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Abstract

How can we teach machines to quantify economic activities from satellite im-

ages? In this paper, we share the research progress in answering the question.

We document what we have learned so far – characteristics of geospatial data in-

cluding satellite images and recent developments in computer vision and image

processing. We then identify some challenges in adopting the machine learning

techniques to address the question. We present two of our proposed deep learning

models that address some of the challenges: the first model predicts economic

indicators from a satellite image by resolving the mismatch in data representation,

and the second model learns to score the level of urban economic development

of a satellite image even without ground-truth data. We also talk about our future

research agenda to improve the models and to apply them for economic research

and policy-making in practice.
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1. Introduction

Artificial intelligence (AI) and machine learning are transforming every nook and cor-

ner of our world. In recent years, we have seen the emergence of calls for applying

AI and machine learning to solve socioeconomic, humanitarian, and environmental

problems from both the profit and nonprofit sectors. For example, in 2018, Google’s

AI for Social Good hosted the AI Impact Challenge, which awarded 25 million US dol-

lars to socially beneficial projects and organizations tackling global challenges. Like-

wise, Microsoft, another tech giant, has launched a series of AI for Good initiatives

for empowering AI-equipped organizations to bring positive impacts via a pledge of

165-million-dollar financial support. From the nonprofit side, the United Nations (UN)

has advocated the promising role that AI can play to achieve sustainable development

goals through their annual AI summit (Butler, 2017). According to a report by McKin-

sey Global Institute (Chui et al., 2018), there are approximately 160 AI applications for

social good, and they cover all 17 agendas for sustainable development set by the UN.

Among many AI applications, the combination of computer vision and spatial data

has made remarkable advancement and shared the spotlight from both researchers

and practitioners. The growing applications of spatial data, such as maps and satellite

images on socioeconomic problems, can attribute to the technical breakthrough in

geographic information systems (GIS) and machine learning thanks to massive com-

puting power. Equally important has been the massive amount of data provision from

both the public and private sectors. Indeed, once generated and preprocessed for

third-party access, large-scale data have become readily available in almost real-time.

Moreover, with the assistance of crowdsourcing, big spatial data have been attached

to a variety of labels, changing many knotty problems to be solvable and an essen-

tial component of training and evaluating supervised machine learning. For example,

Naik et al. (2017) employed a computer vision method to the time-series street-view

images with crowdsourced safety ratings to examine the physical dynamics of cities.
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High-resolution satellite imagery, another primary source of spatial data, has been ex-

ploited in a convolutional neural network to predict consumption and wealth at the

local level (Jean et al., 2016; Yeh et al., 2020).

This paper presents how economists can integrate machine learning techniques

into satellite images to unearth economic measures more effectively from the view

above and to devise better economic policies. We first glance at how satellite imagery

has contributed to unraveling the traditional economics problems and will expand its

potential with the aid of machine learning in complementing the economics literature.

In particular, daytime, rather than nighttime, satellite imagery with high resolution is

our focus here. Subsequently, we introduce the current availability of both satellite

imagery and geographic ground-truth data. We also review the recent developments in

computer vision and image processing that can be of potential use in utilizing satellite

images and economic data. We then identify some of the challenges in teaching ma-

chines with satellite images as inputs and economic indicators as outputs: (1) defin-

ing economic labels, (2) data labeling to construct ground-truth, (3) lack of available

ground-truth economic data, (4) mismatch between district-level economic data and

grid-level satellite image data, (5) overfitting problem, (6) generalizability problem, and

(7) Black Box problem. Adding higher value is our suggested approach to these chal-

lenges and potential avenues for satellite imagery combined with machine learning in

future research.

Satellite Data for Economic Research

Owing to the recent development of computer vision algorithms, economists have used

satellite data not just to explore novel questions but also to tackle questions that could

not be answered with traditional data sources. A comprehensive survey by Donaldson

and Storeygard (2016) has lowered the technical barrier to entry by providing a gentle

introduction to satellite data for economists and its applications. Over the past two

decades, however, satellite data sources utilized in much literature has mainly been

either luminosity from nighttime satellite images (i.e., night lights) or sensory data
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for particular purposes (e.g., ecological, meteorological, or topographical studies; for

review, see Donaldson and Storeygard 2016). Besides, despite the extensive coverage in

both time and space, prior studies often focused on a single country or area of interest

only at certain times.

Nighttime Satellite Imagery as a Proxy for Economic Activity and Its Limitations

Nighttime satellite images or night lights are now a prominent, plausible proxy for

global and local economic activity; They have proven their versatility and robustness

in the economics literature. Gathered by U.S. Defense Meteorological Satellite Pro-

gram’s Operational Linescan System (DMSP-OLS) and distributed by NOAA National

Geophysical Data Center, luminosity data are represented as a six-digit digital number

(DN) between 0 and 63 at a grid level; the higher the DN, the brighter the light radiance.

Since the pioneering work by Chen and Nordhaus (2011) and Henderson et al. (2012),

night lights began to gain attention as a proxy for economic output, widely applied in a

multitude of development economics research (for review, see Michalopoulos and Pa-

paioannou 2018). Recent papers have exploited and verified the strong correlation be-

tween light density and output statistics at the regional/within-country and global/cross-

country levels (Chen and Nordhaus, 2011; Henderson et al., 2012; Pinkovskiy, 2017;

Pinkovskiy and Sala-i Martin, 2016). In addition to economic production, nighttime

satellite imagery has been used to predict energy consumption (Xie and Weng, 2016),

epidemic fluctuations (Bharti et al., 2011), regional favoritism (Hodler and Raschky,

2014; Lee, 2018), and urban growth in developing countries (Dingel et al., 2019; Michalopou-

los and Papaioannou, 2013; Storeygard, 2016), even in areas without or lacking the

reliable traditional measures.

While night lights can be advantageous in measurement objectivity and wide spatial

and time-series coverage, they bare some drawbacks. Michalopoulos and Papaioan-

nou (2018) discuss several caveats of using luminosity at nighttime. The two most

notable shortcomings are blooming and saturation. Blooming refers to the magnified

light emission from one pixel to adjacent pixels due to its reflection over some types
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(e.g., water- or snow-covered) of terrain. Saturation pertains to the top- or bottom-

censored values of DNs resulting from amplification for detecting highly bright or dim

lights. Because of these limitations, luminosity at night exhibits underperformance

in areas at extreme wealth or income spectrum. Using relatively recent data from the

Visible Infrared Imaging Radiometer Suite (VIIRS), instead of DMSP-OLS, can alleviate

the blooming and saturation effects a little (Baragwanath et al., 2019). An alternative

solution to these limitations is the use of radiance-calibrated luminosity data (e.g.,

Henderson et al., 2018).

Advantages of Using Daytime Satellite Imagery and Applications in Economics

High-resolution daytime satellite imagery presents a raw picture of the world at a fine-

grained level, from which measures of human activities can be extracted directly. Day-

time satellite images are capable of capturing and offering more lavish features and pat-

terns observable from above compared to nighttime images. Although the accessibility

to high-resolution daytime satellite imagery goes way back, its frequent appearance in

the literature has only recently become possible due to the analytical complexity of high

dimensions and lack of structures (Donaldson and Storeygard, 2016). Thus, daytime

satellite images at high resolution began to be utilized by leveraging deep learning

architectures’ high representation power.

One widespread usage of daytime satellite imagery is the land cover classification.

Jayachandran et al. (2017) classified daytime images from QuickBird, a commercial

satellite with high-resolution support, and assessed the impact of Payments for Ecosys-

tem Services (PES) on (de)forestation in Ugandan villages. Similarly, Baragwanath et al.

(2019) detected urban markets by examining land covers with a supervised learning

model applied to three different daytime satellite datasets–including MODIS, GHSL,

and MIX. Like the night light examples, daytime luminosity can also be a unique proxy

for socioeconomic welfare, as shown in the recent study of Marx et al. (2019) on ethnic

patronage among informal settlements in Kenya.

Notable advancement was made by Jean et al. (2016), who predicted poverty across



MACHINE LEARNING AND SATELLITE IMAGERY 5

five African nations via a multi-stage approach called transfer learning. In their work,

transfer learning first trained a machine to compare nighttime luminosity with daytime

pictures and then predicted consumption and wealth from daytime features with the

actual survey data. To the latest, Yeh et al. (2020) added more value to Jean et al. by

outperforming the extant model with an analogous technique and using only publicly

available satellite data. One of their significant contribution that parallels our attempts

to be illustrated in later parts is their use of scarce labeled data, which often hinders

such prediction tasks.

The remainder of the paper has the following structure: In Section 2., we discuss the

characteristics of geospatial data, including satellite imagery, and provide some acces-

sible sources in detail. In Section 3., we review the recent developments in computer

vision and image processing that can be applied to satellite images and discuss several

challenges in using satellite images to teach machines to extract economic information

captured in satellite images. Section 4. describes our efforts to develop machine learn-

ing techniques that use daytime satellite images to measure economic development.

Note that this section is adapted from our work Han et al. (2020a) and Han et al. (2020b).

Lastly, we share our research agenda and conclude in Section 5..

2. Geospatial Data for Economic Research

2.1. Satellite Imagery Data

The combined methods of machine learning and remote sensing highly depend on

satellite images. Satellite imagery datasets are stored in Raster formats, which are sets

of many grid cells (or pixels) with corresponding values and geographic coordinates.

Satellite imagery datasets can be classified by diverse characteristics: orbits of satel-

lite, resolution, and spectral bands. Imagery is taken by two-orbit satellites; geosta-

tionary satellites have orbits to continuously take images of a fixed point, while sun-

synchronous satellites have nearly polar orbits to keep the same relational position
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with the Sun to capture any points of Earth.

The Resolution of Satellite Imagery

The resolution of satellite images is described as a meter per pixel; however, as machine

learning techniques often use individual split images for analysis (e.g. (Jean et al.,

2016)), it is described with zoom level resolution in the field. Zoom level coordinate

system is based on how many 256-pixel wide tiles are used to divide the whole world.

As the system uses individual tiles, it is useful as input in deep learning models. Given

that zoom level 0 uses one tile to show the whole world, the tiles are split into four when

a zoom level goes up. The resolution of zoom level 15 is 4.773m per pixel, 16 for 2.387m,

and 17 for 1.193m. A popular example of the system is the Google Maps service. The

high-resolution satellite images (at most 5m resolution) are mostly used as daytime

imagery input in machine learning fields for predicting economic variables.

The Spectral Bands of Satellite Imagery

Satellite sensors catch all wavelengths of the electromagnetic spectrum differently. Thus,

individually recorded wavelengths are referred to as spectral bands, and the number

of bands varies depending on the sensors. The bands include not only visible lights

of Red, Blue, and Green, but also other bands such as coastal aerosol, near-infrared

(NIR), water vapor, short-wave infrared (SWIR), and others. The combination of bands

can detect numerous types of human and natural objects; for example, Normalized

Difference Vegetation Index (NDVI) calculated by Red and NIR bands can measure the

state of plant health. However, machine learning studies to date tend to focus on Red,

Blue, and Green bands.

The Cost of Satellite Imagery

The cost of satellite images depends on the resolution and size of the area. The high-

resolution datasets cost significantly up to USD 30/km2; selected examples of images

are Worldview 3/4 (30cm resolution), GeoEye 1 (40cm), KOMPSAT-3A (55cm), Quick-

bird (60cm), KOMPSAT 2 (1m), and SPOT 6/7 (1.5m). On the other hand, there are pub-
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Figure 1: Publicly Available Satellite image, Brooklyn, NY.

Note: World Imagery (left), Sentinel2 (middle), Landsat8 (right)

licly available datasets, including Landsat series (from 30m to 80m), Sentinel 2 (10m),

and World Imagery (on average up to 1.2m) via the REST APIs of Esri R©ArcGIS (Johnston

et al., 2001). Landsat series are available from 1972, Sentinel 2 from 2015, and World

Imagery for the only one-time snapshot.

2.2. Grid-level Ground-truth Data

For estimating economics with machine learning, it needs ground-truth data for train-

ing and evaluating the models. The primary approach is to use official district-level so-

cioeconomic statistics as ground-truth (Jean et al., 2016). In this approach, the world-

wide provided datasets such as Demographic and Health Surveys (DHS), are useful for

analyzing developing countries. However, district-level data have caveats as requiring

other grid-level supplementary data (e.g., nightlight data) corresponding to split indi-

vidual satellite images.

Grid-level Ground-Truth Data Used to Date

Thus, there come various attempts to use grid-level data in recent studies. Hardly do
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datasets provide official socioeconomic statistics at the grid level; raster datasets are

alternatively used to split into grids. Nightlight data is widely utilized (Jean et al., 2016).

Moreover, Han et al. (2020a) used Facebook humanitarian data for grid-level prediction

of population. Facebook has contributed by making the most precise population map

of the world, covering most of the Asian and African countries Facebook (2020). The

estimation is at the resolution of an arcsecond-by-arcsecond scale. Online geocoded

data, such as georeferenced Wikipedia articles, have also been used as proxies for so-

cioeconomic statistics (Fatehkia et al., 2018; Sheehan et al., 2019; Uzkent et al., 2019;

Rama et al., 2020).

Other Possible Ground-Truth Data

There are several other possible grid-level data for proxies of economic activities. First,

among many digital elevation data, the Normalized Digital Surface Model (NDSM) is

useful in detecting human development at the grid level. Calculated by Digital Surface

Model (DSM) and Digital Terrain Model (DTM), NDSM displays the height of objects

over the surface. Thus, NDSM can show a total volume of human-constructed arti-

ficial objects in a given area. However, since digital elevation datasets are relatively

expensive, similar types of data, such as building footprint data, can be used as an

alternative. The building footprint data provide geospatial shapes of all buildings. It is

often provided by selected countries and publicly available from Openstreetmap data

(OSM). If footprint data is multiplied by each building’s floor levels, it is the gross floor

area and similar to NDSM in concept. Third, the land use and land cover (LULC) data

describe the feature types of land, including vegetation, water, built-up, etc. LULC can

capture economic activities such as urbanization (built-up) or agriculture (vegetation).

LULC is diverse in terms of providers and class categories based on geographical and

national contexts, but there is also global-scale data such as Copernicus Global Land

Cover. Lastly, the land surface temperature (LST) describes the radiative skin tempera-

ture of the land surface at day and night. Wang et al. (2018) posed that patterns of LULC

might have potential impacts on LST; the city core had higher nighttime LST than rural
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Figure 2: Examples of Grid-level Ground Truth Data, Brooklyn, NY.

Note: From left, (1) Landuse/landcover classification (NYC opendata), (2) NDSM (Digitalglobe), (3) Building
footprints(NYC opendata), (4) Nightlight data (NOAA), (5) Land surface temperature (MODIS), (6) Facebook
population data.

areas, especially in cold seasons. LST data is publicly available from MODIS.

2.3. Reviews from a Data Perspective

The previous two sections examined satellite imagery and hyperlocal-level ground truth

data used in the field of machine learning in economics and remote sensing. However,

there are several caveats with utilizing the data. The predominant limit and tendency of

the previous approaches are to focus on high-resolution satellite images instead of low

and publicly available ones. As a result, few pieces of research have been conducted

on time-series analysis due to high costs. Moreover, the study’s applicability is low in

that the method to date cannot be easily followed. Although Yeh et al. (2020) posed the

possibility of using the public source, it is urgent to develop other machine learning

models for economic prediction with publicly available imagery with multi-temporal

data; Sentinel2 could be appropriate with a 10m resolution source from 2015. Second,

the satellite images cannot be interchangeably mix-used because they differ from each

other in terms of resolution, data type, color tones, degree of correction, the numbers

of bands, coordinates, and other geographical metadata. This reduces the applicability

of models in which performance becomes lower with other sources of satellite imagery.
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Third, as literature has been based on split individual tiles, the analysis inevitably takes

a great effort and time to clip massive raster data into smaller tiles. Although the World

Imagery dataset offers a clipped version of image tiles for users, other datasets need to

be split with tile extents. Lastly, there is no consensus that hyperlocal or grid-level data,

beyond district-level statistics, should be used for ground truth of economic activities.

Research is needed to determine the most explanatory information among various data

sources suggested in the previous section.

3. Challenges in Teaching Machines to Read the Economic

Context of Satellite Images

3.1. Machine Learning for Satellite Image Processing

We have seen remarkable progress in teaching machines to recognize objects in an

image over the last decade. Machine learning models in computer vision and image

processing require a massive data set to train and test, thereby enormous computing

power to process the data. Lack of such data had been the major hurdle, but Ima-

geNet (Deng et al., 2009), the large-scale crowdsourced data of labeled images, sparked

the fast growth of the technology. ImageNet has over 14 million images that are or-

ganized according to nouns in the WordNet, a lexical database with the hierarchical

structure. With ImageNet, machines can be trained to learn what cats look like and

to distinguish them from other animals. The ImageNet Large Scale Visual Recognition

Challenge also has played a crucial role in serving as an incentive for researchers. The

state-of-the-art method as of May 2020 shows the top 5 accuracy rate of 98.7% – it

is only 1.3% of the time that machines’ top 5 guesses for the name of an object in

a presented image do not hit the right answer.1 This beats average humans as the

corresponding rate is about 95% for humans.

1https://paperswithcode.com/sota/image-classification-on-imagenet reports the most up-to-date
results.

https://paperswithcode.com/sota/image-classification-on-imagenet
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Generally speaking, object recognition can be divided into two tasks: object local-

ization and object classification. Object localization is to find a specific area, repre-

sented as a bounding box, in an image where an object resides. Object classification is

to find a label for an object in an image. Object detection is then the combination of

the two: detect an area where a specific object is contained and figure out the label for

the object.

Object detection techniques to detect semantic instances, such as airplanes or cars,

have been widely applied to analyze satellite imagery (Wang et al., 2020; Chen et al.,

2014; Guo et al., 2018). In many cases, convolutional neural networks (CNN), a deep-

learning neural network algorithm, are first trained for object classification, and then

they are trained to draw a bounding box with ground-truth boundary data, where bound-

aries are marked by human annotation (See Figure 3) (Guo et al., 2018).

Figure 3: Object Detection in Satellite Images

Source: Guo et al. (2018)

While object localization and image classification can be regarded as basic tech-

niques, there are many other computer vision and image processing techniques that

can be applied to analyze satellite images. Instead of object localization, which draws

bounding boxes, we may want to figure out the exact boundaries (or edges or contours)

of an object or some spatial instance. Or, one can take a pixel-based approach, such

as in image segmentation. In image segmentation techniques, an image is first parti-

tioned into multiple semantic segments to generate sets of pixels with similar charac-
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Figure 4: Satellite Image Data for Change Detection

(a) Rio on Apr 24, 2016 (b) Rio on Oct 11, 2017 (c) Ground-truth Change
Source: Daudt et al. (2018)

Note: The ground-truth change is annotated by humans.

teristics. The algorithms then put a label on each set of pixels. In the end, every pixel in

an image will have a label (Chen et al., 2018). If the pixel level constructs LULC data, it

can be used to test image segmentation models’ performance. At the same time, LULC

data can be created by applying image segmentation.

As many economics questions involve growth or changes over time, detecting tem-

poral changes in satellite images can be of potential interest. What is essential in de-

veloping a change detection method is to define a change that we want to measure and

collect training data for such changes. Figure 4 shows an example of such data. Change

detection techniques were designed to detect the movement of buildings or changes

in terrain (Daudt et al., 2018) or to detect the long-term changes in the forest, while

ignoring other temporary changes such as clouds or other weather conditions (Khan et

al., 2017). These deep learning-based approaches either make a difference in high-level

features coming out of CNN layers, or train a CNN model using two images to compare

as input, and changes annotated by humans or administrative data as output.

3.2. Challenges

While processing images to identify objects in them has been successful, processing

satellite images and uncovering their economic information poses different challenges.

Defining Economic Labels
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First of all, we do not yet have ImageNet for satellite imagery and economic informa-

tion: while we have abundant satellite image data, we do not have a set of economic

labels that are readily available. To apply the currently available object recognition

algorithms, we need to explicitly figure out what to teach: the ground truth for grid-

level economic information. Once the ground-truth data is available, we can teach

machines that geographic characteristics captured in a satellite image are linked to the

given economic information.

The first step is then to define classes of labels, which represent economic infor-

mation that can be captured in satellite images. With the defined economic labels and

satellite images, we can formulate a classification machine learning problem. What

could be the economic version of WordNet for satellite images? Objects that can be

observed from satellite imagery, such as buildings, roads, airplanes, cars, and so forth,

can serve as labels. LULC and crop/vegetation categories can also provide a set of label

classes. Taking an urban development perspective, ‘urban/rural/uninhabited’ labels

can be helpful. Considering the production side of an economy, ‘agriculture/manufacturing/

service/residential’ classification can also do a job. For each of these classifications, we

may want to introduce a deeper hierarchy. For example, we can classify further ‘urban’-

labeled images with ‘super-urban/urban/suburb.’ With these classifications, we can

design a deep learning classification algorithm to assign a label to each satellite image.

Data Labeling to Construct Ground-truth Labels

The next step is to put a label on each satellite image, which requires human annota-

tion. However, annotation can be costly in both time and money due to the massive size

of satellite images and labeled data required to train and test. Therefore, many projects

such as SpaceNet Challenges2 or Openstreetmap takes a crowdsourced approach in

collecting labeled data. When adopting crowdsourcing, a design of labeling tasks for

efficiency and data validation for labeled data quality can be challenging.

2https://spacenet.ai/

https://spacenet.ai/
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Lack of Available Ground-truth Economic Data

While addressing the classification problem can be useful, what is more relevant for

economic research is to put a number to each satellite image, which can be a measure

of economic activities such as population, consumption, wealth, inequality, poverty,

etc. This comes down to a regression task in machine learning with satellite images.

For example, we may want a machine-learning algorithm to predict poverty from a

particular region’s satellite images.

For this prediction task, economic statistics or administrative data at the grid-level

is required as the ground-truth to train and test the algorithm. The biggest challenge

is then the availability of such ground-truth economic data needed for cross-sectional

and time-series analysis. One solution we propose in Section 4.2. that can be applied

under the absence of ground-truth data is redefining the task to predict relative eco-

nomic measures, not absolute measures. We develop a deep learning technique that

uses economic labels and requires only lightweight human annotation to compare dif-

ferent clusters of satellite images given some economic criteria. Our approach adopts

metric learning after classification and clustering tasks.

Mismatch between District-level Economic Data and Grid-level Satellite Image

Data

While economic data is usually available by the administrative unit, satellite images

are stored in a grid format. This mismatch in representation makes existing models not

applicable to satellite images and district-level ground-truth: a district can be of any

polygon shape spreading over multiple satellite image tiles, which changes the input

dimension (the number of satellite images of the district) to the algorithm every time.

In Section 4.1., we propose a deep learning model to learn sophisticated spatial features

of an arbitrarily shaped district based on high-resolution satellite images to produce a

fixed-length representation of economic measures.

Overfitting Problem
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When the size of labeled data is not big enough, a deep learning model may fit too

closely or too exactly to a particular training dataset, referred to as the overfitting prob-

lem. Overfitting leads models to lose generalizability and become less applicable to

other datasets. The lack of available ground-truth economic data and mismatch in rep-

resentation, the previously discussed problems, make the overfitting problem highly

relevant in our context.

Generalizability Problem

Since some geographic characteristics can be unique for each continent or each coun-

try, designing a deep learning technique that is generally applicable is a difficult chal-

lenge. Moreover, some geospatial features contained in a satellite image can be affected

by when the image was recorded, which aggravates the problem. There are two ap-

proaches we can take: either to develop a model that can transfer knowledge between

different regions or to optimize a model for each region. We plan to test and expand

generalizability as much as possible in developing deep learning models.

Black Box Problem

AI models, including deep learning, are criticized that the models’ prediction results

are not interpretable or explainable, so-called as Black Box problem of AI(Castelvecchi,

2016). The lack of interpretability and explainability prevents more expansive use of

machine learning algorithms in social science research and in practice despite its ad-

vantages. Making a model more interpretable and explainable is regarded as the most

important and pressing challenge in the current literature. In our model presented in

Section 4.2., we utilize some interpretable input to help explain the prediction result,

which we believe one step towards tackling the problem.

4. Our Progress

This section introduces our technical approach to solve some of the challenges dis-

cussed in the previous section—mismatch in data representation and lack of available
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ground-truth economic data.

4.1. Matching Grid-level Satellite Image Data to District-level Economic

Data3

The existing machine-learning models are not applicable for predicting district-level

data. Since districts, unlike grids, can be of any polygon shape, this trait leads to a mis-

match when attempting to use satellite images with deep learning-based approaches.

We propose a model that efficiently extracts key fixed-length features from any number

of satellite images from an arbitrary region to overcome this. Our method, called Repre-

sentation Extraction over an Arbitrary District (READ), utilizes daytime satellite image tiles

whose three vertices belong entirely to the polygon representing each district. A single

district can contain vastly different land covers such as urban built-up, water, forest,

etc. Our task is to learn these sophisticated spatial features of an arbitrarily shaped dis-

trict based on high-resolution satellite images to produce a fixed-length representation

of economic measures.

READ is a lightweight method of measuring economic activities from high-resolution

images. The learned features are robust to the size of the original labels, such as pop-

ulation density, age, education, income, etc. We present a comprehensive evaluation

of the model based on a rich set of data from a developed country, South Korea, and

demonstrate its potential use in a developing country, Vietnam. The overall architec-

ture of READ is illustrated in Figure 5.4

4.1.1. Model

We first state the problem. Let dij be the j-th satellite imagery of district i ∈ U , where

U is the complete set of districts in a country. Let Di be the set of satellite imagery of

district i. Since districts can be of any shape and size, the number of satellite images

3This subsection is adapted from our work Han et al. (2020a).
4The code is released at GitHub. https://github.com/Sungwon-Han/READ

https://github.com/Sungwon-Han/READ
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Figure 5: Overview of READ Model

Note: Our model operates in four steps: (Step-1) training embedding via semi-supervised learning and
transfer learning, (Step-2) Data Pruning, (Step-3) dimensionality reduction, and (Step-4) calculating the
embedded spatial statistics and conducting regression for validation.

in Di varies from one district to another. We define this number for district i as ni, i.e.,

dij ∈ Di where 1 ≤ j ≤ ni. Then, the main problem is defined as follows:

Problem definition: Given an image setDi of district i, can we extract fixed-

sized (s) representations ri (i.e., ri ∈ Rs of any district i) and predict yi the

attribute of interest in the district i?

Embedding Training via Semi-supervised Learning

Network learning with supervision was used to extract meaningful information, so-

called embeddings, from satellite imagery. Embedding is the learned representation

of a given input, and it can be extracted from the network’s hidden layer. To train

the network with its embeddings, we constructed a labeled custom dataset (C) that

includes 1,000 randomly selected satellite images and employed the following three

labels directly related to a degree of urbanization: urban, rural, and uninhabited. We
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hired four annotators to obtain the labels of the images. We integrated all annotators’

decisions as soft labels (i.e., average votes), which were then used to build a classi-

fier that divides satellite images into three classes. However, obtaining reliable labels

for each satellite image tile was a time-consuming task. Here, a key challenge was

the relatively small number of labeled data, which was addressed by adapting a semi-

supervised learning approach.

Semi-supervised learning aims at training classifiers based on a small amount of

labeled data and a large amount of unlabeled data. Mean Teacher (Tarvainen and

Valpola, 2017), which is a powerful model in this domain, utilizes unlabeled data to pe-

nalize predictions that are inconsistent between the student and teacher models. This

regularization technique can provide smoothing in the decision boundary for a robust

and accurate forecast. We used the Mean Teacher architecture with the ResNet18 back-

bone for training. In addition to semi-supervised learning, we concurrently adopted

transfer learning. Transfer learning is a learning technique that utilizes knowledge from

another dataset to solve the main task. Knowledge gained from a similar dataset helps

efficient training and prevents the model from overfitting. Following the idea, we first

pretrained the CNN model with the ImageNet dataset (Deng et al., 2009), and then use

the pretrained model as an initial student network in the Mean Teacher model.

To determine whether the trained classifier extracts essential features, we visualized

sample images into three-dimensional space by reducing the embedded vectors by

PCA. Figure 6 displays the extracted features in the reduced vector space of sample

images of various urban and rural areas. Here, the rural and urban images are separated

and aligned well in the virtual direction (i.e., red and blue arrows). Furthermore, these

virtual axes represent the degree of urbanization. The left-hand side of the picture

shows two satellite image tiles. Both tiles have rural characteristics, and the images

that seem to contain a smaller human population are positioned further toward the

blue arrow (i.e., tile “2” seems less urbanized than tile “1”). The image tiles on the

right-hand side contain capture more populated areas. Tiles “3” and “4” that are toward
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Figure 6: Graphical Representation of an Embedded Space: Urban vs. Rural

Note: This embedded space analysis shows that rural images (blue) are well separated from more urban
images (red). As we observe images from anchor points 1 to 2, the de-urbanization trend becomes more
pronounced for the blue cluster. In contrast, as we observe images from anchor points 1 to 4, the degree of
urbanization becomes more intense for the red cluster.

the end of the red arrow show a highly urbanized cityscape, whereas tiles “1” and “2”

contain fewer residential areas. This figure demonstrates our model’s strength in its

ability to learn high-level features and align satellite images along these virtual axes.

Data Pruning

According to the Global Rural-Urban Mapping Project, only 3% of the land cover is an

urban area, and approximately 40% of the land is an agricultural area (Doxsey-Whitfield

et al., 2015; Foley et al., 2005). The remaining uninhabited area accounts for the most

considerable portion of the earth. Since such regions do not show human artifacts,

they could act as noise when extracting representations related to human activities. We

built a CNN classifier by filtering areas that are probably uninhabited. For the training,

we reused a custom dataset that included 1,000 randomly selected satellite images. Of

the initial 96,131 images, 51,618 (53.702%) images were removed in this manner.

Dimensionality Reduction of Embedding

The next step reduces the dimensions from the final layer in ResNet18 into smaller

sizes. Since our goal is to predict attributes of interest yi and obtain a unique rep-

resentation from a pruned image set D̂i across districts (i.e., n = 230 administrative

districts), we aimed to produce a dimension size vi smaller than the number of districts
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n to avoid overfitting. We implemented a principal component analysis (PCA) to reduce

the dimensions of the embedded features vi, which appears in the center of Figure 5.

Presenting the Embedded Spatial Statistics

This final step addresses the challenge arising from the varying input size in which

a different number of image tiles define districts. Previous studies in a different do-

main have attempted to address such arbitrary input length problems via preprocess-

ing techniques, such as adding sequence padding or recurrent neural network-based

learning (Yang et al., 2016; Hochreiter and Schmidhuber, 1997). However, these meth-

ods cannot resolve the substantial differences in input lengths typical in demographic

research. The smallest district could be covered by fewer than ten image tiles, whereas

the largest district requires more than hundreds of tiles, resulting in orders of magni-

tude difference.

We present a technique to summarize any length of image features into a fixed set of

vectors. Let g be the composition of the fine tuned feature extractor and k (1 ≤ k ≤ 10)

be the resulting principal components. All images dij in D̂i are transformed to v′j ∈ Rk

by g. Let the matrix of the final embedded vectors from district i be Ri ∈ Rni×k.

To produce a fixed-length embedding from vast geographic areas, we propose to

utilize the following descriptive statistics: (i) the mean µ, (ii) the standard deviation

σ, (iii) the number of satellite images of a district n, and (iv) Pearson’s correlation of

the dimensionally reduced features ρ. These four quantities are fundamental embed-

ded spatial statistics capturing the observation that satellite images of areas with geo-

proximity exhibit similar traits. Descriptive statistics represent data by central tendency

(mean, median, and mode), dispersion (variance, standard deviation, and skewness),

and association (chi-square and correlation). The proposed quantities are descriptive

statistics representing satellite images that belong to the same district.

Finally, cross-products of features were added to consider interactions to enrich the

information regarding unknown embedded space distributions. These complete sets

of features were learned per district i, as illustrated in the bottom part of Figure 5 and
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became a fixed-sized representation ri. To predict the yi value for district i, we used ri

to fit a regressor.

4.1.2. Data

This study utilizes the following data: regional-level demographics and high-resolution

World Imagery satellite images. We chose South Korea as a representative developed

country for training the model. Then, among all available satellite images of South

Korea, we further identified those in which at least three vertices of an image tile belong

to the polygon representing the boundaries of each district. This heuristic is simple

but reasonable for addressing various polygon shapes. In total, 96,131 satellite images

(256 × 256 pixels) of 230 South Korean districts were collected this way. The utilization

of all image tiles per district distinguishes our work from those of others, c.f., previous

studies used a fixed set of satellite images. For example, a seminal study conducted in

African countries used 100 randomly chosen image tiles over 10x10 km2 areas (Jean et

al., 2016).

4.1.3. Results

Performance Evaluation and Ablation Study

We conduct a set of experiments. The first evaluation takes advantage of the population

demographics by dividing them into a training set and a test set in an 80–20 ratio. 4-fold

cross-validation is applied to the training data set to tune the model’s hyperparameters,

such as the PCA dimensions and the regularization term in the cost function.

We implemented nine baselines to evaluate. Nightlight uses the districts’ total light

intensity from nighttime satellite imagery to predict economic scales (Bagan and Yam-

agata, 2015). A regressor was built and trained to obtain the sum of nightlights in each

district. Then, Auto-Encoder extracts compact features as step-2. An autoencoder is an

unsupervised deep learning algorithm that does not need any label information. The

model aims to learn an approximate identity function to construct an output similar
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to the input while limiting the number of hidden layers. No-Proxy is identical to the

proposed model but lacks any knowledge transfer from the proxy dataset. This model

was pretrained only with the ImageNet dataset and, hence, can demonstrate the value

of the custom dataset.

To verify the effectiveness of READ compared to a well-known model (Xie et al.,

2016), we trained JMOP (Jean Model with Our Proxy) which is a combination of two

models. First, we use a proxy that predicts rural, urban, and inhabited classes in the

same method of READ. Then, we summarize the features and use them to predict with

an identical set of model (Xie et al., 2016). Finally, SOTA is the best known grid-based

approach for population density prediction (Facebook, 2019). The implementation

details of this model are not published, but the prediction results on each arc second

block (approximately 30× 30m2) are shared online. We could aggregate the published

grid-level data across districts and regress such data with ground truth statistics. The

four remaining baselines are ablation studies that remove each feature from READ.

Table 1: Model Prediction Performance Results and Ablation Study

Model MSE R-Squared

Nightlight 0.4254±0.0664 0.6133±0.0635

Auto-Encoder 1.6242±0.3445 0.6347±0.0823

No-Proxy 0.2800±0.1118 0.7359±0.1117

JMOP 0.4448±0.0998 0.8985±0.0253

SOTA - 0.9231

READ w/o µ 0.2612±0.0632 0.9429±0.0155

READ w/o ρ 0.2165±0.0596 0.9527±0.0140

READ w/o n 0.1921±0.0471 0.9579±0.0119

READ w/o σ 0.1902±0.0592 0.9586±0.0130

READ 0.1761±0.0383 0.9617±0.0090

Note: The performance tests were made for prediction of population density.
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All models were trained with an 80–20 train-test ratios and 4-fold cross-validation.

XGBoost (Chen and Guestrin, 2016) was used to enhance prediction accuracy. The

models were evaluated 20 times with a randomly split dataset. Table 1 reports the

mean and standard deviation of the predictions. READ outperforms all of the nine

baselines in both the R-squared (R2) and mean squared error (MSE) values. Our model

even outperforms the current state-of-the-art (SOTA) approach, which is (Facebook,

2019). We find that transfer learning from the custom land cover dataset helps produce

a more meaningful embedded, by distilling knowledge associated with urban and rural

classifications. The increased prediction quality demonstrates this finding against two

models: No-Proxy and Auto-Encoder.

Furthermore, the quality gain over JMOP indicates that the summarizing technique

of READ contributes massively to the performance gain. We perform an ablation study

to examine the importance of our model components. Ablation study refers to the anal-

ysis that removes a particular component of the model and investigates how it affects

overall performance. The ablation study shows that removing any of the descriptive

statistics lowered the performance, indicating that n, µ, ρ, and σ all make a meaningful

contribution.

Evaluation Over Broader Scales and Countries

The final evaluation reports predictions of a set of socioeconomic measures by READ.

All values are log-scaled, and XGBoost is used. The average R2 of 20 trials of prediction

of the study area is shown in Table 2. The second column shows precise predictions of

READ applied to South Korea to predict the population density and its subclass divided

by age groups (R2 > 0.95). Predictions on income per capita are 0.76 for R2. Finally,

two demographics in the household category show an extreme difference in their pre-

diction quality: While the household count per square kilometer reports the highest

R2 of 0.9664, the average household size reports the lowest R2, i.e., 0.6181, among the

socioeconomic measures.

The high prediction capability of READ may is due to the custom dataset built from
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Table 2: Prediction Performance for South Korea and Vietnam

Target variable South Korea Vietnam

Population density 0.9617 0.8863

Population density by age 0-14 0.9520 0.8756

Population density by age 15-29 0.9570 0.8791

Population density by age 30-44 0.9575 0.8881

Population density by age 45-59 0.9624 0.8804

Population density by age 60+ 0.9654 0.8731

Household count 0.9664 0.8896

Household size 0.6181 0.4460

Income per capita 0.7603 0.6822

Note: The highest R2 value for each country is highlighted in bold.

the same country (see step-1 in Figure 5). To test its applicability to another country,

Vietnam, we gathered 226,305 satellite images and its socioeconomic measure data.

Then, we applied the model learned from South Korea to predict the socioeconomic

measures of Vietnam. Table 2 shows the prediction results. Predictions on population

densities show surprisingly highR2 values, averaging at around 0.88. This is despite the

model being trained solely on data from a different country.

The above exercise results demonstrate that the learned spatial representation of

READ successfully captures general indicators of socioeconomic measures that extend

beyond a single country use. However, it is plausible that the strikingly high predic-

tion performance across South Korean and Vietnam is because both countries exhibit

similar economic growth pathways and demographic transition (McNicoll, 2006).
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4.2. Measuring Economic Development Under Absence of Ground-truth

Data5

To overcome the lack of economic data to be used as ground-truth, we developed a

deep learning model that learns from high-resolution satellite images to rank relative

scores of economic development without any labeled data. Specifically, we apply metric

learning to score relative economic activities, which avoids the use of ground-truth

economic data. Metric learning aims to define a task-specific metrics in a supervised

manner from a given dataset. Our metric learning algorithm learns to score satellite

images for the relative economic development level measured by urbanization. Our

deep neural network first clusters images based on visual features and then defines

ordered and paired sets of clusters, i.e., a partial order graph (POG). The POG, an in-

put to the metric learning, contains the information on whether a specific cluster is

more urbanized than other clusters. Trained with the constructed POG, our algorithm

assigns a score to each satellite image in the final step.

The POG is an essential element in our approach, addressing the limitations of the

existing methods. First, since a POG can be generated either by readily available data or

light human annotation, our model can be applied to the cases without labeled data.

That is, our model can be used both for developing economies where labeled data is

limited and for developed economies where grid-level census data are not gathered

frequently. Second, since the POG is an interpretable input to our deep learning algo-

rithm, it helps us to understand the final scores that the algorithm produces. We believe

our approach makes one step toward resolving the Black Box problem.

Our model operates in three stages. The first stage (siCluster) uses an entire collec-

tion of satellite images of a target country and clusters them by a deep learning-based

unsupervised learning and transfer learning. siCluster uses labels for the general land

cover types, such as rural, urban, and uninhabited. The second stage (siPog) builds

a POG of the clusters from siCluster. The order of a POG captures the relative level of

5This subsection is adapted from our work Han et al. (2020b).
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economic development, for which we use urbanization as a comprehensive proxy, fol-

lowing the economics literature (Henderson, 2003). Two different methods to generate

a POG are suggested: the clusters are ordered either by humans (human-guided) or by

data such as population density or nightlight intensity (data-guided). Lastly, the final

stage (siScore) uses the POG from siPog to assign a differentiable score, via a CNN-based

model.

The proposed computational framework to measure sub-district level economic

development from satellite imagery without the guide of any partial ground-truth data

is novel and shows remarkable performance gain over existing baselines. Codes and

implementation details are made available at the project repository.6

4.2.1. Model Overview

Problem definition: Let I = {x1,x2, . . . ,xn} be the set of satellite images

for a given area. The main goal of the proposed model f is to compute a

score ŷi for each image xi (i.e., ŷi = f(xi)) that well represents the economic

development level yi. We assume ground truth values of yi are unknown at

the training phase.

As a solution, we propose a weakly-supervised method to estimate relative scores

that highly correlate with the target variable yi, rather than predicting its absolute val-

ues directly. The method consists of three steps, which are described in Figure 7.

4.2.2. Clustering Satellite Imagery with siCluster

To generate scores that represent the urbanization level, one needs to know what kinds

of human activities capture such values. For distinguishing various human activities

from satellite imagery, we adopt DeepCluster (Caron et al., 2018), the deep learning-

based clustering that can efficiently handle the curse of dimensionality problem via

hierarchical architectures (Goodfellow et al., 2016; Krizhevsky et al., 2012).

6https://github.com/dscig/urban_score

https://github.com/dscig/urban_score
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(a) siCluster (b) siPog (c) siScore
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Figure 7: The Model Overview

Note: The overall architecture of the proposed model, composed of (a) siCluster for clustering satellite
images, (b) siPog for generating partial order graph (POG), and (c) siScore for training the scoring model
with POG.

DeepCluster has two limitations. One is the initial randomness; the model is af-

fected by the initial weights that can propagate through the training process. Another

is the lack of consistency in the class assignment; the model relies on the pseudo-labels

generated from its k-means clustering, subject to noise in data. As a result, DeepCluster

is not directly applicable to our problem, and the satellite grids are grouped according

to trivial traits such as RGB patterns (Caron et al., 2018; Ji et al., 2019). Our clustering

algorithm, siCluster, builds upon DeepCluster with two new improvements.

Improvement #1 from transfer learning: To give a good initial point for the encoder,

we constructed a labeled dataset for transfer learning that includes one thousand satel-

lite images with three labels: urban, rural, and uninhabited. We then adopted a semi-

supervised learning technique to train the classifier over the small set of labels and

massive amounts of unlabeled data. The Mean Teacher (Tarvainen and Valpola, 2017)

model, which penalizes the inconsistent predictions between the teacher and student,

is used.

Improvement #2 from consistency preserving: We added new loss terms to prevent

the model from learning trivial features. Suppose a given satellite grid xi and its cor-

responding encoded vector vi, i.e., vi = hW (xi). We then augment xi via common

techniques such as rotation, gray-scale, and flipping that do not deform the original

visual context. Let us call the augmented versions x̂i. Then, the distance between xi

and its augmentations x̂i in the embedding space should be close enough, compared
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with the distance between xi to other data points. We define the consistency preserving

loss to represent this invariant feature characteristic against data augmentation in the

embedding space. siCluster is trained by jointly optimizing the negative log-likelihood

loss and reducing the Euclidean distance between the input and its augmentations on

embedding space (Eq. 1).

Lecp =
1

|B|
∑
i∈B
|| hW (xi)− hW (x̂i) ||2 (1)

4.2.3. Constructing Partial Order Graph with siPog

Images within each cluster share similar visual contexts that likely represent a similar

level of economic development. The second step of the algorithm aims at ordering

these identified clusters. The partial order graph (POG) is an efficient representation

showing the order across different clusters while ignoring any within-cluster difference.

We generated a POG in the order of economic development. Here, development refers

to an economic transition from agriculture to manufacturing and service industries,

which tend to cluster in more urbanized areas (Henderson, 2003). When two clusters

showed a similar level of development, they were placed at the same level without

any strict ordering between them, as illustrated in Figure Figure 7(b). Below are two

strategies of siPog.

Human-guided Method

We first considered the human-in-the-loop design and asked human annotators to

sort clusters manually. Both experts and laypeople participated in this ordering task.

Annotators compared clusters and identified relative orders of clusters by examining

the provided grid images. Clusters were ordered and connected as a graph by their

presumed economic development level. Cluster pairs whose development levels were

judged to be indifferent were placed at the same level within the POG. The strength of

this method is its lower cost than the full comparison of images.

Data-guided Method
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POG can also be generated without human guidance. While grid-level demographics

are costly to obtain, ample resources can be used as a proxy, such as Internet search

results. Proxy data are aggregated at a high-level (e.g., city or province) or are not

accurate. Below we demonstrate one example, nightlight luminosity.

Nightlight luminosity is the light intensity measured in nighttime satellite imagery.

This publicly free data is only available at low resolution. We first extrapolate the night-

time images to match the size of the daytime satellite grids. Once we identify all the

extrapolated nighttime grids corresponding to each cluster, nightlight intensity was

averaged for each cluster. We perform a two-sample t-test with a threshold 0.01 to

detect any significant intensity difference between every two clusters and consequently

create an edge between them if two clusters are sufficiently comparable.

4.2.4. Computing Scores with siScore

Now given the relative orders of clusters in the POG, the next task is to assign a score

between 0 and 1 to every cluster using the CNN-based scoring model f . The model

automatically detects which features of satellite imagery (belonging to clusters) deter-

mine the urbanization score via supervised learning. We adopt the list-wise metric

learning method with our unique structures for the scoring model, siScore. During

training, we limit the range of values of the scoring model from 0 to 1 by clamping

smaller or larger values.

List-wise Metric Learning

The only knowledge from POG is the orders of clusters, but not the orders of individuals

images. The third step, siScore, use the POG structure in learning scores of every satellite

grid in the following way. We first extract every ordered path from the POG. After choos-

ing one path from them, an equal batch size of ns images are sampled from each cluster

Ck along the selected path. Since the selected path is already ordered, the cluster’s

actual rank in the path is aligned. The scoring model f trains to match two ranks:

generated rank from the model score and actual rank based on POG. The Spearman
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correlation evaluates how well given two variables are related as a monotonic function

in terms of measuring rank correlation. Accordingly, we calculate and maximize the

estimated ranks’ Spearman correlation against the actual rank to train the model.

The Spearman correlation is not differentiable and thereby unsuitable due to the

back-propagation nature of deep learning. Based on recent advances in computing

ranking losses, we use a simple approximation method suggested in Engilberge et al.

(2019) to mimic the sorting algorithm and make the algorithm differentiable to use the

Spearman correlation as a loss directly.

Variance Regularization

Finally, we added a loss to regularize each cluster’s score distribution to satisfy the small

score variance within each cluster. With small variances in score distributions, the

overlapping part between two adjacent score distributions, where the flipped results

are brought, would be reduced. The average variance of score distributions of every

cluster in the selected path Pj is minimized as a regularization loss:

Lvar =
1

|Pj |
∑

Ci∈Pj

V ar(f(XCi)), (2)

where XCi indicates the batch images in cluster Ci and V ar denotes the function that

calculates the variance of the given score list.

Finally, loss for maximizing Spearman correlation (Ls) and loss for variance regu-

larization (Lvar) are concurrently optimized to train siScore with the weight parameter

α as in Eq. 3.

Lscore = Ls + α× Lvar (3)

4.2.5. Data

Satellite Imagery

We use the World Imagery dataset from ESRI in the zoom level (Z) 15 with 4.7m-resolution,
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which can distinguish individual buildings as well as other artifacts such as roads. Each

tile contains three spectral bands (RGB), and the images are cloud-free for most of the

area. We consider data from three countries: South Korea, Malawi, and Vietnam, where

images are from between 2015 and 2017. Nighttime luminosity is available for public

use from the NASA Earth Observing System Data and Information System with the best

resolution at Z = 9 due to its blurring effect.

Ground-truth Dataset

We use two grid-level ground truth labels: Facebook population and gross floor area.

Since the unit area of the Facebook population is smaller than our grid size, we sum

up the estimated population density of each unit located inside the grid for evaluation.

The gross floor area is computed from GIS data and detailed information on building

shapefiles from the official data released in South Korea.

4.2.6. Model Evaluation

We evaluated our model performance on the South Korea dataset. In South Korea,

the optimal number of clusters was found to be 21 based on grid search. The POG

with discovered clusters was generated as follows. Human-guided method involved

annotations from five experts and five locals, where both the average and the maxi-

mum performance are reported. For data-guided POG, we utilized grid-level nightlight

intensity data (Nightlight-guided). Table 3 reports the correlation values between the

estimated economic development and two kinds of ground truth labels: Gross Floor

Area and Population. Both Spearman and Pearson correlations were calculated on the

log-scaled ground truth values. All models produced scores of solid correlation (i.e.,

above 0.7) with ground truth labels, even when such information was not available

during training. The best performance comes from the human-guided model, reaching

0.851 and 0.795 in Spearman correlations.

Seven baselines were implemented for comparison, which used ResNet-18 as the

backbone network. (1) Nightlight-only uses the nightlight intensity for measuring eco-
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Table 3: Model Performance Test Results for South Korea

Method
Gross Floor Area Population

Spearman Pearson Spearman Pearson

A

Human-guided (Avg) 0.825 0.787 0.764 0.766

Human-guided (Max) 0.851 0.800 0.795 0.778

Nightlight-guided 0.846 0.801 0.794 0.789

B
Nightlight-only 0.664 0.655 0.728 0.731

Pairwise (Human) 0.651 0.610 0.300 0.302

C
K-means 0.434 0.587 0.451 0.557

DeepCluster 0.618 0.559 0.532 0.551

D

Triplet (POG) 0.807 0.754 0.768 0.726

Pairwise (POG) 0.825 0.759 0.767 0.739

w/o Score model 0.737 0.675 0.678 0.673

A : Our model, B : Baselines, C : siCluster ablation, D : siScore ablation

Note: Two grid-level statistics, gross floor area and population, are used for evaluation criteria.

nomic development. We also experimented with human-annotated labels (2) Pairwise

(Human) that indicated the relative rank of four thousand random image pairs. Three

annotators with domain knowledge of target countries were asked to choose which

image in pair showed higher economic development, and their decisions were aggre-

gated. Training then used the pairwise loss. This model is a simple method that directly

learns from the human-annotated orderings. These baselines are less effective than our

models.

The next two baselines were ablations for siCluster. We replaced this module by

the conventional (3) K-means clustering algorithm and the original (4) DeepCluster

algorithm. The remaining three were ablations for siScore. The labels for (5) Triplet

(POG) and (6) Pairwise (POG) were generated by an identical POG instead of human an-

notation. When generating labels from the POG, cluster pairs were randomly selected,

and images from each cluster formed pairs. The order of chosen clusters was consid-

ered as a label for these pairs. Triplet labels included anchor, positive, and negative

samples. The model was trained to generate a similar score between the anchor and
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Figure 8: Results for Malawi and Vietnam

Note: Two models (Human and Nightlight) are compared against the conventional
nightlight model (Baseline). The red lines indicate the boundaries for ‘weak,’ ‘moderate,’
‘strong,’ and ‘very strong’ correlations from the bottom.

positive data points while producing different and order-preserving scores between

the anchor and negative data points. We also proposed baseline (7) without the score

model, which gives a scalar value that preserves POG’s orders to each cluster instead of

a deep learning-based score model. Nightlight-guided POG is used for these baselines.

4.2.7. Application to Developing Economies

We conducted additional experiments on two developing economies, Malawi and Viet-

nam, with a total of 64,303 and 226,305 satellite images for each country, respectively.

All models were trained in the same manner as mentioned earlier, except for the cluster

count nt in siCluster. The optimal nt was found to be 7 for Malawi and 11 for Vietnam

based on grid search.

Figure 8 compares the performance of the models, evaluated by the grid-level Face-

book population data (Facebook, 2020). Our model repeatedly outperforms the con-

ventional nightlight model for developing economies. In the case of Malawi (i.e., the

poorer of the two), our models improve the correlation to the Facebook data from

‘weak’ to ‘strong’. Our model’s advantage is attributed to the use of daytime imagery,

which overcomes the light saturation effect in nighttime satellite images. Moreover,

nighttime satellite imagery is known to be erroneous for areas of extreme poverty since

the light intensity is very low and varies little in these areas (Jean et al., 2016).

Next, Figure 9 shows the transferability of the model when it is trained on one coun-
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Figure 9: Cross-country Performance Test of a Trained Model

Note: Spearman correlation with ground-truth population for models that are trained in one country and
evaluated in another country. Results from two designs of POG generation are visualized respectively.

try’s data and tested on another country’s data. As one might expect, training and test-

ing a model in the same country (i.e., the diagonal line) shows the highest performance

in most cases. South Korea showed consistently above 0.6 Spearman correlation even

when the model was trained on Malawi or Vietnam data, for all Human and Nightlight

strategies. We speculate that a comparatively broad spectrum of urbanized patterns in

South Korea contributes to this result. This may be linked to the fact that South Korea

data required the highest number of clusters (21) compared to the other two (7 and 11),

again likely because there were many more distinctive grids with the sufficient numbers

of images in each cluster, showing vastly broad economic spectrum. In contrast, the

poorest economy (i.e., Malawi) images may contain smaller variations across the grid

images.

5. Conclusions and Our Future Agenda

5.1. Model Improvement

Our models presented in the previous section have much room for improvement. First

of all, we are currently working on the models’ robustness check: whether the model

performance is sensitive to various design choices, including the zoom level of satellite



MACHINE LEARNING AND SATELLITE IMAGERY 35

images, construction of POG, and tunable parameters. Second, we plan to resolve

the lack of linearity in the siScore model. Scores generated from the model cannot

be summed, which implies that the model cannot evaluate relative scores for the ar-

bitrarily sized area beyond the fixed grid-level satellite imagery. If measurements are

on a logarithmic scale, merely summing up the measurement values of satellite im-

ages would result in the wrong evaluation. We are currently modifying the model to

introduce the mixup techniques (Zhang et al., 2017) to guarantee the linearity. Fur-

thermore, to improve our estimates’ precision at the grid level even further, we are

currently developing a new model that utilizes satellite imagery both at the grid and ad-

ministrative district levels to adjust for cross-district level differences. Our preliminary

analysis shows that the new model’s estimates predict population, purchasing power,

and energy consumption with R2 around 0.84-87, which is more than a 40% increase

in precision from the earlier models.

5.2. Validation of Proxy Measures Produced by Satellite Imagery

Another crucial future agenda in using proxy measures produced by satellite imagery

is the validation of these measures. Which aspect of economic activity do these proxies

capture? For example, night light data’s economic variables have an obvious limitation

that it only shed light on activities happening at night. While day time satellite images

can overcome this limitation, they may not capture economic activities taking place

inside of buildings. How much is our estimation from the proposed models, which are

based on urbanization, related to income, production, asset, or consumption? Can we

modify the models differently for each target measure? Can our measurement be used

to detect changes? If yes, what would be the ideal or minimum time frame needed

for a change to be observable from the view above? So far, few systematic studies are

investigating how we can interpret proxies produced by remote sensing data. In future

research, we plan to identify elements of economic activity strongly associated with

our proxies. Establishing the validity of proxy measures generated by satellite imagery



36 AHN ET AL.

is crucial for accepting these remote-sensing data as credible sources for economic

measurement by social scientists.

5.3. Alternative Measure for Regional Inequality

Measuring inequality is challenging. For example, one of the most commonly used

inequality measures, the Gini index, requires reliable information about the citizens’

income in a country. In many countries, especially LDCs, official statistics on income

are often inaccurate and does not reflect sizable informal economic activities. For

example, in sub-Saharan Africa and Latin America, the informal economy accounts

for almost 40% of GDP during 2010-2014 (Allard, 2017). Also, authoritarian regimes

may have some incentives to inflate their GDP and to understate inequality (Martinez

2019).

It may be possible to generate a remote-sensing data-based Gini index by generat-

ing alternative measures of income or economic activity using satellite images through

our proposed machine learning methods. Besides, we can augment official income

data with our satellite image-based income proxies to reduce measurement errors to

generate a revised Gini Index. Our methods can also provide sub-national measures of

inequality, which may be of even greater interest to policymakers.

More accurate measures of inequality can be useful for policy targeting. The current

COVID-19 pandemic reminded us of the importance of prompt policy responses to

those in need faced with adverse shocks. Targeting individuals or regions requires up-

to-date information. However, official statistics often take years to be published. Even

in South Korea, a relatively more affluent country in the world, the most recent year of

provincial-level gross regional domestic product available is 2018. Remote sensing data

combined with the application of machine learning methods not only contribute to

social scientists and policymakers searching for systematic data on economic activities

but also equip policymakers with valuable information to formulate policies aimed to

remedy inequality and economic distress.
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5.4. Application to North Korean Economy

We have scarce information about North Korea’s economy and how the highly central-

ized, planned economy works. Despite the importance of understanding economic in-

centives and resource allocation in both the economy’s public and private sectors, most

information coming out of the country remains mostly unconfirmed. Notably, North

Korea does not publish or disseminate any official statistics on their economy. More-

over, economic activity in the countryside, where 90 percent of the population resides,

is deliberately out of sight of the international community. For instance, visitors are

required to stay only in the capital city and are always under surveillance. This poses a

crucial problem for the international community, mainly when a consistent collection

of economic data is essential for understanding North Korea’s transition economy and

its foreign policies. Thus, there are potentially substantial benefits for using deep learn-

ing to predict socioeconomic patterns and trends of North Korea. Below we broadly

discuss several research questions regarding the North Korean economy that we plan

to explore in the future using machine learning and satellite imagery.

Our first question is how significant events, such as a regime change, affect eco-

nomic development in a highly centralized, planned economy. We plan to focus on spe-

cific significant events that had likely influenced social and economic policies. For ex-

ample, one prominent event that involved a change in leadership was the sudden death

of Kim Jong-il on December 17, 2011. Because of the highly centralized power structure

in North Korea’s political system, a change in leadership can induce significant resource

allocation shifts across industries and regions and cause changes to economic devel-

opment policies. For instance, multiple sources reported that after coming to power,

Kim Jong-un announced a market reform policy, known as the May 31 measures of

2014. The reform includes partial decollectivization of farms and the privatization of

manufacturing firms (Gray and Lee, 2017). Our empirical approach is to conduct an

event study analysis to assess how market reforms affected North Korea’s urban and

rural economic development, where we obtain economic measures through satellite
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images.

Another related question that we seek to explore is how local market institutions

affect economic activities and urban expansion. This is based on the observation that

since the late 1990s, large farmers’ markets (known as Jangmadang) have been set up

across the country, where vendors sell a wide variety of products, including rice, vegeta-

bles, alcohol, clothing, cosmetics, and electronics (Park, 2009; Silberstein, 2015; Choe,

2017). Before the establishment of Jangmadang, the economy relied on a public distri-

bution system, and private transactions of food and services were strictly prohibited.

The economic reform in 2002 recognized Jangmadang as a place where private market

transactions are legal, and the reform in 2014 further encouraged market activity by

incentivizing entrepreneurs and companies to engage in market trade. These policy

reforms are in many aspects similar to those introduced in China’s market reform in

the late 1970s and Vietnam’s Doi Moi policy reform in the mid-1980s. We have already

identified locations of local markets in North Korea. Combining this information with

machine-learning predictions on economic activities, we can analyze the relationship

between market institutions and economic growth.

Since launching its first nuclear weapons test in 2006, the United Nations Security

Council has passed nearly a dozen sanctions against the country (Davenport, 2016).

Individual countries, including the US, Japan, South Korea, and the European Union,

have also imposed a series of sanctions against North Korea. These sanctions mainly

restrict North Korea’s military and economic sectors by prohibiting trade of military

supplies, export of raw minerals, and import of crude oil and refined petroleum prod-

ucts. Proponents of tighter sanctions argue that these sanctions pressure the country to

abandon its nuclear program in exchange for economic benefits that could invigorate

its impoverished economy (Haggard and Noland, 2010). On the other hand, Lee (2018)

uses nightlight luminosity data of North Korea to suggest that international sanctions

increased regional inequality. We plan to explore this question using high-resolution

daytime satellite images, which can potentially avoid the well-known issue of nightlight
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luminosity data showing minimal variation in rural areas of developing countries.

5.5. Application to the Least Developed Countries

Finally, we plan to apply our approach to collect economic data in the Least Devel-

oped Countries (LDCs) in Sub-Saharan Africa and Asia. This is because collecting high-

quality socioeconomic data is extremely costly and challenging for countries with poor

infrastructure. According to the United Nations, a country is classified as LDC if it

has low Gross National Income, is low on human development indicators (nutrition,

health, and education), and is economically vulnerable. In Asia alone, there are nine

LDCs: Afghanistan, Bangladesh, Bhutan, Cambodia, East Timor, Laos, Myanmar, Nepal,

Yemen. With accurate and prompt measurements of economic and living conditions,

we expect government agencies and policymakers to fight poverty and foster economic

development effectively.
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