The Macroeconomy as a Random Forest

Philippe Goulet Coulombe

gouletc@sas.upenn.edu
University of Pennsylvania

November 9, 2020

1/17


mailto:gouletc@sas.upenn.edu

Final Destination

Modeling flexibly macro relationships without assuming what flexible means
first. Take something fundamental: a Phillips’ curve.

M%ap — 7Tt

The statistical characterization of "—" has forecasting, policy and theoretical
implications. Better get it right.

One way out is getting "—" from off-the-shelf nonparametric Machine
Learning (ML) techniques. But:

¢ Likely too flexible and wildly inefficient for the short time series we have.
® No obvious parameter(s) to look at — interpretation is fuzzy.

Another is assuming 71 = ‘Btutgap + stuff;. But:
® Rigid
® In-sample fit notoriously don’t translate in out-of-sample gains.

Solution: Generalized Time-Varying Parameters via Random Forests.
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(Machine) Learning B;’s

® [ propose Macroeconomic Random Forests (MRF): fix the linear part X; and
let the coefficients B; vary trough time according to a Random Forest.

F X
FRE

® The core "mechanical” modification wrt plain RF is fitting an ensemble of
trees which have a linear model in each leaf rather than a constant.

® MREF is nice "meeting halfway"

= Brings macro closer to ML by squashing many popular nonlinearities
(structural change/breaks, thresholds, regime-switching, etc.) into an
arbitrarily large S;, handled easily by RFE.

= The core output are B;’s, Generalized Time-Varying Parameters (GTVPs).

<« Brings ML closer to macro by adapting RF to the reality of economic time
series. MRF - RF if the linear part is pervasive (like in a (V)AR).
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Generalized Time-Varying Parameters
Why Trees Make Sense (in Macro/Finance)

® Let 71; be inflation at time £.
® t* is inflation targeting implementation date.
® Let g; be some measure of output gap.

Full Sample
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Generalized Time-Varying Parameters

® The general model is
ye = XiBt + €
Bt = F(St)
where S; are the state variables that determine time-variation.

¢ If we know the threshold variables (S; = [t, g;—1]) and values (c = [, 0]):
run OLS on subsamples.

¢ But we don’t. So we need an algorithm to find out:

~ min min ) (vt — XeB1)* + AllB1ll
J€T7, c€R | Pt pieljs; <c)

+min Y (v — XeBa)® + A B2l2 |-
P2 {tel|Sj>c}
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Generalized Time-Varying Parameters
Getting A Diversified Portfolio of Trees

Ingredients:

1. Let the trees run deep: even though that would surely imply overfitting
for a single tree, let each tree run until leafs contain very few observations
(usually between 1 to 5) to compute fi;.

2. Bagging: Create B nonparametric bootstrap samples of the data. That is,
we are picking [y; X;] pairs with replacement.

3. De-correlated trees: At each splitting point, we only consider a subset of
all predictors (7~ C J) for the split.

(M)REF prediction is the simple average of all the B tree predictions.

Why does it not overfit? See To Bag is to Prune, a spin-off paper.
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Generalized Time-Varying Parameters

Useful Additions: Random Walk Regularization + Inference

The above implements the prior B; ~ N (0, .).
However, Bt ~ N'(B;_1, .), i.e., time-smoothness, makes more sense.

Iimplement it via WLS with rudimentary egalitarian Olympic podium
weights w(f; (), where { < 1is a tuning parameter.

The splitting rule becomes

min min w(t; 0) (yr — XiB1 Z4A 112
g |7 3 0l00) = X Al

+min Y w(t0) (v — Xep2)® + Allall2 |-
Pyt
Inference: following (Taddy et al., 2015), interpret F as a posterior mean
of latent tree 7 which distribution is obtained by Bayesian Bootstrap.

® Crucial advantage: no additional computations required, quantiles computed straight
from the "bag" of trees.
® (Taddy et al., 2015)’s approach requires iid data. I propose a Block Bayesian Bootstrap.
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Forecasting
Setup

® Data: FRED-QD, the SW data set update by (McCracken and Ng, 2016),
260 series

® POOS period starts on 2002Q1 and ends 2014Q1. Expanding window
estimation from 1959Q3.

® Horizons: h € {1,2,4,6,8} quarters

® 6 variables of interest: GDP growth, Unemployment Rate (UNRATE)
growth, Interest Rate (GS1), Inflation (Alog(CPIAUCSL)), Housing Starts
(HOUST) and some spread (T10YFFM).

* Evaluation metric is RMSPE, ), ,, = \/ Yteoos (VY — yffhm)2
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Forecasting
Visualizing the distribution of RMSPE, , .,/ RMSPE,, ;, sz

MRF Restricted MRF | Traditional Nonlinear ARs

0.9

0.8

0.7

0.6

RF Tiny RF FA-AR ARRF  FA-ARRF VARRF Tiny ARRF RF-MAF  AR+RF TVP-AR  STAR SETAR

9/17



Forecasting
RMSPEyR j,,;m / RMSPE R j, AR in more detail

I BT TR

0.8
0.6 1
0.4 1
0.2
0.01

. FA-ARRF = FA-AR . RF-MAF . STAR

10/17



Forecasting

What do forecasts look like for UR? — Réos 80% forh =1
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Analysis
GTVPs of the one-quarter ahead UR forecast
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Figur €. GTVPs of the one-quarter ahead UR forecast. The grey bands are the 68% and 90% credible region. The pale orange region is the OLS coefficient
=+ one standard error. The vertical dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.
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Analysis

Dynamic B; Learning

Forward-Looking Factor
0.04

0.03
0.02

-0.20

0.01
0.00

-0.01

-0.40

-0.02
-0.03

-0.04
-0.05
-0.06

-0.07

65 70 75 80 8 90 95 00 05 10 65 70 75 80 8 90 95 00 05 10

— GTVP — OLS — TVP — GTVP ex post — TVP ex post

Figure: Comparing TVPs and GTVPs, ex-ante and ex-post.
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Analysis
Cutting Down the Forest, One Tree at a Time (’yﬁf h=1 monthly)
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(a) Surrogate Model Replication (b) Corresponding Tree
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A more traditional Phillips” Curve
A la (Blanchard et al., 2015)

1.50

1.00

0.50

0.00

~SR GAP IMP
T = pt + Bty + Bopuy™ + B3yt + €

Short-Run Expectations Weight Unemployment Gap Coefficient

Ty g

- o s v W

0.00
-0.50
65 70 75 80 8 9 95 00 05 10 15 65 70 75 80 8 9 95 00 05 10 15
— GTVP — TVP

15/17



A more traditional Phillips” Curve
What Goes Around Comes Around
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Conclusion

I proposed a new time series model that

1. works;

2. is interpretable;

3. is highly versatile;

4. off-the-shelf (R package is available);

Extensions/applications:

® VARs

® Conditional CAPM
® HAR volatility

® Anything goes

Try it with your favorite X; today!
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Dynamic Phillips” Curve Learning
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Appendix

DGP 3: Persistent SETAR
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Appendix

DGP 6: SETAR that morphs instantly in AR(2)

SETAR, ift<T/2

DGP 6 = e <1/
Plain AR(2), otherwise
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Appendix

A look at GTVPs under Different Contexts, when S; is large

Intercept
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Appendix

A look at GTVPs under Different Contexts, when S; is large
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Appendix

Misc

1. GTVPs > Random Walk TVPs since it implies an adaptive kernel rather
than a fixed one

® The intercept itself is a RF rather than a RW (e.i., a bad X; choice can be rescued)
® Less reliant (or not all) on t — less boundary problems (or none) when forecasting.

2. Compress lag polynomials S}}P ex-ante with Moving Average Factors

® Get MAFs by running PCA on the panel [S;_1; ... S;_p,] of P lags of variable j.
® Boost splits’ meaningfulness (not wasting splits on 12 individual lags)
® Reduce computing time
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Appendix
UR,h=1 )

Cutting Down the Forest, One Tree at a Time (y;
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Appendix

Cutting Down the Forest, One Tree at a Time (7y
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(a) Surrogate Model Replication
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