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e Job loss has long lasting and persistent detrimental effects on workers' earnings
e Many policy interventions depend on severity of earnings losses

e Unemployment insurance

e Firm bail-outs

e Short-time work subsidy schemes
e = Important to predict long-term earnings losses at the onset of recessions

& identify high loss individuals
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Motivation

e Job loss has long lasting and persistent detrimental effects on workers' earnings
e Many policy interventions depend on severity of earnings losses

e Unemployment insurance

e Firm bail-outs

e Short-time work subsidy schemes
e = |Important to predict long-term earnings losses at the onset of recessions

& identify high loss individuals
[AThis paper
e Document changing composition of Covid-19 job losses in Austria
e Use machine-learning to predict earnings losses for Covid-19 job losses

e Contrast results to Great Recession
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e Implement a machine-learning algorithm (Athey et. al. 2019) to DiD setting:
= Estimate causal cost of job loss as a function of worker and job characteristics

e Train machine-learning algorithm on universe of Austrian social security records from
1984-2019

e Composition of Ul claimants during Covid-19 (until August 2020) compared to Great
Recession is:

1. worse paid, more female
2. from younger, smaller, and lower paying firms

e Predicted labor market outcomes compared to Great Recession:
1. Similar employment losses

2. Lower earnings & wage losses
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e Effects of job loss:
Jacobson et al. (1993), Davis and Von Wachter (2011), many more

e Composition of Covid-19 job losses
(Dingel and Neiman, 2020; Mongey et al., 2020; Alstadsater et al., 2020; Alon et al.,
2020; Adams-Prassl et al., 2020; Cajner et al., 2020; Kahn et al., 2020; Coibion et al.,
2020), many more

e Machine-Learning in economics:

Gulyas and Pytka (2020), Athey et al. (2019), and many others
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Change in New Ul Claims
Percentage Change relative to Pre-Recession
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Composition of Ul claimants

Gulyas and Pytka (2020) show substantial heterogeneity in earnings losses across

individuals

Covid-19 Ul pool: more low paid workers in bad matches, more female, more hotel&

restaurant, younger, smaller, worse paying firms

Ul pool very different compared to past recessions

= Will job-loss still have persistent long-term negative effects?
Use machine-learning, i.e. random-forest for DiD estimate (Gulyas and Pytka, 2020)
Trained on Austrian social security data 1984-2019

Machine-learning algorithm takes into account worker & job characeristics + business

cycle conditions

5/11



Prior to ) Prior to
Great Recession CoviD-19
Great Recession Covip-19
Pre-displ. Income (Euros) 33,281 35,229 33,255 26,600
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Prior to ) Prior to
Great Recession CoviD-19
Great Recession CoviD-19
Pre-displ. Income (Euros) 33,281 35,229 33,255 26,600
11-Year Earnings Losses
€ 191% 206% 183% 143%

(% of Pre-displ. Income)

6/11



Prior to ) Prior to
Great Recession CoviD-19
Great Recession CoviD-19

Pre-displ. Income (Euros) 33,281 35,229 33,255 26,600
11-Year Earnings Losses

rarning 191% 206% 183% 143%
(% of Pre-displ. Income)
11-Year Emp. Losses (Days) 439 476 494 478
Log Wage Losses 0.061 0.076 0.055 0.019
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Cost of Job Loss - Mass Layoffs
By Groups of Workers

Earnings (Euros) Employment (Days) Log-Wages
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= All Covid-19 characteristics are associated with lower losses
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Distribution of Wage Losses - Mass Layoffs Only
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Average long-term wage losses lower compare to "normal” times

But many workers still are facing high losses

e Can we target high loss workers?

(E.g. short-time work subsidies, firm bailouts, Ul top-ups)

= Derive algorithmic policy tree targeting workers with long-term wage losses
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Firm FE < 4.5

Age < 37.5
0
0.275
26.3%
Job Tenure < 6.5 Job Tenure < 5.5
0
0.496
7.5%
Region Firm FE >= 3.5 Region Firm FE >=9.5

0 0 0 0
0.186 0.428 0.346 0.000
18.8% 6.4% 8.4% 11%
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Conclusions

Estimate your own earnings losses:

e Document changing composition of Ul claimants

during Covid-19

Use machine-learning to predict long-term losses
e Lower expected wage losses

e Derive policy tree to target high loss workers

Link: https://gulyas-pytka.shinyapps.io/general_audience/
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