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Preliminaries: Benefits & Cautions of Machine Learning

Benefits:

1. Discover non-linearities and interactions
2. Handles “big data” or “big parameters” efficiently

Cautions:

3. Overfitting: model selection/validation?

4. Interpretation:
a. Black box interpretation?
b. Model inference?
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Motivation: Improve Central Bank Inflation Forecasting

» Use item-level CPl component series to forecast headline CPI
> plus macro series

» Horse race a set of inflation forecasting models:
» traditional dimensionality reduction (PCA and others)
» shrinkage (Ridge, LASSO, elastic net)
» non-linear ML (SVM, NN, RF)

» Interpret results with model-agnostic Shapley regressions



Forecasting Problem

LHS:

» UK headline CPI, yoy
» UK core CPI, ex food and energy, yoy
» UK core CPI, services, yoy

RHS regressors:

» 581 (491) item-level CPl components series, levels
» 46 macro series (robustness check)
> lags of LHS



Results

» Shrinkage models and ML models improved most over AR(p)

» Many statistically significant improvements at 6, 9, 12 months

» Adding macro data: models largely improved
» ML models and ridge regression improved less (already good)



Comments

» Usage of component series: improves forecasting and narrative

» Appreciate the interpretation and inference via Shapley
regressions

> A question about the micro data



A Question About Data

The stdev portion of this plot leapt out:
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Figure 1: Temporal dynamics of item-level index statistics of year-on-year changes for
selected item sample. The shown changes are limited to £25% for clearer presentation
with a small number of changes beyond this range. Source: ONS and authors’ calculation.



A Question About Data

Digging into the micro series
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A Question About Data

Digging into the micro series
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A Question About Data

Digging into the micro

Yoy, 12ma log dif
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A Question About Data

1. The stationarity of item-level series, in levels, comes from
chaining and rebasing

2. ltem-level series internally correlated, but perhaps ‘breaks’
structure with other macro series
» Improve effect of additional macro series

3. Is it possible to use y-o-y change in nominal micro series?



The Macroeconomy as a Random Forest by
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Motivation: Generalize Non-linear Time Series Models

There are many frameworks for capturing time-varying

threshold /switching regressions
smooth transitions

structural breaks

random walk time-varying parameters
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Motivation: Generalize Non-linear Time Series Models

There are many frameworks for capturing time-varying

threshold /switching regressions
smooth transitions

structural breaks

random walk time-varying parameters

vV vyYyysy

Contribution:

> by construction random forests can generalize the above models
» capture both latent & observable /3; time-variation

» Demonstrate inference, interpretation of these models
» Horse races: simulated data, empirical forecasting



Basic Autoregressive Random Forest (ARRF)

Consider:
ye = XeBt + €

Be = Fp(5¢)

Fg is generated by a random forest with modified objective:
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Feature Engineering in S;

In general X; C S; — for the forecasting exercise:

1. 8 lags of y;

2. t for structural breaks/exogenous time-variation

3. 2 lags of all variables in FRED*

4. 8 lags of 5 factors extracted from FRED by PCA

5. for each Z € FRED, two moving-average factors via PCA

1248 quarterly series, or 134 monthly series



Proposed Inference

» Forests often have 100s of trees; thus 100s of Bt vectors

» Each tree is a posterior draw from an approximate Bayesian
bootstrap on the tree functional

» Thus can construct (block) Bayesian bootstraps on the time
series of [3;



Simulated Data Horse Race

» Six increasingly “hard” DGPs:
» AR, ..., SETAR that collapses to AR via structural break

v

2 data quantity regimes (150, 300 obs)

v

4 forecasting horizons h € {1,2,3,4}

» Six “racing” models: AR, RF, ARRF, 2 SETARs,
rolling-window AR

» Simple question: how often does ARRF, RF beat AR, others?

» max attainable: “beat 5 models, 48 times”



Simulated Data Horse Race
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Simulated Data Horse Race

Self-Exciting Threshold AR SETAR, direct forecast
(SETAR) (SETAR-d)
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Simulated Data Horse Race

Random Forest Autoregressive Random Forest
(RF) (ARRF)
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Histograms: Simulated Data Horse Race
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Comments

Straightforward simulation story:

> AR does very well (reassuring)
» ARRF does better than AR
» RF does worst of all



Comments

Straightforward simulation story:

> AR does very well (reassuring)
» ARRF does better than AR
» RF does worst of all

Comments:

» Great econometric extension; great use of inference,
interpretation, forecast improvement
» Would love discussion, visualization, on what gets selected
from S;
» For example, what elements of S; selected for FAARRF in
Figure 57
» Q: what mistakes will make my ARRF look like RF?
» Promising use case: “first tool to grab”
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Motivation: Examine Job Loss under a Pandemic

» Use a random forest + the universe of Austrian Ul records,

predict:
» cumulative earnings loss
» number of years lost employment

» Propose a wage-replacement policy via CART



Why a Random Forest?

» Treatment effect of job loss may be heterogeneous; RF can
capture this heterogeneity
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Why a Random Forest?

» Treatment effect of job loss may be heterogeneous; RF can
capture this heterogeneity

» Typical RF chooses splits along variable z to minimize a loss

» Modified RF chooses splits to maximize difference between
estimated income loss effects 7 for individuals in splits z, Z:

nynz
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Why Heterogeneity in Effects

Tenure > 2 yrs.
Non-Manufacturing
Match Quality < 0
Low-paying Firm
Income < 25000
Hotel + Restaurant
Foreign Citizen
Firm Size < 100
Firm Age < 10
Female

Blue Collar

Age >= 40

Change in New Ul Claims
Percentage Change relative to Pre-Recession

Might Matter
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A Reason for Targeting Policy

Most common value.
Frastion with wage loss

Distribution of Earnings Losses, Mass Layoffs Only
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A Reason for Targeting Policy

Distribution of Earnings Losses, Mass Layoffs Only -
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Policy in words:

1. Workers displaced from employers paying above the median
2. Workers with a relatively long job tenure, displaced from low
paying firms, in regions with fewer good jobs on the market



Comments

1. RF is attractive, given potential heterogeneities in effects.
Figure 1 is striking
» Would like to see RF compared to a more traditional model (or
more detailed discussion of why this is a bad idea)
2. The policy tree is very interesting — would like to see more
regarding its specific construction
3. Would be interested in discussion of variance on estimates of 7

4. Do you have a measure of HH wealth?
» May be useful to include — high income people may also be
high-wealth
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