Conclusion

FRBKC-JHU

Deciphering Federal Reserve Communication via Text Analysis of Alternative FOMC Statements

Taeyoung Doh ¹ Dongho Song ² Shu-Kuei Yang ¹

¹ Federal Reserve Bank of Kansas City

²Johns Hopkins University

September 2020

The opinions expressed herein are those of the authors and do not reflect the views of the Federal Reserve Bank of Kansas City or Federal Reserve System.

DSY

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	
0000			

Section 1

Introduction

FRBKC-JHU

Identifying Monetary Policy Stance with Text Analysis 00000 Empirical Analysis

Conclusion 00

Motivation: December 2010 FOMC

Component	Alternative A	Alternative D
Inflation	Longer-term inflation expectations	Although measures of underlying
Development	have remained stable, but measures	inflation have trended lower in
_	of underlying inflation have	recent quarters, longer-term inflation
	continued to trend downward.	expectations have remained stable.

Source: Federal Reserve Board.

Deciphering Federal Reserve Communication via Text Analysis of Alternative FOMC Statements

イロト イポト イヨト イヨト

Introduction	Text Analysis Methodology Review	ldentifying Monetary Policy Stance with Text Analysis	Empirical Analysis	
0000	0000000	00000	0000000	

Contribution

- Provide a framework to quantify the monetary policy stance based on texts.
- Identify tones in different texts based on the similarity of a given text with benchmark texts intended to signal alternative monetary policy stances (alternative FOMC statements).
- Quantify contexts in texts using a novel natural language processing algorithm (Universal Sentence Encoding).
- Existing Approach: Back out unexpected information in the statement from the response of interest rates. (bond market response → text shock)
- Evaluate asset market responses under alternative statements with market expectation of the statement fixed.

イロト イヨト イヨト

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis	
000●	0000000	00000	0000000	

Main Findings

- Monetary policy surprises identified by text analysis of alternative FOMC statements are highly correlated with forward guidance shocks in the literature.
- Unexpected tightening reduces stock market return on average (consistent with the absence of information channel during the post-2004 period).
- Changes in the description of economic factors regarding outlook matters can be even more powerful than the size of the rate cut.
- Providing context behind the outlook and the risk assessment can make forward guidance more effective.

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis	
0000	●000000	00000	0000000	

Section 2

Text Analysis Methodology Review

FRBKC-JHU

Conclusion 00

Natural Language Processing Tools

- Two Groups of Natural language processing (NLP) tools
 - Word count based methods: TF-IDF, LSA (word similarity evaluated by co-frequency of words).
 - Prediction based methods: CBOW, Skip-gram, USE, BERT etc. (find out word embeddings by maximizing the prediction of neighboring words in the document).
- Count based methods are easy to implement but cannot capture complex dependencies among words (e.g., context).
- Prediction based methods are more computationally challenging to train but can capture context better.
- "You shall know a word by the company it keeps " (J. R. Firth 1957).

(日) (同) (三) (三)

Conclusion 00

Universal Sentence Encoding (USE)

Given a text $D_i = (w_{i,1}, \dots, w_{i,n_i})$ for $i = 1, \dots, D$, generate an embedding vector U_i for D_i .

$$U_{i} = (U_{i,1}, \cdots, U_{i,512}),$$

Sim(Text₁, Text₂) = $\frac{U'_{1}U_{2}}{\|U_{1}\| \times \|U_{2}\|}$ (1)

- Multiple hidden layers with self attention channels: context-aware word representation (e.g., word order).
- Pre-trained with a large number of texts in STS benchmarks.
- Available through Google Tensorflow Hub.
- Sentiment analysis: to mimic human understanding of text.

イロト イヨト イヨト

Conclusion 00

Text Similarity Calculation: Example

• Consider the following three sentences.

- **S1** : How old are you?
- **S2** : What is your age?
- **S3** : How are you?

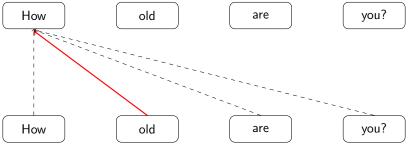
■ S1 and S2 ask the same question but based on word counting S1 is more similar to S3 than S2.

Table: Sentence similarity

	TF-IDF	USE	
$Sim(S_1, S_2)$	0	0.91	
$Sim(S_1, S_3)$	0.78	0.28	

 For TF-IDF, frequency vectors instead of embedding vectors are used.

FRBKC-JHU


∃ ⊳

FRBKC-JHU

Image: A math a math

Conclusion

Context-aware Word Representation through Attention: Example

Notes: The red arrow highlights the contextual link between "How" and "old".

Identifying Monetary Policy Stance with Text Analysis 00000 Empirical Analysis

Conclusion 00

FOMC Statement Example : October 2013

FOMC STATEMENT-OCTOBER 2013 ALTERNATIVE A

1. The effects of the temporary shutdown of the federal government [, including defars in releases of some key chain. Juare madu the evolution of economic conditions during the intermetring period numerhant more volution of a consome linear evolution of economic key of the source of the federal () period for the federal () pe

▲日▼▲□▼▲回▼▲回▼ 回 ろんの

FRBKC-JHU

Conclusion 00

Similarity Score for Oct. 2013 FOMC Statements

	TF-IDF	USE
$Sim(FOMC_{A,t}, FOMC_t)$	0.975	0.895
$Sim(FOMC_{C,t}, FOMC_t)$	0.972	0.990

- Alt A mentions challenges in interpreting improvements in incoming data due to government shutdown while Alt C and the released statement do not.
- The phrase provides information on the FOMC's interpretation of the recent data.

Introduction 0000	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis 0000000	Conclusion 00

Section 3

Identifying Monetary Policy Stance with Text Analysis

FRBKC-JHU

Deciphering Federal Reserve Communication via Text Analysis of Alternative FOMC Statements

troduction 000	Text Analysis Methodology Review 0000000	Identifying Monetary Policy Stance with Text Analysis 00000	Empirical Analysis 0000000	

Assumptions

- Alternative FOMC statements prepared by the Board staff roughly capture tail parts of market expectations of monetary policy stance tilt (hawkish or dovish).
- Obstimilarity between the previous FOMC statement and the current FOMC statement captures the magnitude of monetary policy tilt.
- The sign of change is identified by using alternative FOMC statements, side-stepping the costly training process for the tone identification.
- High-frequency financial market data responds to surprises in monetary policy stance tilt.

Conclusion 00

FRBKC-JHU

Text-based Identification of Monetary Policy Stance Tilt (mp_t)

- Text-based shock: novelty × tone (KKX 2019).
- Novelty: 1-similarity between statements released after two consecutive meetings.
- Tone: sign of $|mp_t mp_{t-1}|$

$$\begin{split} & \text{Sign}(|\textit{mp}_{A,t} - \textit{mp}_{t-1}|) = -1, \\ & \text{Sign}(|\textit{mp}_{C,t} - \textit{mp}_{t-1}|) = 1, \end{split}$$

$$mp_{t} = \underbrace{(1 - \text{Sim}(FOMC_{t}, FOMC_{t-1}))}_{\text{Novelty}} \underbrace{\left(\frac{\text{Sim}(FOMC_{t}, FOMC_{C,t}) - \text{Sim}(FOMC_{t}, FOMC_{A,t})}{1 - \text{Sim}(FOMC_{A,t}, FOMC_{C,t})}\right)}_{\text{Tone}}$$
(2)

- Tone always belongs to the interval [-1, 1].
- Monotonicity: $Sign(|mp_{A,t} - mp_{t-1}|) \ge Sign(|mp_t - mp_{t-1}|) \ge Sign(|mp_{C,t} - mp_{t-1}|).$

Conclusion 00

Surprises in Monetary Policy Stance Tilt

• $E_{t-\delta}(mp_t - mp_{t-1})$: Market expectations of the change in the intended policy stance (mp_t) prior to the meeting.

$$E_{t-\delta}(mp_t - mp_{t-1}) = -p_t |mp_t - mp_{t-1}| + (1 - p_t) |mp_t - mp_{t-1}|.$$
(3)

 Financial market (*i*-th asset) response to surprises in the announced policy stance.

$$\ln(\frac{P_{i,t+\Delta_h}}{P_{i,t-\Delta_l}}) = \alpha_i + \beta_i(mp_t - mp_{t-1} - E_{t-\delta}(mp_t - mp_{t-1})) + \epsilon_{i,t}.$$
 (4)

 Δ_h and Δ_l capture the event window for high-frequency variations in financial market variables.

イロト イポト イヨト イヨト

Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	
	00000	

Calibration p_t

DSY

- Monetary policy surprise: $MPS(p_t; t - \Delta) = mp_t - mp_{t-1} - E_{t-\Delta}(mp_t - mp_{t-1}).$
- Maximize the negative rank correlation between $MPS(p_t; t \Delta)$ and high-frequency bond returns.

$$(p\tau_{i})_{i=1}^{T} = \operatorname{argmax}_{t \neq t'} \sum_{t \neq t'} 1(r_{t}^{b} - \Delta_{l}, \tau_{t} - \Delta_{h} > r_{\tau_{t'}}^{b} - \Delta_{l}, \tau_{t'} - \Delta_{h}) 1(MPS(p\tau_{t}) < MPS(p\tau_{t'})).$$
(5)

Grid search w.r.t. p_{τ_t} to achieve the largest negative correlation.

・ロト ・伺 ト ・ ヨト ・ ヨト

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis	
0000	0000000	00000	•000000	

Section 4

Empirical Analysis

FRBKC-JHU

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis	
0000	0000000	00000	○●○○○○○	

Data

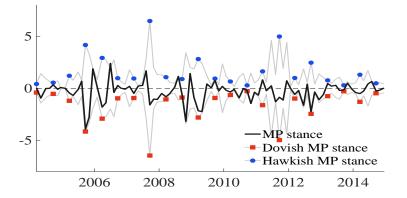
DSY

- 87 Statements (March 2004 to December 2014) excluding two intermeeting announcements (Aug 2007, Jan 2008).
- Normalize MP level to make the sample standard deviation equal to one.

FRBKC-JHU

 Alternative statements help us to identify changes in the tone by construction.

	Identifying Monetary Policy Stance with Text Analysis	E
		4


Empirical Analysis

э.

FRBKC-JHU

Conclusion 00

Estimates of MP

Estimates also robust to different event window intervals/bond maturity.

Introduction 0000 xt Analysis Methodology Review 200000 Identifying Monetary Policy Stance with Text Analysis 00000 Empirical Analysis

Conclusion

Estimates of Monetary Policy Surprise

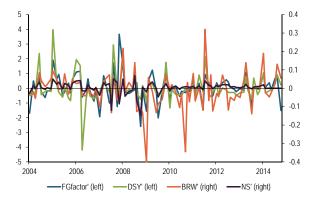


Image: A matched by the second sec

Deciphering Federal Reserve Communication via Text Analysis of Alternative FOMC Statements

	trc			
0	0	ЪС		

ext Analysis Methodology Review 000000 Identifying Monetary Policy Stance with Text Analysis 00000 Empirical Analysis

Conclusion 00

Stock Market Response to MPS

$[\Delta_I$	Δ_h]	α	β	t-stat (α)	<i>t</i> -stat (β)	R^2
[-10	10]	0.05	-0.23	1.08	-4.75	0.19
[-20	20]	0.04	-0.20	0.75	-4.78	0.12
[-30	30]	0.10	-0.18	1.49	-4.45	0.08
[-40	40]	0.16	-0.19	2.25	-3.33	0.07
[-50	50]	0.16	-0.18	2.21	-3.20	0.07
[-60	60]	0.20	-0.22	2.56	-3.35	0.08
[-90	90]	0.19	-0.21	2.25	-2.43	0.06
[-120	120]	0.17	-0.21	1.72	-1.85	0.05

FRBKC-JHU

DSY

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis	
0000	0000000	00000	00000●0	

Interpretation

- No evidence for "Information Channel "in Nakamura and Steinsson (2018).
- Consistent with Bauer and Swanson (2020).
- Also consistent with Lunsford (2020) who show the absence of "Information Channel "since August 2003.
- But unlike Bu et al. (2020), the maturity of the target bond return doesn't matter.

Introduction 0000 Identifying Monetary Policy Stance with Text Analysis 00000 Empirical Analysis

Conclusion 00

Comparison with Existing MPS Estimates

	MPS
Bu et al. (2020)	0.50
NS (2018)	0.50
Swanson (2017) (FFR+FG+LSAP)	0.50
FFR	0.20
FG	0.52
LSAP	-0.12

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis	Conclusion
0000	0000000	00000	0000000	•••

Section 5

Conclusion

FRBKC-JHU

DS

Introduction	Text Analysis Methodology Review	Identifying Monetary Policy Stance with Text Analysis	Empirical Analysis	Conclusion
0000	0000000	00000	0000000	O

Summary

- Analysis of FOMC public communications using a novel natural language processing tool.
- Alternative policy statements provide a way to identify the tone in statements naturally.
- Our text-based monetary policy surprises are highly correlated with forward guidance shock estimates in literature.
- Context matter: changing wording in the risk assessment and/or providing a color to the interpretation of incoming data.