Reading the News: Telling Supply from Demand in Commodity Markets

Sarah Mouabbi¹ Evgenia Passari² Adrien Rousset Planat²

¹Banque de France

² Université Paris Dauphine-PSL

The views expressed are solely those of the authors and do not necessarily reflect the views of the Banque de France.

We build **indexes** of commodity **supply** and **demand** using a **computer-based narrative approach**.

• Starting from a general framework that captures a market-wide commodity sentiment, we tailor our approach to cover different commodity categories such as energy, industrial and precious metals, agricultural commodities etc.

Contribution

- Our approach is **flexible**, **unified**, and can span the **global** commodity market.
- Our indexes can be used **independently** or enrich and improve structural model-based predictions.
- They track commodity price developments and are available at higher frequencies than standard macro variables.
 - Mitigation of the temporal aggregation bias in prediction.
- Relying on narrative measures helps relax the **orthogonality assumption** between supply and demand shocks often employed in quantitative and structural approaches.

Motivation

Understanding commodity-price fluctuations is important.

- Implications for economic growth, countries' financial resources and income distribution, terms of trade and real exchange rates.
- Unprecedented interest in commodity investing during the past decade and increased flow of institutional funds into futures markets of commodities: financialization. [Basak and Pavlova, 2016]
 - Implications for portfolio allocation and market segmentation.

Classifying commodity price developments into **supply** and **demand** components is **non-trivial**.

- Model-based methods
 - Conventional measures subject to endogeneity critique

Positioning in the Literature

- Textual analysis for the measurement of various economic outcomes; [Tetlock, 2007], [Gentzkow and Shapiro, 2010], [Hoberg and Phillips, 2010], [Boudoukh et al., 2013], [Alexopoulos and Cohen, 2015] [Baker et al., 2016], and [Allcott and Gentzkow, 2016].
- Identification of supply and demand shocks in commodity markets (focus on oil): [Kilian, 2008; 2009], [Kilian et al., 2009], [Wu and Cavallo, 2012], [Kilian and Vigfusson, 2016], [Känzig, 2018], [Datta and Dias, 2019], [Loughran et al., 2019].
- Narrative approaches in economics: [Romer and Romer, 2010].

Methodology. A four-layer approach

We simulate news reading in four steps.

- News intensity. Count the number of commodity-specific articles.
 - The larger the commodity price shock, the higher the news coverage of the commodity in-question.
 - Potential asymmetric relationship between positive and negative news and news coverage.
- Content analysis. Identify words and word combinations that can be attributed to supply and demand factors.
 - Identification of words and word combinations of supply and demand lemmas with standard directional words.

 dictionaries
- **Refinement**. Overlay the process with an additional algorithm that caters to **exceptions** and **negations**. Creation of **thematic indexes** that capture weather, financial developments, trade war, COVID-19 (ongoing).
- Extensive Human Auditing. human auditing

Data description

- Market-wide news outlets for the construction of the global commodity index; and for the individual commodity indexes.
 - Reuters (May 2000 to date, 1,035,286 articles)
 - Dow Jones (Jan 2000 to date, 2,760,967 articles)
- We complement our market-wide news providers with **commodity specific publications** such as Oil Daily (Dec 1996 to date, 110,333 articles); Platts Gas Daily (Nov 2001 to date, 89,146 articles); Metal Bulletin News Alert Service (Jan 2010 to date) etc.
- Outlets accessed through Factiva Dow Jones.
- **Standard article handling** (selection, sentence-splitting, lemmatization, stop-words and punctuation removal).

Standardized net supply and demand Global commodity indexes

Net supply = supply decrease - supply increase Net demand = demand increase - demand decrease

Relationship with commodity returns

Regression of S&P GSCI composite daily returns on news coverage, supply & demand indicators

	Net supply only	Net demand only	Net supply & net demand
No Articles	0.000001	-0.00001***	-0.000014***
	(0.21)	(-3.71)	(-4.81)
Net supply	0.00088***		0.00135***
	(3.84)		(6.10)
Net demand		0.00267***	0.00291***
		(8.15)	(8.98)
N	4117	4117	4117
R2	0.01	0.04	0.05

Commodity-specific results

Regression of S&P GSCI commodity-specific daily returns on net supply & demand indicators

	Crude Oil	Natural Gas	Copper	Wheat
Net supply	-0.00538 (-1.32)	0.0321*** (10.23)	0.00881*** (3.56)	0.0139*** (5.12)
Net demand	0.0424* ^{**} (7.28)	0.0747*** (16.00)	0.0342*** (11.91)	0.0479*** (17.86))
Ν	5529	4154	2427	4810
R2	0.034	0.05	0.06	0.06

Application I. Impact on stock market volatility

Structural decompositions point to the **significance** of demand shocks, while the impact of **supply** shocks appears to be **negligible** for stock market volatility [Bastianin and Manera, 2015]: Test using **disaggregated** indexes.

The impact of disaggregated crude-oil supply & demand indexes on stock market volatility

	Supply only	Demand only	Supply and Demand
Supply Increase	-1.927***		-1.543***
	(-15.14)		(-12.89)
Supply Decrease	0.391**		-0.0198
	(2.34)		(-0.13)
Demand Increase		-1.620***	-1.317***
		(-12.14)	(10.09)
Demand Decrease		2.482***	2.330***
		(12.38)	(11.98)
Ν	4911	4911	4911
Adj. R2	0.041	0.067	0.096

Application II. Diversification & market segmentation Across commodity sub-categories

Hypothesis: Upon the arrival of a large **supply shock**, **prices of risk** in the directly affected asset class become **disconnected** from those in others [Greenwood et al., 2018], [Passari and Topaloglou, 2020].

Correlations of Daily Returns Following a Crude Oil Supply Shock									
	S&P GSCI Agricultural S&P GSCI Energy S&P GSCI Precious Metals S&P GSCI Industrial Metals S&P GSCI Liv								
S&P GSCI Agricultural	1,00								
S&P GSCI Energy	0,33	1,00							
S&P GSCI Precious Metals	0,15	0,13	1,00						
S&P GSCI Industrial Metals	0,43	0,57	0,18	1,00					
S&P GSCI Livestock	0,14	0,13	-0,15	0,18	1,00				

Ci	prrelations of Daily Returns	s Following a Cruc	te Oil Demand Shock		
	S&P GSCI Agricultural	S&P GSCI Energy	S&P GSCI Precious Metals	S&P GSCI Industrial Metals	S&P GSCI Livestock
5&P GSCI Agricultural	1,00				
S&P GSCI Energy	0,42	1,00			
5&P GSCI Precious Metals	0,46	0,41	1,00		
5&P GSCI Industrial Metals	0,33	0,40	0,52	1,00	
5&P GSCI Livestock	0,18	0,19	-0,06	0,24	1,00

Difference in Correlations of Dail	ly Returns: (Demand - Supply)
------------------------------------	-------------------------------

	S&P GSCI Agricultural	S&P GSCI Energy	S&P GSCI Precious Metals	S&P GSCI Industrial Metals	S&P GSCI Livestock
S&P GSCI Agricultural	0,00				
S&P GSCI Energy	0,09	0,00			
S&P GSCI Precious Metals	0,31	0,28	0,00		
S&P GSCI Industrial Metals	-0,10	-0,17	0,35	0,00	
S&P GSCI Livestock	0,04	0,06	0,09	0,06	0,00

Application II: Diversification & market segmentation Across asset classes

Correlations of Daily Returns Following a Crude Oil Supply Shock							
Full Sample							
	S&P 500	Moody's Aaa CB	S&P GSCI	10-Y Treasury			
S&P 500	1,00						
Moody's Aaa CB	0,41	1,00					
S&P GSCI	-0,02	0,30	1,00				
10-Y Treasury	0,34	0,23	-0,06	1,00			

Correlations of Daily Returns Following a Crude Oil Demand Shock

	S&P 500	Moody's Aaa CB	S&P GSCI	10-Y Treasury
S&P 500	1,00			
Moody's Aaa CB	0,70	1,00		
S&P GSCI	0,15	0,42	1,00	
10-Y Treasury	0,44	0,44	-0,14	1,00

Difference in Correlations of Daily Returns: (Demand - Supply) Full Sample S&P 500 Moody's Aaa CB S&P GSCI 10-Y Treasury S&P 500 0.00 Moody's Aaa CB 0,29 0,00 S&P GSCI 0.17 0.12 0.00 10-Y Treasury 0,10 0,21 -0.08

0.00

Conclusion

- We build **indexes** of commodity price **supply** and **demand** developments using **textual analysis**.
- Our indexes measure the **coverage**, **direction** and **intensity** of commodity news and **track** the major **developments** in commodity markets.
- Useful tool in the light of the recent COVID-19 crisis when supply and demand shocks are frequent, large, and not necessarily orthogonal.
- Supply and demand developments appear to have different implications for the volatility and correlation dynamics across asset markets. Implications for diversification and market segmentation.

References I

Alexopoulos, M. and Cohen, J. (2015).

The power of print: Uncertainty shocks, markets, and the economy. International Review of Economics & Finance, 40(C):8–28.

Baker, S., Bloom, N., and Davis, S. (2016).

Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4):1593–1636.

Basak, S. and Pavlova, A. (2016). A Model of Financialization of Commodities.

Journal of Finance, 71(4):1511-1556.

Boudoukh, J., Feldman, R., Kogan, S., and Richardson, M. (2013).

Which news moves stock prices? a textual analysis. NBER Working Papers 18725, National Bureau of Economic Research, Inc.

Datta, D. D. and Dias, A. D. (2019).

Oil shocks: A textual analysis approach. Technical report.

Gentzkow, M. and Shapiro, J. M. (2010).

What Drives Media Slant? Evidence From U.S. Daily Newspapers. *Econometrica*, 78(1):35–71.

Hoberg, G. and Phillips, G. (2010).

Product market synergies and competition in mergers and acquisitions: A text-based analysis. *Review of Financial Studies*, 23(10):3773–3811.

References II

Loughran, T., McDonald, B., and Pragidis, I. (2019).

Assimilation of oil news into prices.

International Review of Financial Analysis, 63(C):105-118.

Romer, C. D. and Romer, D. H. (2010).

The Macroeconomic Effects of Tax Changes: Estimates Based on a New Measure of Fiscal Shocks. *American Economic Review*, 100(3):763–801.

Wu, T. and Cavallo, M. (2012).

Measuring Oil-Price Shocks Using Market-Based Information. IMF Working Papers 12/19, International Monetary Fund.

– Appendix –

Methodology Dictionary examples

▶ back

Commodity-Wide Common Dictionary					
Supply					
suppl*	produc*	output*	export*		

Demand demand* consum* buy* import*

		Natural Gas Supply					Wheat Supply		
supp1*	produc*	output*	export*	inject*	supp1*	produc*	output*	export*	crop*
explor*	extract*	rig*	drill*	capacity*	planting*	farm*	harvest*	-	
		Demand					Demand		
demand*	consum*	buy*	import*	util*	demand*	consum*	buy*	import*	purchas*
emission*	costumer*	electric*	heating*	plant*	flour*	feed*	miller*		

Human and computer standardized net supply and demand Global commodity indexes

▶ back

