarthy (2018) develop a variable-importance metric based

on Equation (6.5):

Î
(
x(j)s
)

=

 1

T − 1

T∑
t=1

[
P̂D
(
x
(j)
s,t

)
− 1

T

T∑
t=1

P̂D
(
x
(j)
s,t

)]2
0.5

. (6.6)

Equation (6.6) measures the importance of a predictor via the variation (i.e., standard de-

viation) in the PDP around its average value. For a predictor with a horizontal PDP, the

expected value of the target does not vary with the predictor, so that its variable importance

is zero. As the conditional expectation fluctuates more about its average value, the variable

importance increases. To facilitate comparison across predictors, we scale Equation (6.6)

using the sum of the individual measures:

Ĩ
(
x(j)s
)

=
Î
(
x
(j)
s

)
∑P

p=1 Î
(
x
(j)
p

) , (6.7)

where P is the total number of predictors, so that Ĩ
(
x
(j)
s

)
ranges from zero to one.
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6.2 Importance of Google Trends Terms

Figures 4 and 5 depict variable-importance measures based on Equation (6.7) for the top 25

predictors for linear models fitted via the LASSO and fitted NN1 models, respectively (for

seasonally adjusted UI). The left-hand panels of the figures correspond to models fitted with

data through the end of 2019, before the start of the COVID-19 crisis; the right-hand panels

are for models estimated using data through the end of July of 2020, so that the training

sample includes the crisis. Note that a given GT term can appear up to seven times in the

same plot, due to our mixed-frequency framework. To conserve space, we focus on fitted

models for nowcasts formed on Mondayt, Tuesdayt, and Thursdayt and the backcast formed

on Mondayt+1 (with data overlaps of zero, one, three, and seven days, respectively).

For the pre-crisis sample, the lag of UI (lag) is the most important predictor for both the

LASSO and NN1 in all cases in Figures 4 and 5. For the linear models fitted by the LASSO

in Figure 4, the Ĩ
(
x
(j)
s

)
scores for lag are all above 0.75, while the GT terms play a more

limited role. The GT terms are more important in the fitted NN1 in Figure 5, but lag still

predominates, with Ĩ
(
x
(j)
s

)
scores ranging from around 0.1 to 0.4.

The GT terms become substantively more important in the right-hand panels of Figures 4

and 5 when we include data from the COVID-19 crisis. Although lag remains the most

or next-to-most important predictor for the nowcasts formed on Mondayt, Tuesdayt, and

Thursdayt across both models, it drops out of top 25 for the Mondayt+1 backcast. In other

words, when we use the maximum data overlap in computing the predictions, the fitted

models assign essentially no importance to the autocorrelation in UI, so that the predictive

signals in the GT terms dominate those in the AR component.

Table 3 provides additional information on the growing importance of GT terms in the

sequence of now- and backcasts, especially for the sample that includes the COVID-19 crisis.

The table reports the joint importance of the GT terms for each prediction-formation day

(for seasonally adjusted UI). For linear models fitted via the LASSO for the pre-crisis sample
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in the third column, the GT terms grow in importance from 0.12 for the initial nowcasts to

around 0.25 for the later backcasts. When the training sample includes the COVID-19 crisis

(see the fourth column), the GT terms again grow in importance, but the level is markedly

higher for each prediction-formation day. For the Mondayt nowcast, the joint importance

score for the GT terms is 0.725. It reaches 1.000 for the Saturdayt nowcast through the

Wednesdayt+1 backcast, so that the AR component becomes completely unimportant. A

similar pattern holds for the fitted NN1 models in the last two columns, with the joint

importance measures nearly always larger than the corresponding values in the third and

fourth columns.

The increasing importance of the GT terms since the start of the COVID-19 crisis is

also evident in Figure 6, which shows the number of predictors selected by the LASSO and

ENet for rolling-window estimation of the linear predictive models underlying the Mondayt,

Tuesdayt, and Thursdayt nowcasts and Mondayt+1 backcast. In general, the number of

selected predictors increases in the fitted linear models with the advent of the crisis. For

example, for the SA case, the LASSO typically selects fewer than 20 predictors before the

crisis; the number jumps to around 40 to 60 once data from the crisis are included in the

estimation window. As expected, the ENet usually selects more predictors than the LASSO.

Before the COVID-19 crisis, the ENet selects about 40 to 60 (50 to 70) predictors for the

NSA (SA) case, while around 70 to 110 (80 to 130) are selected when data from the crisis

are included.

Returning to Figures 4 and 5, for the prediction-formation days where the GT terms

matter the most in (i.e., the Thursdayt nowcast and, especially, the Mondayt+1 backcast),

there is a tendency for both the fitted linear and NN1 models to place more weight on

recently available search queries. For example, the Mondayt+1 backcast attaches the greatest

importance to GT terms for Saturday and Friday (recall the two-day lag in the availability

of the GT data). Similarly, the Thursdayt nowcast emphasizes GT terms for Monday and

Tuesday. To explore this issue further, Figure 7 shows heatmaps for the joint importance of
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the GT terms organized according to the day of the week. For the pre-crisis sample in the

left-hand panels, there is no discernible pattern in the importance of the GT terms across

the days of the week. For the sample that includes the COVID-19 crisis in the right-hand

panels, a strong pattern is evident: with the exception of the Wednesdayt+1 backcast, the

now- and backcasts attach relatively high importance to GT terms for the most recent day

of available data. This is most evident for the Mondayt+1 backcast, which uses the maximal

data overlap of seven days, where the collective importance of GT terms for Saturday is 0.69

(0.54) for the linear model fitted via the LASSO (fitted NN1 model). Figure 7 highlights the

relevance of high-frequency GT data for anticipating UI during the crisis.

Looking back to Figures 4 and 5, an interesting pattern emerges in the types of GT

terms that appear important across the two samples. For the fitted linear and NN1 models,

the pre-COVID-19 sample is characterized by a wide variety of search queries with no clear

commonalities (e.g., some geographical terms and some generic terms like unemployment

rate, employment, and workers compensation). In contrast, for the sample that includes the

COVID-19 crisis, there is an emphasis on search queries related to the application process

for unemployment insurance benefits, as terms such as how to file for unemployment, apply

for unemployment benefits, unemployment application, unemployment office, and variations

thereof consistently appear as the most relevant predictors. These results further help to

explain the usefulness of high-frequency GT data for predicting UI during turbulent times.

6.3 Nonlinearities

Finally, in order to get a sense of the strength of the nonlinearities in the fitted ANNs,

we investigate PDPs for some of the most relevant predictors. We again report results for

linear models fitted via the LASSO and fitted NN1 models for training samples that exclude

and include the COVID-19 crisis. Figure 8 presents PDPs for the AR component (lag),

while Figure 9 provides PDPs for how to file for unemployment and unemployment office

illinois. The figures report results for the Mondayt, Tuesdayt, and Thursdayt nowcasts and
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Mondayt+1 backcast (for seasonally adjusted UI). The two GT terms in Figure 9 are for the

most recently available day of GT data. The first GT term, how to file for unemployment, is

included because it is the most important predictor in the fitted linear and NN1 models for

the Mondayt+1 backcast during the sample that includes the crisis. We include unemployment

office illinois because it provides an example of an important geographical search query that

enters the top 25 for the Mondayt+1 backcast.19 Note that Figures 8 and 9 use different scales

for the two training samples, as average UI is much higher for the sample that includes the

COVID-19 crisis.

By construction, the PDPs are linear for the linear models fitted via the LASSO. Figure 8

indicates that the predictive relationship for the AR component, lag, is quite close to linear for

the fitted NN1 models. In other words, although the NN1 allows for nonlinear relationships,

when we train the model using available data, the predictive relationship involving the AR

component is essentially linear. In the bottom-right panel of Figure 8, the PDP for lag is

horizontal for the sample that includes the COVID-19 crisis, as the LASSO does not select

lag. The PDP for lag is also nearly horizontal for the fitted NN1, so that no meaningful

nonlinearity is evident.

With respect to how to file for unemployment in the left-hand panels of Figure 9, there

are only slight curvatures for some of the PDPs for the fitted NN1 models; the predictive

relationships between the GT term and UI are thus essentially linear. The fitted linear and

NN1 models generally indicate a positive relationship, and the effects are larger (smaller)

for the latter for the Tuesdayt nowcast (Thursdayt nowcast and Mondayt+1 backcast). The

positive relationship makes economic sense, as an increase in GT searches involving how

to file for unemployment portends an increase in UI. With respect to unemployment office

illinois in the right-hand panels of Figure 9, we again fail to see significant nonlinearities

in the predictive relationships for the fitted NN1 models. The fitted NN1 models imply a

19At the end of August of 2020, Illinois had the sixth (seventh) highest number of confirmed cases (deaths)
across US states (https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html).
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positive relationship between UI and unemployment office illinois for the Tuesdayt nowcast

and Mondayt+1 backcast, but the relationships are essentially linear.

Overall, the similar performances of the fitted linear and ANN models in terms of RMSE

in Table 2, together with the lack of substantive nonlinearites for the fitted NN1 models in

Figures 8 and 9, indicate that a linear structure is generally sufficient for predicting UI based

on the information in a large number of daily GT terms.

7 Conclusion

We show that the information in high-dimensional daily internet search-volume data can

be used to substantially improve predictions of weekly UI in anticipation of its Thursday

release by the Department of Labor, especially since the advent of the COVID-19 crisis. We

construct a sequence of now- and backcasts that are formed ten days to one day ahead of the

UI release on Thursday of each week. To effectively utilize the information in a large number

of daily GT terms related to unemployment, we estimate the predictive models underpinning

the now- and backcasts using machine-learning techniques in a mixed-frequency framework.

The mixed-frequency framework allows us to incorporate daily GT data as they become

available, thereby providing us with more timely information for predicting weekly UI, while

machine learning is appropriate for our high-dimensional setting. In a simulated out-of-

sample exercise, now- and backcasts based on daily GT terms substantially outperform an

AR benchmark in terms of RMSE. As the sequence of now- and backcasts incorporates more

recent daily GT data, predictive accuracy generally improves, leading to reductions in RMSE

of up to approximately 50% vis-à-vis the AR benchmark.

Variable-importance measures for the fitted predictive models reveal that the GT terms

become more relevant with the advent of the COVID-19 crisis. GT terms for the most

recently available day are typically the most germane, highlighting the value of our mixed-
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frequency approach. GT terms relating to the application process for unemployment insur-

ance benefits also become more important during the COVID-19 crisis.

We are in the process of creating a website that will provide updated, real-time now- and

backcasts of UI on a daily basis using the methods developed in this paper.20 The website

will also include historical data for the now- and backcasts.

20Available at https://www.uinowcast.org/

26

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3690832

https://www.uinowcast.org/


References

Aaronson, D., S. A. Brave, R. A. Butters, D. W. Sacks, and B. Seo (2020). Using the Eye of

the Storm to Predict the Wave of Covid-19 UI Claims. Federal Reserve Bank of Chicago

Working Paper No. 2020-10.

Barron, A. R. (1994). Approximation and Estimation Bounds for Artificial Neural Networks.

Machine Learning 14:1, 115–133.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov (2009). Simultaneous Analysis of Lasso and

Dantzig Selector. Annals of Statistics 37:4, 1705–1732.
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Table 1: Information flow for prediction

(1) (2) (3) (4) (5) (6)

Data Latest
Prediction Backcast/ Google Trends used overlap available
formation nowcast for prediction (days) j UI release

Mondayt Nowcast Sundayt−1 to Saturdayt−1 0 7 Weekt−2

Tuesdayt Nowcast Mondayt−1 to Sundayt 1 6 Weekt−2

Wednesdayt Nowcast Tuesdayt−1 to Mondayt 2 5 Weekt−2

Thursdayt Nowcast Wednesdayt−1 to Tuesdayt 3 4 Weekt−1

Fridayt Nowcast Thursdayt−1 to Wednesdayt 4 3 Weekt−1

Saturdayt Nowcast Fridayt−1 to Thursdayt 5 2 Weekt−1

Sundayt+1 Backcast Saturdayt−1 to Fridayt 6 1 Weekt−1

Mondayt+1 Backcast Sundayt to Saturdayt 7 0 Weekt−1

Tuesdayt+1 Backcast Mondayt to Sundayt+1 6 −1 Weekt−1

Wednesdayt+1 Backcast Tuesdayt to Mondayt+1 5 −2 Weekt−1

The table reports the information flow for daily Google Trends data and data releases of
unemployment insurance initial claims (UI) used for now- and backcasts of UI for week
t (Weekt). The first column provides the prediction-formation day, where the subscript
denotes the week when the prediction is made. The second column provides the classi-
fication as a nowcast or backcast of Weekt UI. The third column provides the range of
daily Google Trends terms used for prediction. The fourth column provides the number
of days of overlap between the Google Trends terms in the third column and Weekt UI.
The fifth column provides the value for j in Equation (4.1) The sixth column provides
the latest release of UI available at the time of prediction formation.
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Table 2: RMSE ratios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Linear ANN Ensemble

Prediction AR
formation RMSE LASSO ENet NN1 NN2 NN3 Linear ANN All

Panel A: Non-seasonally adjusted UI

Mondayt 1,005,527 0.784 0.790 0.842 0.812 0.879 0.840 0.787 0.805

Tuesdayt 1,005,527 0.714 0.726 0.764 0.722 0.763 0.743 0.719 0.727

Wednesdayt 1,005,527 0.647 0.648 0.668 0.656 0.642 0.652 0.646 0.642

Thursdayt 611,730 0.702 0.690 0.596 0.630 0.705 0.631 0.692 0.658

Fridayt 611,730 0.639 0.609 0.521 0.651 0.746 0.616 0.623 0.614

Saturdayt 611,730 0.541 0.548 0.522 0.690 0.559 0.562 0.542 0.545

Sundayt+1 611,730 0.598 0.517 0.570 0.668 0.647 0.618 0.555 0.577

Mondayt+1 611,730 0.467 0.536 0.470 0.551 0.504 0.503 0.498 0.494

Tuesdayt+1 611,730 0.530 0.509 0.634 0.622 0.550 0.591 0.518 0.552

Wednesdayt+1 611,730 0.638 0.587 0.478 0.686 0.617 0.567 0.609 0.586

Panel B: Seasonally adjusted UI

Mondayt 1,131,559 0.867 0.855 0.971 0.897 0.947 0.874 0.924 0.882

Tuesdayt 1,131,559 0.753 0.771 0.863 0.891 0.878 0.755 0.877 0.807

Wednesdayt 1,131,559 0.712 0.715 0.769 0.753 0.749 0.711 0.769 0.729

Thursdayt 761,679 0.790 0.718 0.802 0.911 0.723 0.757 0.771 0.757

Fridayt 761,679 0.676 0.653 0.682 0.981 0.684 0.666 0.806 0.725

Saturdayt 761,679 0.556 0.581 0.719 0.687 0.611 0.565 0.649 0.596

Sundayt+1 761,679 0.528 0.569 0.627 0.646 0.627 0.541 0.614 0.564

Mondayt+1 761,679 0.488 0.535 0.540 0.619 0.640 0.499 0.584 0.536

Tuesdayt+1 761,679 0.483 0.516 0.621 0.577 0.687 0.492 0.556 0.519

Wednesdayt+1 761,679 0.500 0.534 0.552 0.553 0.615 0.505 0.552 0.526

The table reports out-of-sample results for now- and backcasts of weekly unemployment insurance
initial claims (UI) formed on the day indicated in the first column, where the subscript denotes
the week when the prediction is made. The second column reports the root mean squared error
(RMSE) for an autoregressive (AR) benchmark model. The third through tenth columns report the
RMSE ratio for the machine-learning method in the column heading vis-à-vis the AR benchmark.
The third and fourth columns are for linear models fitted via the LASSO and elastic net (ENet),
respectively. The fifth through seventh columns are for fitted artificial neural networks (ANNs) with
one (NN1), two (NN2), and three (NN3) hidden layers, respectively. The ensemble in the eighth
(ninth) column is an average of the predictions in the third and fourth (fifth through seventh)
columns. The ensemble in the tenth column is an average of the predictions in the third through
seventh columns. The out-of-sample period begins in the first week of 2019 and ends in the last
week of July of 2020.
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Table 3: Importance of GT terms

(1) (2) (3) (4) (5) (6)

Data
Prediction overlap LASSO excluding LASSO including NN1 excluding NN1 including
formation (days) COVID-19 crisis COVID-19 crisis COVID-19 crisis COVID-19 crisis

Mondayt 0 0.122 0.725 0.570 0.948

Tuesdayt 1 0.124 0.731 0.858 0.935

Wednesdayt 2 0.214 0.730 0.864 0.947

Thursdayt 3 0.121 0.758 0.859 0.968

Fridayt 4 0.123 0.859 0.825 0.943

Saturdayt 5 0.112 1.000 0.844 0.997

Sundayt+1 6 0.136 1.000 0.821 1.000

Mondayt+1 7 0.251 1.000 0.917 1.000

Tuesdayt+1 6 0.243 1.000 0.922 0.999

Wednesdayt+1 5 0.236 1.000 0.925 1.000

The table reports joint variable-importance measures for all of the daily Google Trends terms in fitted
linear models estimated via the LASSO and fitted artificial neural networks with a single hidden layer
(NN1). The second column provides the number of days of overlap between the daily Google Trends
terms and week-t unemployment insurance initial claims. The third and fifth (second and sixth) columns
report results for estimation samples excluding (including) the COVID-19 crisis. Results pertain to
seasonally adjusted unemployment insurance initial claims.
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Figure 1: UI and GT terms

The figure depicts seasonally adjusted weekly unemployment insurance initial claims (UI,
left-hand axis) at their release date and (standardized) daily search volume for two Google
Trends terms (right-hand axis): file for unemployment (left panel) and unemployment office
(right panel). The panels span the first week of January 2020 through the last week of July
2020.
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Figure 2: CDSE of selected models vis-à-vis AR benchmark

The figure depicts the cumulative difference in squared errors (CDSE) for now- and backcasts
based on linear models fitted via the LASSO and fitted single-layer artificial neural networks
(NN1) vis-à-vis those based on an autoregressive (AR) benchmark model. The upper and
lower panels report results for non-seasonally adjusted (NSA) and seasonally adjusted (SA)
weekly unemployment insurance initial claims, respectively. Each panel plots the CDSE for
the Tuesdayt and Thursdayt nowcasts and Mondayt+1 backcast. The out-of-sample period
spans the first week of 2019 through the last week of July 2020.
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Figure 3: CDSE of selected models vis-à-vis AR benchmark, pre-crisis period

The figure depicts the cumulative difference in squared errors (CDSE) for now- and backcasts
based on linear models fitted via the LASSO and fitted single-layer artificial neural networks
(NN1) vis-à-vis those based on an autoregressive (AR) benchmark model. The upper and
lower panels report results for non-seasonally adjusted (NSA) and seasonally adjusted (SA)
weekly unemployment insurance initial claims, respectively. Each panel plots the CDSE for
the Tuesdayt and Thursdayt nowcasts and Mondayt+1 backcast. The out-of-sample period
spans the first week of 2019 through the week ending March 14, 2020.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3690832



0.0 0.2 0.4 0.6 0.8
Variable importance

lag
unemployment insurance

employment
unemployment insurance

unemployment office
unemployment illinois

employment
unemployment compensation

filing unemployment online
unemployment rate

new york unemployment
unemployment washington

employment
unemployment
unemployment
unemployment
unemployment
unemployment
unemployment
unemployment

unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits

Monday nowcast: LASSO excluding COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0.00 0.05 0.10 0.15 0.20 0.25
Variable importance

lag
unemployment application

how apply for unemployment
how apply for unemployment

apply for unemployment
how to file for unemployment

unemployment application
how apply for unemployment

how to file unemployment
to apply for unemployment

apply for unemployment benefits
how to apply for unemployment

unemployment insurance
unemployment in florida

unemployment washington
unemployment application
unemployment insurance

unemployment washington
texas benefits

new york unemployment
how to file unemployment

unemployment office pa
unemployment office pa
ca unemployment office

unemployment insurance benefits

Monday nowcast: LASSO including COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0.0 0.2 0.4 0.6 0.8
Variable importance

lag
unemployment insurance

employment
unemployment insurance

unemployment illinois
unemployment office

employment
unemployment compensation

filing unemployment online
unemployment rate

unemployment washington
new york unemployment

employment
unemployment california

unemployment
unemployment
unemployment
unemployment
unemployment
unemployment
unemployment

unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits

Tuesday nowcast: LASSO excluding COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0.00 0.05 0.10 0.15 0.20 0.25
Variable importance

lag
unemployment application

how apply for unemployment
how apply for unemployment

apply for unemployment
unemployment application

how to apply for unemployment
how to file for unemployment

how to file unemployment
how to file unemployment
unemployment insurance

to apply for unemployment
unemployment washington

unemployment insurance
texas benefits

edd online
unemployment washington

unemployment office pa
unemployment insurance benefits

unemployment rate
unemployment california

unemployment washington
unemployment insurance tax

new york unemployment
unemployment insurance nys

Tuesday nowcast: LASSO including COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0.0 0.2 0.4 0.6 0.8
Variable importance

lag
employment

unemployment insurance
unemployment office

unemployment insurance
oregon unemployment
unemployment illinois

unemployment insurance
unemployment compensation

unemployment
unemployment
unemployment
unemployment
unemployment
unemployment
unemployment

unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits

unemployment office
unemployment office

Thursday nowcast: LASSO excluding COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0.00 0.05 0.10 0.15 0.20 0.25
Variable importance

lag
how apply for unemployment

how to apply for unemployment
unemployment application

how apply for unemployment
how to file for unemployment

how to file unemployment
unemployment insurance

how to file for unemployment
unemployment california

how to file unemployment
unemployment insurance

unemployment application
file for unemployment

unemployment washington
unemployment insurance tax

texas benefits
california unemployment insurance

ca unemployment office
unemployment insurance tax

unemployment ohio
employment

unemployment rate
unemployment office pa
unemployment office pa

Thursday nowcast: LASSO including COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Variable importance

lag
unemployment insurance

employment
unemployment office

number for unemployment
unemployment application

apply for unemployment benefits
unemployment insurance
unemployment insurance

unemployment office
ca unemployment office

texas benefits
unemployment compensation

oregon unemployment
unemployment
unemployment
unemployment
unemployment
unemployment
unemployment
unemployment

unemployment benefits
unemployment benefits
unemployment benefits
unemployment benefits

Monday backcast: LASSO excluding COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Variable importance

how to file for unemployment
apply for unemployment benefits

unemployment application
how to apply for unemployment

unemployment insurance
unemployment washington

how to file for unemployment
how to file unemployment

file unemployment
california unemployment insurance

file for unemployment
unemployment insurance tax

unemployment phone number
california unemployment

unemployment insurance nj
unemployment insurance ny

unemployment office pa
filing unemployment online

unemployment office
federal unemployment

unemployment insurance new york
unemployment compensation
unemployment insurance tax

workers compensation
unemployment il

Monday backcast: LASSO including COVID-19 crisis

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Figure 4: Variable importance, linear models

The figure depicts variable-importance measures for the top 25 Google Trends terms for linear
models fitted via the LASSO. Results are reported for Mondayt, Tuesdayt, and Thursdayt
nowcasts and the Mondayt+1 backcast. The estimation sample for the left-hand (right-hand)
panels ends in the last week of 2019 (last week of July of 2020), thereby excluding (including)
the COVID-19 crisis. Results pertain to seasonally adjusted unemployment insurance initial
claims.
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Figure 5: Variable importance, artificial neural networks

The figure depicts variable-importance measures for the top 25 Google Trends terms for
fitted artificial neural networks with a single hidden layer (NN1). Results are reported for
Mondayt, Tuesdayt, and Thursdayt nowcasts and the Mondayt+1 backcast. The estimation
sample for the left-hand (right-hand) panels ends in the last week of 2019 (last week of July
of 2020), thereby excluding (including) the COVID-19 crisis. Results pertain to seasonally
adjusted unemployment insurance initial claims.
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Figure 6: Number of predictors selected by the LASSO and elastic net

The figure depicts the number of predictors selected by the LASSO and elastic net (ENet)
for rolling-window estimation of linear predictive models, where each linear predictive model
can include up to 722 predictors. Results are reported for linear predictive models used to
generate the Mondayt, Tuesdayt, and Thursdayt nowcasts and Mondayt backcast. The upper
and lower panels report results for non-seasonally adjusted (NSA) and seasonally adjusted
(SA) weekly unemployment insurance initial claims, respectively. The out-of-sample period
spans the first week of 2019 through the last week of July 2020.
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Figure 7: Day-of-the-week effects

The figure depicts heatmaps for joint variable-importance measures of Google Trends terms
grouped by the day of the week. The results are for linear models fitted via the LASSO
and fitted artificial neural networks with a single hidden layer (NN1). The fitted models
underpin the now- and backcasts indicated on the vertical axes. The estimation sample for
the left-hand (right-hand) panels ends in the last week of 2019 (last week of July of 2020),
thereby excluding (including) the COVID-19 crisis. Results pertain to seasonally adjusted
unemployment insurance initial claims.
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Figure 8: Partial-dependence plots for the AR component

The figure depicts partial-dependence plots for the autoregressive component (lag) in linear
models fitted via the LASSO and fitted artificial neural networks with a single hidden layer
(NN1). The values on the horizontal axis are normalized to lie between zero and one. Results
are reported for Mondayt, Tuesdayt, and Thursdayt nowcasts and the Mondayt+1 backcast.
Results are reported for an estimation sample ending in the last week of 2019 (last week
of July of 2020), thereby excluding (including) the COVID-19 crisis. Results pertain to
seasonally adjusted unemployment insurance initial claims.
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Figure 9: Partial-dependence plots for two GT terms

The figure depicts partial-dependence plots for two Google Trends terms in linear models
fitted via the LASSO and fitted artificial neural networks with a single hidden layer (NN1):
how to file for unemployment (left-hand panels) and unemployment office illinois (right-
hand panels). The values on the horizontal axis are normalized to lie between zero and one.
Results are reported for Mondayt, Tuesdayt, and Thursdayt nowcasts and the Mondayt+1

backcast. Results are reported for an estimation sample ending in the last week of 2019 (last
week of July of 2020), thereby excluding (including) the COVID-19 crisis. Results pertain
to seasonally adjusted unemployment insurance initial claims.
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