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Our Main Question

How can we teach machines to quantify economic activities 
from satellite images?

population, consumption, production, income, ...
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This Paper

⦁ Advantages & challenges of using satellite imagery
⦁ Some of our solutions

○ when there’s no economic data to begin with 
○ mismatch in data representation of “economic data-image data”

⦁ Our future research agenda 
○ Model improvement
○ Validation of the measures
○ economic applications
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Satellite Images in the Economic Literature

⦁ Nightlight imagery 
○ as a proxy for economic output: Chen and Nordhaus (2011), Henderson 

et al. (2012), Pinkovskiy and Sala-i-Martin (2016)
○ energy consumption: Xie and Weng (2016)
○ urban growth in developing countries: Dingel et al. (2019), Michalopoulos 

and Papaioannou (2013), Storeygard (2016)
⦁ High-resolution daytime satellite imagery

○ land cover classification: Jayachandran et al. (2017) - measure 
deforestation in Uganda, Baragwannath et al. (2019) - detecting urban 
markets in India 

○ Jean et al. (2016) predict poverty across African countries
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Advantages of Satellite Images & Geospatial Data

⦁ Advantages in using daytime satellite imagery & 
geospatial data for economic measurements 
○ wide geographic coverage
○ high spatial resolution (hyperlocality) 
○ consistency
○ high-frequency 
○ automatability
○ time-/cost- efficiency 
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Applying Deep Learning to Satellite Images

⦁ Our goal 

⦁ Data we need to train the machine
○ a set of satellite images
○ a corresponding economic data set (ground-truth) - a set of numbers that 

we eventually want to predict for each image 
○ labels for each image: it’ll guide machines to what to look for in images 

when they learn ‘image-number’ matches 
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Population: 30,000, 
Income: $1.8B, 
Inequality (Gini): 0.3



Challenges in Applying Deep Learning to Satellite Images

1) Defining economic labels
○ Urban vs. rural 
○ Production labels
○ Land cover categories 

2) Data labeling to construct ground-truth
○ Construction of a big, labeled data set of high quality
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Challenges in Applying Deep Learning to Satellite Images

3) Lack of available ground-truth economic data
○ Developing countries with poor infrastructure of traditional surveys
○ North Korea

4) Mismatch in data representation
○ Machines need to match district-level economic data with grid-level 

image data 
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Challenges in Applying Deep Learning to Satellite Images

5) Overfitting problem
6) Generalizability problem
7) Black box problem - lack of interpretability
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Challenges that We’ve Tackled

1) Defining economic labels
2) Data labeling to construct ground-truth
3) Lack of available ground-truth economic data
4) Mismatch in data representation: district-level vs. grid-

level 
5) Overfitting problem
6) Generalizability problem
7) Black box problem - lack of interpretability
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Challenges that We’ve Tackled

1) Defining economic labels
2) Data labeling to construct ground-truth
3) Lack of available ground-truth economic data
4) Mismatch in data representation: district-level vs. grid-

level
5) Overfitting problem
6) Generalizability problem
7) Black box problem - lack of interpretability
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When There’s No Ground-Truth

⦁ Our task here: How can we measure economic 
development without ground truth?

⦁ “Learning to Score Economic Development from Satellite Imagery”
KDD 2020 

⦁ Idea
○ learn to “rank” relative scores for given satellite images
○ Human-in-the-loop solution: light-weight annotating of relative scores
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Model - 1st stage: Clustering
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Collect satellite images 
+ 

Label them ‘urban’ ‘rural’, ‘uninhabited’



Model - 2nd stage: Partial Order Graph (POG)
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Collect satellite images 
+ 

Label them ‘urban’ ‘rural’, ‘uninhabited’

a partial order graph 

Cluster order
Human guided

Data guided

- (Local) experts

- Existing economic stats
- Nightlight data



Model - 3rd stage: Scoring

Maximize the spearman’s rank correlation with the differentiable sorter rank(si).
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relative economic scores siCollect satellite images 
+ 

Label them ‘urban’ ‘rural’, ‘uninhabited’



Experiment
Satellite Image Data
Daytime satellite images from DigitalGlobe
(zoom level = 15, 4.8m resolution)

South Korea 
96,131 images

Vietnam
226,305 images

Malawi 
64,303 images
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Partial Order Graph 

• by human experts based on the 
criteria “which cluster is more 
urbanized”

• by population density from census

• by nightlight intensity 



Result

Our model outperforms other baselines and 
all components contribute to performance gain.
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Limitations

⦁ Model sensitivity
○ image resolution
○ construction of POG
○ other model parameters 

⦁ Generalizability over more countries and over time
⦁ Linearity 

○ cannot sum up the scores for an arbitrary size area
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Our Future Research Agenda - Technical

⦁ Model Improvement 
○ improve the model precision
○ solve the linearity issue

⦁ Model validation 
○ for cross-region and time-series analysis
○ for different economic measures
○ over different image resolutions

⦁ How can make it interpretable?
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Our Future Research Agenda - Applications

⦁ Alternative measure for regional inequality
⦁ Applications on developing countries

○ focus on developing economies in Africa and Southeast asia 
⦁ Studies on North Korean economies

○ regime changes, sanctions, market institutions, … 
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THE END OF MAIN SLIDES
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Extra Slides for the Other Model
“Lightweight and Robust Representation of Economic Scales from Satellite Imagery,” AAAI 2019
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Mismatch in Representation

⦁ Challenge: adjusting units of economic data & geospatial 
data
○ grid-level or administrative units?
○ Information loss when a grid-level data is aggregated into administrative 

units
⦁ Our task here: constructing a representation per 

administrative unit of area from grid-level satellite images, 
minimizing loss of information 

⦁ Idea: learn spatial features and extract key fixed-length 
features from any number of satellite images
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Model Structure
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Graphical Representation of an Embedded 
Space
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Prediction Performance
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