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contribution of this paper

I This paper is about nowcasting economic activity

I Propose Bayesian dynamic factor model (DFM), which takes seriously key
features of macroeconomic data:

1. Low-frequency variation in the mean and variance
2. Heterogeneous responses to common shocks (leads/lags)
3. Fat tails (outliers and “large” shocks)

I Evaluate model and its components in comprehensive out-of-sample exercise

I On fully real-time, unrevised US data 2000-2019
I Point and density forecasting
I Taking advantage of cloud computing

I Apply model out of sample to track the Great Lockdown of 2020 (in progress)

I Incorporate newly available high-frequency data
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the model



the model: specification of baseline

I Start from familiar specification of a DFM (e.g. Giannone, Reichlin, and Small,
2008 and Banbura, Giannone, and Reichlin, 2010)

I An n-dimensional vector of quarterly and monthly observables yt follows

∆(yt) = c + λft + ut

(I − Φ(L))ft = εt

(1− ρi(L))ui,t = ηi,t, i = 1, . . . , n

εt
iid∼ N(0,Σε)

ηi,t
iid∼ N(0, σ2ηi), i = 1, . . . , n
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the model: specification of sv

I Consider n-dimensional vector of observables yt, which follows

∆(yt) = ct + λft + ut,

with

ct =

[
B 0
0 c

] [
at
1

]
,

and

(I − Φ(L))ft = σεtεt,

(1− ρi(L))ui,t = σηi,tηi,t, i = 1, . . . , n

I The time-varying parameters are specified as random walk processes

I Builds on Antolin-Diaz, Drechsel, and Petrella (2017)
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estimated trend
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estimated volatility of the factor
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I SV captures both secular (McConnell and Perez-Quiros, 2000) and cyclical
(Jurado et al., 2014) movements in volatility
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the model: adding heterogeneous dynamics

I Modify the observation equation to be

∆(yt) = ct + Λ(L)ft + ut,

where Λ(L) contains the loadings on contemporaneous and lagged factors

I Camacho and Perez-Quiros (2010) first noticed that survey data was better
aligned with a distributed lag of GDP

I D’Agostino et al. (2015) show that adding lags improves performance in the
context of a small model
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estimated heterogeneous dynamics

0 5 10 15 20

Months

0

0.2

0.4

0.6

0.8

1
Monotonic

GDP
INDPRO
CONSUMPTION

0 5 10 15 20

Months

-1

0

1

2

3
Reversing

CARSALES
HOUSINGSTARTS
NEWHOMESALES

0 5 10 15 20

Months

0

0.5

1

1.5

2

2.5

3
Hump Shaped

ISMMANUF
PHILLYFED
CHICAGO

I Substantial heterogeneity in IRFs of to innovations in the cyclical factor
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the model: allowing for outliers

I Modify the observation equation to be

∆(yt − ot) = ct + Λ(L)ft + ut,

where the elements of ot follow t-distributions:

oi,t
iid∼ tνi(0, ω2

o,i), i = 1, . . . , n

I The degrees of freedom of the t-distributions, νi, are estimated jointly with the
other parameters of the model

8 / 20



news decompositions: what fat tails achieve
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I Update of nowcast nonlinear and nonmonotic in forecast error of releases

I Some (hard) data gets more importance
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the model: summary of novel features

1. Macro data: low-frequency variation in mean and variance

I Model: time-varying parameters

2. Macro data: different leads and lags across indicators

I Model: variables load on factor lags

3. Macro data: recurring outliers in level and difference

I Model: t-distributed component
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real-time evaluation exercise



a REAL real-time exercise

I The model is fully re-estimated every time new data is released/revised

I The exercise starts in Jan 2000 and ends in Dec 2019: on average there is a data
release on 15 different dates every month ⇒ 3600 vintages of data

I Thanks to efficient implementation, it takes just 20 min Gibbs sampler on a single
computer (we use 8,000 iterations/draws)

I Hierarchical implementaiton of the Gibbs sampler

I Vectorized version of the Kalman filter

I Would still mean almost 2 months of time to run the evaluation

I Use Amazon Web Services cloud computing platform
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evaluation results
forecasts vs. actual over time (us)
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I Long run trend eliminates the upward bias in GDP forecasts after the crisis
I Lead-lag dynamics improve the mode’s performance around turning points
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comparison of different models
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the great lockdown



nowcasting during the great lockdown

I Many formal models produce nonsensical results

I We have been exploring two avenues

1. How novel model components help tracking activity in 2020

I In particular heterogeneous dynamics and fat tails

2. How to incorporate ‘alternative data’ in the DFM machinery

I Novel data sources with very small history have become available
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tracking daily activity
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I Model with fat-tails produces stable estimates, is able to capture features like the
strong rebound of economic activity during the partial re-opening
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fat tailed observations

I Model correctly captured rebound in retail sales based on history of similar outliers
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nowcasts as of june 2020
basic dfm (left) vs. full model (right)
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I Persistent decline or more V-shaped recovery?

I Heterogeneous dynamics capture rebound in GDP despite persistent decline in
other series (in particular surveys)
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using new data sources in the dfm

Monthly Indicator Start High Frequency Proxy Freq. Start Estimated
Real Consumption (excl. durables) Jan 67 Credit Card Spending (OI) D Jan 20 N
Payroll Empl. (Establishment Survey) Jan 47 Homebase D Mar 20 N
Civilian Empl. (Household Survey) Feb 48 Dallas Fed RPS BW Apr 20 N
Unemployed Feb 48 Dallas Fed RPS BW Apr 20 N
Initial Claims for Unempl. Insurance Feb 48 Weekly Claims (BLS) W Jan 67 N
U. of Michigan: Consumer Sentiment May 60 Rasmussen Survey D Oct 04 Y
Conf. Board: Consumer Confidence Feb 68 Rasmussen Survey D Oct 04 Y
U.S. Vehicle Miles Traveled Jan 70 Apple Mobility Trends D Jan 20 N

I “New data” has short history

I Key idea: use new data in combination with similar “traditional” series
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using new data sources in the dfm
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I Incorporating new data enables faster tracking of the collapse in real time
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conclusion



conclusion

I We propose a Bayesian DFM, which explicitly incorporates:

1. Low-frequency variation in the mean and variance

2. Heterogeneous responses to common shocks

3. Outlier observations and fat tails

I We provide a thorough evaluation of the novel model features for the nowcasting
process and demonstrate how they improve point and density nowcasts in real time

I Assessment of US activity in 2020 is in progress

I Some promising insights so far
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