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Final Destination

Modeling flexibly macro relationships without assuming what flexible means
first. Take something fundamental: a Phillips’ curve.

ugap
t → πt

The statistical characterization of "→" has forecasting, policy and theoretical
implications. Better get it right.

One way out is getting "→" from off-the-shelf nonparametric Machine
Learning (ML) techniques. But:
• Likely too flexible and wildly inefficient for the short time series we have.
• No obvious parameter(s) to look at — interpretation is fuzzy.

Another is assuming πt = βtu
gap
t + stufft. But:

• Rigid
• In-sample fit notoriously don’t translate in out-of-sample gains.

Solution: Generalized Time-Varying Parameters via Random Forests.
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(Machine) Learning βt’s

• I propose Macroeconomic Random Forests (MRF): fix the linear part Xt and
let the coefficients βt vary trough time according to a Random Forest.

St βt yt
FMRF

FRF

Xtβt

• The core "mechanical" modification wrt plain RF is fitting an ensemble of
trees which have a linear model in each leaf rather than a constant.

• MRF is nice "meeting halfway"
⇒ Brings macro closer to ML by squashing many popular nonlinearities

(structural change/breaks, thresholds, regime-switching, etc.) into an
arbitrarily large St, handled easily by RF.

⇒ The core output are βt’s, Generalized Time-Varying Parameters (GTVPs).

⇐ Brings ML closer to macro by adapting RF to the reality of economic time
series. MRF � RF if the linear part is pervasive (like in a (V)AR).

3 / 17



Generalized Time-Varying Parameters
Why Trees Make Sense (in Macro/Finance)

• Let πt be inflation at time t.
• t∗ is inflation targeting implementation date.
• Let gt be some measure of output gap.

Full Sample

t < t∗

gt−1 < 0

πt = c1 + φ1πt−1 + εt

gt−1 ≥ 0

πt = c2 + φ2πt−1 + εt

t ≥ t∗

πt = c3 + φ3πt−1 + εt
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Generalized Time-Varying Parameters

• The general model is
yt = Xtβt + εt

βt = F (St)

where St are the state variables that determine time-variation.
• If we know the threshold variables (St = [t, gt−1]) and values (c = [t∗, 0]):

run OLS on subsamples.
• But we don’t. So we need an algorithm to find out:

min
j∈J − , c∈IR

[
min

β1
∑

{t∈l|Sj,t≤c}
(yt −Xtβ1)

2 + λ‖β1‖2

+min
β2

∑
{t∈l|Sj,t>c}

(yt −Xtβ2)
2 + λ‖β2‖2

]
.
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Generalized Time-Varying Parameters
Getting A Diversified Portfolio of Trees

Ingredients:

1. Let the trees run deep: even though that would surely imply overfitting
for a single tree, let each tree run until leafs contain very few observations
(usually between 1 to 5) to compute µ̂l.

2. Bagging: Create B nonparametric bootstrap samples of the data. That is,
we are picking [yt Xt] pairs with replacement.

3. De-correlated trees: At each splitting point, we only consider a subset of
all predictors (J − ⊂ J ) for the split.

(M)RF prediction is the simple average of all the B tree predictions.

Why does it not overfit? See To Bag is to Prune, a spin-off paper.
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Generalized Time-Varying Parameters
Useful Additions: Random Walk Regularization + Inference

• The above implements the prior βt ∼ N (0, .).
• However, βt ∼ N (βt−1, .), i.e., time-smoothness, makes more sense.
• I implement it via WLS with rudimentary egalitarian Olympic podium

weights w(t; ζ), where ζ < 1 is a tuning parameter.
• The splitting rule becomes

min
j∈J − , c∈IR

[
min

β1
∑

t∈lRW
1 (j,c)

w(t; ζ) (yt −Xtβ1)
2 + λ‖β1‖2

+min
β2

∑
t∈lRW

2 (j,c)

w(t; ζ) (yt −Xtβ2)
2 + λ‖β2‖2

]
.

• Inference: following (Taddy et al., 2015), interpret F as a posterior mean
of latent tree T which distribution is obtained by Bayesian Bootstrap.
• Crucial advantage: no additional computations required, quantiles computed straight

from the "bag" of trees.
• (Taddy et al., 2015)’s approach requires iid data. I propose a Block Bayesian Bootstrap.
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Forecasting
Setup

• Data: FRED-QD, the SW data set update by (McCracken and Ng, 2016),
260 series

• POOS period starts on 2002Q1 and ends 2014Q1. Expanding window
estimation from 1959Q3.

• Horizons: h ∈ {1, 2, 4, 6, 8} quarters

• 6 variables of interest: GDP growth, Unemployment Rate (UNRATE)
growth, Interest Rate (GS1), Inflation (∆log(CPIAUCSL)), Housing Starts
(HOUST) and some spread (T10YFFM).

• Evaluation metric is RMSPEv,h,m =
√

∑t∈OOS(yv
t − ŷv,h,m

t−h )2
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Forecasting
Visualizing the distribution of RMSPEv,h,m/RMSPEv,h,AR
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Forecasting
RMSPEUR,h,m/RMSPEUR,h,AR in more detail
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Forecasting
What do forecasts look like for UR? → R2

OOS 80% for h = 1
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Analysis
GTVPs of the one-quarter ahead UR forecast

Figure: GTVPs of the one-quarter ahead UR forecast. The grey bands are the 68% and 90% credible region. The pale orange region is the OLS coefficient
± one standard error. The vertical dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.
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Analysis
Dynamic βt Learning

Figure: Comparing TVPs and GTVPs, ex-ante and ex-post.
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Analysis
Cutting Down the Forest, One Tree at a Time (γINF,h=1

t,F1
, monthly)

(a) Surrogate Model Replication (b) Corresponding Tree
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A more traditional Phillips’ Curve
À la (Blanchard et al., 2015)

πt = µt + 𝛽1,tπ̂
SR
t + 𝛽2,tuGAP

t + β3,tπ
IMP
t + εt
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A more traditional Phillips’ Curve
What Goes Around Comes Around

πt = µt + β1,tπ̂
SR
t + 𝛽2,tuGAP

t + β3,tπ
IMP
t + εt
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Conclusion

I proposed a new time series model that

1. works;

2. is interpretable;

3. is highly versatile;

4. off-the-shelf (R package is available);

Extensions/applications:

• VARs
• Conditional CAPM
• HAR volatility
• Anything goes

Try it with your favorite Xt today!
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Appendix
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Dynamic Phillips’ Curve Learning

πt = µt + β1,tπ̂
SR
t + 𝛽2,tuGAP

t + β3,tπ
IMP
t + εt
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Appendix
DGP 3: Persistent SETAR

yt = φ0,t + φ1,tyt−1 + φ2,tyt−2 + εt, εt ∼ N(0,0.52)

βt = [φ0,t φ1,t φ2,t] =

{
[2 0.8 − 0.2], if yt−1 ≥ 0
[0.25 1.1 − 0.4], otherwise
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Appendix
DGP 6: SETAR that morphs instantly in AR(2)

DGP 6 =

{
SETAR, if t < T/2
Plain AR(2), otherwise
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Appendix
A look at GTVPs under Different Contexts, when St is large
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Appendix
A look at GTVPs under Different Contexts, when St is large
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Appendix
Misc

1. GTVPs � Random Walk TVPs since it implies an adaptive kernel rather
than a fixed one
• The intercept itself is a RF rather than a RW (e.i., a bad Xt choice can be rescued)
• Less reliant (or not all) on t→ less boundary problems (or none) when forecasting.

2. Compress lag polynomials S1:P
t,j ex-ante with Moving Average Factors

• Get MAFs by running PCA on the panel [St−1,j ... St−P,j] of P lags of variable j.
• Boost splits’ meaningfulness (not wasting splits on 12 individual lags)
• Reduce computing time
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Appendix
Cutting Down the Forest, One Tree at a Time (µUR,h=1

t )

(a) Surrogate Model Replication (b) Corresponding Tree
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Appendix
Cutting Down the Forest, One Tree at a Time (γINF,h=12

t,F1
, monthly)

(a) Surrogate Model Replication (b) Corresponding Tree
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