The Macroeconomy as a Random Forest

Philippe Goulet Coulombe gouletc@sas.upenn.edu

University of Pennsylvania

November 9, 2020

Final Destination

Modeling *flexibly* macro relationships without assuming what flexible means first. Take something fundamental: a Phillips' curve.

$$u_t^{\text{gap}} \to \pi_t$$

The statistical characterization of " \rightarrow " has forecasting, policy and theoretical implications. Better get it right.

One way out is getting " \rightarrow " from off-the-shelf nonparametric Machine Learning (ML) techniques. **But:**

- Likely too flexible and wildly inefficient for the short *time series* we have.
- No obvious parameter(s) to look at interpretation is fuzzy.

Another is assuming $\pi_t = \beta_t u_t^{gap} + \text{stuff}_t$. But:

- Rigid
- In-sample fit notoriously don't translate in out-of-sample gains.

Solution: Generalized Time-Varying Parameters via Random Forests.

(Machine) Learning β_t 's

• I propose *Macroeconomic Random Forests* (MRF): fix the linear part X_t and let the coefficients β_t vary trough time according to a Random Forest.

- The core "mechanical" modification wrt plain RF is fitting an ensemble of trees which have a linear model in each leaf rather than a constant.
- MRF is nice "meeting halfway"
 - ⇒ Brings macro closer to ML by squashing many popular nonlinearities (structural change/breaks, thresholds, regime-switching, etc.) into an arbitrarily large S_t , handled easily by RF.
 - \Rightarrow The core output are β_t 's, *Generalized Time-Varying Parameters* (GTVPs).
 - ⇐ Brings ML closer to macro by adapting RF to the reality of economic time series. MRF ≻ RF if the linear part is pervasive (like in a (V)AR).

Generalized Time-Varying Parameters

Why Trees Make Sense (in Macro/Finance)

- Let π_t be inflation at time *t*.
- *t*^{*} is inflation targeting implementation date.
- Let *g*^{*t*} be some measure of output gap.

Generalized Time-Varying Parameters

• The general model is

$$y_t = X_t \beta_t + \epsilon_t$$
$$\beta_t = \mathcal{F}(S_t)$$

where S_t are the state variables that determine time-variation.

- If we know the threshold variables ($S_t = [t, g_{t-1}]$) and values ($c = [t^*, 0]$): run OLS on subsamples.
- But we don't. So we need an algorithm to find out:

$$\min_{j \in \mathcal{J}^{-}, c \in \mathbb{R}} \left[\min_{\beta_1} \sum_{\{t \in l \mid S_{j,t} \le c\}} (y_t - X_t \beta_1)^2 + \lambda \|\beta_1\|_2 + \min_{\beta_2} \sum_{\{t \in l \mid S_{j,t} > c\}} (y_t - X_t \beta_2)^2 + \lambda \|\beta_2\|_2 \right].$$

Generalized Time-Varying Parameters Getting A Diversified Portfolio of Trees

Ingredients:

- 1. Let the trees run deep: even though that would surely imply overfitting for a single tree, let each tree run until leafs contain very few observations (usually between 1 to 5) to compute $\hat{\mu}_l$.
- 2. **Bagging**: Create *B* nonparametric bootstrap samples of the data. That is, we are picking $[y_t X_t]$ pairs with replacement.
- 3. **De-correlated trees**: At each splitting point, we only consider a subset of all predictors $(\mathcal{J}^- \subset \mathcal{J})$ for the split.

(M)RF prediction is the simple average of all the *B* tree predictions.

Why does it not overfit? See *To Bag is to Prune*, a spin-off paper.

Generalized Time-Varying Parameters

Useful Additions: Random Walk Regularization + Inference

- The above implements the prior $\beta_t \sim \mathcal{N}(0, .)$.
- However, $\beta_t \sim \mathcal{N}(\beta_{t-1}, .)$, i.e., time-smoothness, makes more sense.
- I implement it via WLS with rudimentary egalitarian Olympic podium weights $w(t; \zeta)$, where $\zeta < 1$ is a tuning parameter.
- The splitting rule becomes

$$\begin{split} \min_{\boldsymbol{j}\in\mathcal{J}^{-}, \ c\in\mathbb{R}} \left[\min_{\boldsymbol{\beta}_{1}} \sum_{t\in l_{1}^{RW}(\boldsymbol{j},c)} \boldsymbol{w}(t;\boldsymbol{\zeta}) \left(\boldsymbol{y}_{t}-\boldsymbol{X}_{t}\boldsymbol{\beta}_{1}\right)^{2} + \lambda \|\boldsymbol{\beta}_{1}\|_{2} \right. \\ \left. + \min_{\boldsymbol{\beta}_{2}} \sum_{t\in l_{2}^{RW}(\boldsymbol{j},c)} \boldsymbol{w}(t;\boldsymbol{\zeta}) \left(\boldsymbol{y}_{t}-\boldsymbol{X}_{t}\boldsymbol{\beta}_{2}\right)^{2} + \lambda \|\boldsymbol{\beta}_{2}\|_{2} \right] \end{split}$$

- Inference: following (Taddy et al., 2015), *interpret* \mathcal{F} as a posterior mean of latent tree \mathcal{T} which distribution is obtained by Bayesian Bootstrap.
 - Crucial advantage: no additional computations required, quantiles computed straight from the "bag" of trees.
 - (Taddy et al., 2015)'s approach requires *iid* data. I propose a Block Bayesian Bootstrap.

Forecasting Setup

- Data: FRED-QD, the SW data set update by (McCracken and Ng, 2016), 260 series
- POOS period starts on 2002Q1 and ends 2014Q1. *Expanding* window estimation from 1959Q3.
- Horizons: $h \in \{1, 2, 4, 6, 8\}$ quarters
- 6 variables of interest: GDP growth, Unemployment Rate (UNRATE) growth, Interest Rate (GS1), Inflation (Δlog (CPIAUCSL)), Housing Starts (HOUST) and some spread (T10YFFM).
- Evaluation metric is $RMSPE_{v,h,m} = \sqrt{\sum_{t \in OOS} (y_t^v \hat{y}_{t-h}^{v,h,m})^2}$

Forecasting

Visualizing the distribution of $RMSPE_{v,h,m}/RMSPE_{v,h,AR}$

Forecasting *RMSPE*_{UR,h,m}/*RMSPE*_{UR,h,AR} in more detail

Forecasting

What do forecasts look like for UR? $\rightarrow R_{OOS}^2 80\%$ for h = 1

Analysis

GTVPs of the one-quarter ahead UR forecast

Figure: GTVPs of the one-quarter ahead UR forecast. The grey bands are the 68% and 90% credible region. The pale orange region is the OLS coefficient \pm one standard error. The vertical dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.

Analysis Dynamic β_t Learning

Figure: Comparing TVPs and GTVPs, ex-ante and ex-post.

Analysis Cutting Down the Forest, One Tree at a Time ($\gamma_{t,F_1}^{INF,h=1}$, monthly)

(b) Corresponding Tree

A more traditional Phillips' Curve À la (Blanchard et al., 2015)

$$\pi_t = \mu_t + \beta_{1,t} \hat{\pi}_t^{SR} + \beta_{2,t} u_t^{GAP} + \beta_{3,t} \pi_t^{IMP} + \varepsilon_t$$

A more traditional Phillips' Curve What Goes Around Comes Around

$$\pi_t = \mu_t + \beta_{1,t} \hat{\pi}_t^{SR} + \beta_{2,t} u_t^{GAP} + \beta_{3,t} \pi_t^{IMP} + \varepsilon_t$$

Conclusion

I proposed a new time series model that

- 1. works;
- 2. is interpretable;
- 3. is highly versatile;
- 4. off-the-shelf (R package is available);

Extensions/applications:

- VARs
- Conditional CAPM
- HAR volatility
- Anything goes

Try it with your favorite *X*^{*t*} *today*!

Appendix

Dynamic Phillips' Curve Learning

$$\pi_t = \mu_t + \beta_{1,t} \hat{\pi}_t^{SR} + \beta_{2,t} u_t^{GAP} + \beta_{3,t} \pi_t^{IMP} + \varepsilon_t$$

Appendix DGP 3: Persistent SETAR

$$y_t = \phi_{0,t} + \phi_{1,t} y_{t-1} + \phi_{2,t} y_{t-2} + \epsilon_t, \quad \epsilon_t \sim N(0, 0.5^2)$$

$$\beta_t = [\phi_{0,t} \ \phi_{1,t} \ \phi_{2,t}] = \begin{cases} [2 \ 0.8 \ -0.2], & \text{if } y_{t-1} \ge 0\\ [0.25 \ 1.1 \ -0.4], & \text{otherwise} \end{cases}$$

Appendix DGP 6: SETAR that morphs instantly in AR(2)

DGP 6 =
$$\begin{cases} \text{SETAR,} & \text{if } t < T/2 \\ \text{Plain AR(2),} & \text{otherwise} \end{cases}$$

Appendix A look at GTVPs under Different Contexts, when S_t is large

Appendix A look at GTVPs under Different Contexts, when S_t is large

Appendix _{Misc}

- 1. GTVPs ≻ Random Walk TVPs since it implies an *adaptive* kernel rather than a fixed one
 - The intercept itself is a RF rather than a RW (e.i., a bad *X*^{*t*} choice can be rescued)
 - Less reliant (or not all) on $t \rightarrow$ less boundary problems (or none) when forecasting.
- 2. Compress lag polynomials $S_{ti}^{1:P}$ ex-ante with Moving Average Factors
 - Get MAFs by running PCA on the panel [S_{t-1,j} ... S_{t-P,j}] of P lags of variable j.
 - Boost splits' meaningfulness (not wasting splits on 12 individual lags)
 - Reduce computing time

Appendix Cutting Down the Forest, One Tree at a Time ($\mu_t^{UR,h=1}$)

Appendix Cutting Down the Forest, One Tree at a Time ($\gamma_{t,F_1}^{INF,h=12}$, monthly)

