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Abstract

The COVID-19 pandemic and the resulting public health mitigation have caused large-scale

economic disruptions globally. During this time, there is a increased need to predict the

macroeconomy’s short-term dynamics to ensure the effective implementation of fiscal and

monetary policy. However, economic prediction during a crisis is challenging because of the

unprecedented economic impact, which increases the unreliability of traditionally used linear

models that use lagged data. We help address these challenges by using timely retail payments

system data in linear and nonlinear machine learning models. We find that compared to a

benchmark, our model has a roughly 15 to 45% reduction in Root Mean Square Error when

used for macroeconomic nowcasting during the global financial crisis. For nowcasting during

the COVID-19 shock, our model predictions are much closer to the official estimates.
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1 Introduction

The spread of COVID-19 globally has caused large-scale loss of life and unprecedented economic dam-

age (McKibbin and Fernando 2020). Governments worldwide have responded to these shocks on a multi-
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macroeconomics 2020 for their suggestions. We also thank Adam Epp and Poclaire Kenmogne for their assistance.
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tude of dimensions, including public health measures, fiscal stimulus, and monetary policy (Bank of Canada

2020; Baldwin and Mauro 2020). Monetary policy decisions in particular require an understanding of the

current state of the economy; However, estimating the current state of the economy – often referred to as

economic nowcasting – is difficult for two reasons: (a) delay, i.e., most of the official estimates of economic

indicators are released with a substantial lag, and (b) uncertainty, i.e., these indicators undergo multiple

revisions later, sometime years after their first release (Giannone et al. 2008; Banbura et al. 2010).

Traditionally, policy institutions have used lagged macro variables in linear models to predict the current

state of the economy. Such approaches are useful in normal circumstances. However, during economically

stressed periods, macroeconomic nowcasting is challenging because of the unprecedented economic impact

and the speed of policy changes. During such times – as we move forward into this unfamiliar world –

traditional lagged data and linear regressive models used for predictions become unreliable due to their slow

response and limited ability to capture sudden and large effects.

To address these issues, this paper aims to predict the current state of the economy using retail payments

system data in linear and nonlinear machine learning (ML) models. Canadian retail payments data capture

numerous types of transactions, such as consumers’ income and expenditures, business-to-business pay-

ments, and Canada’s government transfer payments. In the past, it has been shown that such data carry timely

information about the economy and they are useful for predictions (Galbraith and Tkacz 2007; Carlsen and

Storgaard 2010; Barnett et al. 2016; Duarte et al. 2017; Galbraith and Tkacz 2018; Raju and Balakrishnan

2019; Aprigliano et al. 2019), more so during crisis periods such as COVID-19. For example, in the recent

paper by Chetty et al. (2020), the authors illustrate how private sector spending data can help rapidly iden-

tify the origins of economic crises. Similarly, in Bounie et al. (2020), the authors demonstrate changes in

consumer response to a severe economic shock due to COVID-19 using card transactions data in France.

We use a high-frequency payments dataset that consists of the settlement of multiple payments instru-

ments. Our dataset is much more comprehensive than the data sets used in Galbraith and Tkacz (2018);

Chetty et al. (2020); Bounie et al. (2020). Furthermore, our data come from the main settlement system for

retail payments in Canada, so it has no sampling error. Therefore, due to its timeliness and comprehensive-

ness, it is an ideal candidate for macroeconomic nowcasting during a crisis.

We employ ML models such as the elastic net, support vector machines, random forest, and gradient

boosting to efficiently leverage the broad cross-section of different payments instruments simultaneously

(Zou and Hastie 2005; Burges 1998; Breiman 2001; Friedman 2001). These models are flexible, so they can

help us capture nonlinear interactions between the predictors and macro indicators (Richardson et al. 2018).

This is important in the current situation since the economic effects of COVID-19 are sudden and large.

As a benchmark, our analysis indicates that during the global financial crisis, these payments data in

conjunction with ML models (in this case, gradient boosting) improve prediction accuracy by up to 45% over

a benchmark linear time-series model. We also document that the nowcasts from our model are currently

much closer to May and June 2020 official estimates than this benchmark model. Our benchmark model

includes lagged macro variables and the high-frequency Canadian Financial Stress Indicator (CFSI) (Duprey

2020) in a linear regression model.
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Historically, econometricians have used new data or developed new techniques to better understand

the current state of the economy (Giannone et al. 2008; Ghysels et al. 2007; Bok et al. 2018; Kapetanios

and Papailias 2018). The new data sources have spurred the development and use of different econometric

techniques. One popular approach involves dimension reduction of a broad cross-section of time series: for

example, the nowcasting dynamic factor model (DFM) of Giannone et al. (2008). Another approach involves

using different frequencies of data to construct a better forecast, such as mixed-data sampling (MIDAS)

models developed by Ghysels et al. (2007). Although DFM performs slightly better than the MIDAS model,

both are shown to be competitive in predicting Canada’s GDP by Chernis and Sekkel (2017).

Recently, econometricians have started exploiting non-traditional, high-frequency, and large-scale data

sets, such as the financial market data, Google search data, and satellite data for economic nowcasting and

forecasting (Choi and Varian 2012; Andreou et al. 2013; Li 2016; Donaldson and Storeygard 2016; Koop

and Onorante 2019; Buono et al. 2017). Non-traditional and large-scale datasets sometimes do not fit into

the traditional econometric models. Therefore, researchers have begun exploiting ML-based prediction

approaches. For example, the articles by Einav and Levin (2014a,b) suggest that the ML approaches com-

plement the traditional econometric tools and are useful in extracting economic value from non-traditional

data sources. The articles by Chakraborty and Joseph (2017); Richardson et al. (2018) suggest that the ML

models generally outperform traditional linear modeling approaches in prediction tasks, and in some cases,

the ML algorithms outperform the commonly used econometric tools, such as DFM.1

In addition, econometricians have used electronic transactions datasets that potentially have information

related to the economy. This makes intuitive sense since virtually all exchanges of goods and services are

paid and settled via some payment systems. In Verbaan et al. (2017), the authors use debit card payments

data for nowcasting Dutch household consumption. In Galbraith and Tkacz (2018), the authors use point-of-

sale debit and cheque payments data to nowcast Canada’s GDP and retail sales. Similarly, in Aprigliano et al.

(2019), the authors use some of the data from Italy’s retail payments system for nowcasting and forecasting.

In this paper, we extend earlier work by Galbraith and Tkacz (2018); they use a subset of the streams

of payments data in our dataset to nowcast Canada’s GDP and retail sales using an ordinary least squares

model. In contrast, we use all settlement data from retail payment systems and also use more flexible

models to capture the large effects of the crisis. Using all data is important to overcome a drawback of the

previous study, i.e., payments through particular instruments may rise or fall due to non-economic reasons

(technological advancements such as the decline of cheque usage). Using one or two payments instruments

in isolation could bias predictions. Our paper is also an extension of our earlier work on payments data and

ML for nowcasting (Chapman and Desai 2020), with the primary focus being on the current crisis period.

We proceed as follows. In section 2 we describe the retail payments system data. Section 3 provides a

brief overview of the nowcasting methodology, followed by the results and discussion in section 4. Finally,

in section 5 we conclude our findings. Several appendices provide details on the payments data and the

ML-based nowcasting methodology employed in this paper.

1A comprehensive review of the use of machine learning (ML) and big data for nowcasting and forecasting is
presented in the following articles (Hassani and Silva 2015; Kapetanios and Papailias 2018).
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2 Retail Payments System Data

The vast majority of non-cash transactions require settlement to extinguish the debt between the buyer and

the seller.2 In modern economies, this is typically accomplished via a centralized payments system. In

Canada, there are two systems operated by Payments Canada that settle these transactions: the Automated

Clearing and Settlement Systems (ACSS) and the Large-Value Transfer System (LVTS). ACSS settles the

majority of retail and small-value payment items, and LVTS clears large-value payments between Canadian

financial institutions. In this paper, we focus on payments data from ACSS only. In 2019, ACSS handled an

average of 33 million payments items per day, with an average daily total value of $29 billion.

ACSS clears 24 types of payments instruments (referred to as streams). Broadly, these streams can

be categorized into two groups: electronic streams, which include, for example, Automated Fund Transfer

(AFT), Point-of-Sale (POS) Payments, Electronic Data Interchange (EDI), On-line payments, and Gov-

ernment Direct Deposit (GDD); and paper-based streams, which incorporate Encoded Paper, Paper Remit-

tances, Government Paper Items, etc.

Over time since ACSS’s inception in 1999, some payments streams were discontinued, some new

streams were created, and some were merged; therefore, in this study, we use transactions settled in 20

payments instruments. These streams account for the majority of the payments settled in ACSS. Our data

consist of the daily gross dollar amount, i.e., value, and number of transactions, i.e., volume settled in those

payments instruments.

To overcome the effects of the sudden changes in the streams and to get a better representation of

payments flow, we merged a few streams which belong to similar categories and settle related payments.3

This could help us to mitigate the non-stationarity effects due to sudden changes in streams (primarily driven

by technological advancements). Also, to overcome the effects of consumers’ choice of payments, i.e., when

they switch payments method,4 we include the sum of all payments instruments in ACSS, Allstream, as a

separate series. This should assist us in getting the overall picture from ACSS and mitigating the effects of a

few unused streams. After these adjustments, we are left with 12 streams that are listed in Table 1 along with

a short description.5 We use both value and volume of each stream; therefore, we have in total 24 series.

The shares of many streams (in terms of value and volume of payments) have changed over time. Due

to their usability, electronic means of payments have become more common than paper items. Most of these

changes are primarily driven by technological advancements leading to the inception and adoption of new

payment instruments; however, an economic crisis like COVID-19 can also influence the payments flow.

In Figure 1 and Figure 2, we compare the value and volume shares of each payments stream using the

entire dataset (historical data ranging from Jan 1999 to July 2020) with the latest data, i.e., for the period

ranging from April to July 2020. Historically, the Encoded Paper stream has the highest value shares,

2According to recent surveys, only 14% of physical retail sales by value settled with physical cash as opposed to
through a payment system (Henry et al. 2018).

3See Table 1 footnotes for the specifics of each adjustment performed.
4For nowcasting, we are interested in capturing whether spending (or earning) has actually slowed (or stopped),

rather than switched payment method.
5Further details of the individual payments instruments are provided in Appendix A.
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Table 1: ACSS payments streams used in this studya

ID Label Short Description

C AFT Credit Direct Deposit (DD): payroll, account transfers

D AFT Debit Pre-authorized debit (PAD): bills, mortgages, utility

E Encoded Paperb Paper bills of exchange: cheques, bank drafts, paper PAD

F Paper Remittances Corporate bill payments. Settles payments similar to Y-stream

G Government Itemsc Paper items: Government of Canada paper items

J On-line Paymentsd Electronic payments using a debit card through the internet

M Government DD Recurring social payments: social security, tax refunds

N Shared ABM Network Debit card payments to withdraw cash at ABM

P POS Paymentsd Point-of-sale (POS) payments using debit card

X EDI Paymentse Exchange of corporate-to-corporate payments

Y EDI Remittances Corporate electronic bill payments

All Allstream The sum of all payments streams settled in the ACSS
a These eleven payments streams are representative of 20 payments instruments in the ACSS. There are more

payments instruments; however, because they are not available for the entire time period we’re considering in
this paper, they are excluded from this study. For further details on ACSS streams, refer to Appendix A.

b Stream E is the sum of multiple streams settled separately in ACSS. It combines Encoded Paper (E), Large-
Value Encoded Paper (L), and Image Captured Payments (O) streams and subtracts Image Captured Return
(S), Unqualified (U), and Computer Rejects (Z) streams.

c Stream G is the sum of multiple streams settled separately in ACSS. It incorporates Canada Savings Bond (B),
Receiver General Warrants (G), and Treasury Bills and Bonds (H).

d Value and volume of On-line Payments (J) and POS Payments (P) streams are obtained by subtracting On-line
Returns (K) and POS Refund (Q) streams, respectively.

e EDI: Electronic Data Interchange.
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Figure 1: Shares of payments streams in terms of value (dollar amount) after making adjustments
outlined in Table 1. Historic period: Jan 1999 to July 2020, and latest period: April to July 2020.

Figure 2: Shares of payments streams in terms of volume (number of transactions) after making
adjustments outlined in Table 1. Historic period: Jan 1999 to July 2020, and latest period: April to
July 2020.
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followed by the AFT Credit, and the POS Payments stream has the largest volume shares, followed by the

Encoded Paper stream.

In recent months – fueled by social-distancing rules due to COVID-19 – the AFT Credit value (primarily

used for payroll) share has more than doubled, and that of Encoded Paper stream shares has been halved,

compared to the historical shares. Similarly, the transactions value settled in Government Direct Deposits

stream (which settles government social security payments) has increased four times. This increase in flow

is likely due to the Canada Emergency Response Benefit (CERB) payments to provide financial support to

Canadians who are directly affected by COVID-19. Similar effects are observed in the volume of payments.

For example, the POS Payments volume shares have increased by 7 percentage points, and Encoded Paper

volume shares have decreased by 11 percentage points.

ACSS payments data capture numerous types of transactions from both sides of macroeconomic ac-

counts: for example, consumers’ income and expenditures. It includes, for instance, payrolls and govern-

ment social payments from the income side; and bills, mortgages, utilities, donations, and cash withdrawals

from the expenditure side. ACSS also includes business-to-business bill payments in EDI and Canada’s

government spending in Government Paper Items. Therefore, this variety, timeliness, and the lack of er-

rors in the ACSS dataset make it a rich economic information source. Thus, it is an ideal candidate for

high-frequency economic monitoring and macroeconomic nowcasting (Galbraith and Tkacz 2007, 2018).

Note that our dataset does not include some of the payments instruments which are not settled through

the ACSS, such as credit card and e-transfer payments. However, Galbraith and Tkacz (2018) concluded

that the credit card payments data in Canada does not add any value in nowcasting GDP and retail sales.6

Furthermore, our dataset does not include on-us transactions where both sender and receiver have an account

with the same financial institution; therefore, such transactions do not need to be settled in ACSS. However,

their shares are small and hence might not drastically influence our analysis.

2.1 Effects of COVID-19 Shock on Payments Streams

The COVID-19 pandemic is having an unprecedented economic impact on the Canadian economy. Before

COVID-19 struck Canada, the economy had been operating close to potential for nearly two years (Bank of

Canada 2020). However, most economic activities have been reduced substantially due to the COVID-19

shock and the public health response to it. These effects are directly visible through some of the ACSS

payment streams.

ACSS data, which are available daily, can be used for high-frequency economic monitoring.The effects

of most of the economic activities of consumers, corporations, and government can be observed daily using

these streams. This is important for policymakers in economically stressed periods to quantify the immediate

effects of such extreme events.

In Figure 3, we present daily value and volume series for three payments streams, namely, shared ABM

6Note that in Galbraith and Tkacz (2018) the authors used a short sample size in their analysis of credit card data.
The results could be different for a larger sample size.
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Network, POS Payments, and Government Direct Deposit.7 The effects of COVID-19 shock are evident

through these time series. Both values and volumes of ABM Network and POS Payments fell starting in

mid-March 2020, and when the full effects of the pandemic hit in April, both value and volume reached

their lowest levels. Starting in mid-May 2020, both ABM and POS streams show signs of recovery. By

the end of May, the POS stream had recovered to the pre-COVID level; however, the ABM stream is still

recovering slowly. Similarly, the Government Direct Deposits stream shows the increased flow during the

same period, confirming the effects of social security payments, probably under CERB, launched during the

onset of COVID-19.

Figure 4 compares the monthly aggregated value and volume of Encoded Paper, POS Payments, and

Allstreams, respectively.8 A sudden and massive drop in these streams’ values and volumes in April 2020

highlights the severity of COVID-19’s effect on the economy. Compared to the same period in 2019, the

Encoded Paper stream value fell by 33%, and volume dropped by 39%. Similarly, we observe a 32% and

41% drop in value and volume of POS Payments as well as 15% and 27% decline in value and volume

respectively for all payment streams via the Allstream variable.

The higher drop in volumes compared to values in these streams indicates that consumers choose to

spend in bulk, i.e., they avoid multiple visits to marketplaces to reduce the risk of catching COVID-19.

Starting in June 2020, the POS value and volume have recovered to pre-COVID levels; however, the Encoded

Paper stream has yet to recover. The Allstream value and volume show that ACSS is recovering fast;

however, it had not entirely recovered by July 2020.

2.2 Payments Data for Macroeconomic Nowcasting During a Crisis

The crux of the problem of nowcasting during a crisis is that most of the official estimates of macroeconomic

indicators are released with a substantial delay. For instance, GDP in Canada is released with a delay of

eight weeks. Furthermore, these indicators can undergo revisions sometimes years after their first release,

highlighting the uncertainty of the measurement. Therefore, it is valuable to provide current-period estimates

of these indicators using more timely available information: in this case, payments data from the ACSS.

During a rapid crisis such as COVID-19, macroeconomic predictions are difficult because of the large

and unprecedented economic impact.9 This could undermine the use and reliability of traditional lagged

data and linear models used for nowcasting, which typically have at least an implicit assumption that the

economy is in some sort of stationary equilibrium. Therefore, non-traditional models and higher frequency

data in real time are needed.
7We select these streams because the effects of COVID-19 shock are clearly visible in these streams and cover both

earnings and spending.
8We select these streams because the Encoded Paper stream accounts for the highest value share, POS Payments

stream accounts for the largest volume shares, and Allstream is an indicator of the entire value and volume of transac-
tions settled in ACSS.

9The unemployment rate soared to 13% in Apr 2020 as the full force of the pandemic hit, compared with 7.8% in
Mar 2020 (Statistics Canada. Table 14-10-0287-01, monthly, seasonally adjusted).
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Figure 3: Selected payments streams’ value (blue) and volume (orange) at daily levels for the
period before and during the COVID-19 crisis.
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Figure 4: Comparison of the monthly aggregated and seasonally adjusted Encoded Paper (E), POS
Payments (P) and Allstream (All) value and volume streams for the last three years. Highlighted
(in gray) is the ongoing COVID-19 period.
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Table 2: Delay period for official estimates of key
macroeconomic indicators in Canada.

ID Macroeconomic Variable Delay Period

GDP Gross Domestic Product 8 weeks

RTS Retail Trade Sales 6 weeks

WTS Wholesale Trade 6 weeks

HPI New House Price Index 6 weeks

CPI Consumer Price Index 2 weeks

UNE Unemployment 1 week

For demonstration, we use the macroeconomic indicators listed in Table 2 as target variables10 for

nowcasting using ACSS payments data. Like other macroeconomic time series, ACSS streams have a strong

seasonal component. We adjust all series (both value and volume) for seasonality using the X-13 ARIMA

tool (X13 Reference Manual 2017).11 The year-over-year (YOY) growth rates of the seasonality adjusted

payments series are used to predict the similarly adjusted YOY growth rates of macroeconomic indicators.

Pairwise correlations between YOY growth rates of the seasonality adjusted macroeconomic variables

and selected payments streams are listed in Table 3. These indicate that most of the ACSS streams have a

strong correlation with macroeconomic indicators. The Allstream and Encoded Paper values are strongly

correlated to the most macro indicators. AFT Credit and POS Payments have a high correlation with Retail

Trade Sales (RTS), Wholesale Trade Sales (WTS), House Price Index (HPI), and Consumer Price Index

(CPI). Shared ABM values and volume are strongly correlated with GDP, WTS, and Unemployment (UNE).

The YOY growth rates of Allstream and Encoded Paper values are plotted with YOY growth rates of

GDP, RTS, WTS, HPI, CPI, and Unemployment (UNE) in Figure 5. To get a sense of the importance of

the payments data during a crisis, we highlight the growth rates of Allstream and Encoded Paper during the

2008 global financial crisis (in gray) and COVID-19 shock (in blue).

During this period, the decline and rebound in growth rates of these payments streams go hand in hand

with macroeconomic indicators. This is a good indication of the economic value associated with these

payments streams during the crisis period. Similarly, both Allstream and Encoded Paper values’ growth

rates show a dramatic drop in Apr 2020, showing the consequences of the COVID-19 shock. This implies

that payments data, which is available daily, could be exploited to quantify the effects of the COVID-19

shock on crucial macroeconomic indicators.
10Seasonally adjusted monthly GDP, RTS, WTS, HPI, CPI, UNE are obtained from Statistics Canada Tables 36-10-

0434-01, 20-10-0008-01, 20-10-0074-01, 18-10-0205-01, 18-10-0006-01, and 14-10-0287-01, respectively.
11Seasonality adjustments are performed because official macro indicators are released with similar adjustments.
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Figure 5: Growth rate comparisons of macro variables with Encoded Paper (E) and Allstream
(All). Highlighted in gray is the global financial crisis period; blue shows the ongoing COVID-19
period.
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Table 3: Pairwise correlations between YOY growth rates of the seasonality adjusted
macroeconomic variables and a few selected payments streams.*

E-value All-value N-value N-volume P-value All-volume C-value

GDP 0.85 0.81 0.81 0.74 0.67 0.67 0.59

RTS 0.80 0.70 0.77 0.73 0.76 0.71 0.62

WTS 0.83 0.82 0.66 0.56 0.54 0.52 0.59

HPI 0.53 0.57 0.27 0.15 0.51 0.11 0.64

CPI 0.51 0.22 0.44 0.30 0.38 0.31 0.56

UNE -0.87 -0.79 -0.85 -0.78 -0.68 -0.70 -0.55
*1 Correlations are calculated for the period Jan 2005 to July 2020.
*2 Payments streams: All-Allstream, E -Encoded Paper, N - Shared ABM Network, C - AFT Credit, D -

AFT Debit, P - POS Payments, and Y - EDI Remittances.
*3 Macroeconomic variables: GDP - Gross Domestic Products, RTS - Retail Trade Sales, WTS - Whole-

sale Trade Sales, CPI - Consumer Price Index, HPI - House Price Index, and UNE - Unemployment.
Value is the dollar amount, and volume is the number of transactions.

*3 Payment streams are arranged in ascending order of their correlation with GDP, and the order is kept
constant for all other macro variables.

3 Methodology

To exploit non-traditional and large-scale data sources, researchers have recently begun utilizing ML models

for economic prediction. The ML models are shown to efficiently handle wide- and large-scale data and can

manage collinearity. Furthermore, they are demonstrated to methodically capture non-linear interactions

between the predictors and the target variable. However, there are some challenges in using ML models for

macroeconomic predictions (Einav and Levin 2014a,b; Chakraborty and Joseph 2017).

The use of ML models sometimes leads to a loss of interpretability and the problem of overfitting.

These models also demand large-scale data, which is often hard to get in the context of macroeconomic

prediction (Chakraborty and Joseph 2017). However, the ML models employed in this paper, such as elastic

net regularization, support vector regression, random forest, and gradient boosting, are interpretable up to

a certain extent (Zou and Hastie 2005; Burges 1998; Breiman 2001; Friedman 2001). Also, the problem

of overfitting can be mitigated using cross-validation techniques (Hastie et al. 2009; Friedman et al. 2001).

Nonetheless, ML models are useful in cases when the emphasis is on improving prediction accuracy – which

is the primary focus of this paper. Richardson et al. (2018) shows that some of the ML models outperform

the commonly used nowcasting approaches, such as DFM, in nowcasting New Zealand’s GDP. Below we

briefly discuss the nowcasting models employed in this paper. This section borrows from Chapman and

Desai (2020). The interested reader is encouraged to read that paper, where we provide a fuller exploration

and comparison of the models referred to here and references therein.
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Consider a set X = {x1,x2, . . . ,xM} of M attributes (sometimes called predictors or independent vari-

ables) and a target y (dependent variable), each with N data points. This can be represented as a dataset

(X ,y) where X is of size N×M and y is a vector of size N×1. Let us denote ŷ as the predicted target, which

can be obtained using an OLS model as

ŷ(X ,w) = Xw, (1)

where w is a vector of unknown coefficients (weights) of size M×1. In OLS, we fit the linear model of the

form given in Equation 1, and the objective is to minimize the residual sum of squares between the observed

values y and the predicted values ŷ of the target,

min
w ‖y− ŷ(X ,w)‖2

2 , (2)

where ‖.‖∗ is L∗ norm. Such linear models have proven to be a valuable and straightforward model for

prediction due to the Gauss-Markov Theorem (if the underlying data satisfies a few assumptions about

the distributions of the error) and many years of practical use. However, when some of the predictors

are correlated, the OLS estimates become highly sensitive to random errors in the target. Also, OLS is

susceptible to the outliers in the data and, importantly, can only model relationships linear in the parameters

w. Therefore, it generally does not perform well on large and complex datasets (Hastie et al. 2009).

We also employ some of the recently popularized parametric and non-parametric machine learning

approaches such as elastic net (Zou and Hastie 2005), support vector machines (Smola and Schölkopf 2004),

random forest (Breiman 2001; Liaw and Wiener 2002), and gradient boosting (Friedman 2001). For each

considered model there are many variations proposed in the literature; however, we have focused on the

basic version of each model. We give a high-level description of each below.12.

The elastic net (ENT) is a regularized linear regression model. Here the objective is similar to that of

the OLS in Equation 2 with the addition of L1 and L2 penalties on how large the sum of the parameters w
can get.13 In an elastic net regression, the combination of L1 and L2 penalties allows for learning a sparse

model while encouraging grouping effects, stabilizing regularization paths, and removing limitations on the

number of selected variables (Zou and Hastie 2005).

Support vector regression (SVR) is another model useful for the problems with multiple predictors. It

uses a very different objective function compared to the OLS or ENT. The SVR is based on support vector

machines. These are algorithms whose task is to find a hyperplane that separates the entire training dataset

into, for example, two groups by using a small subset of training points (called support vectors). In the case

where there is no such hyperplane, it is modified to minimize the number of misclassified points in every

region (Burges 1998; Smola and Schölkopf 2004).

Another popular approach is random forest (RF) regression. It is a decision tree–based ensemble learn-

12For further details on these models, refer to Appendix B
13A regression model that uses only the L1 penalty is a Lasso regression, and a model that uses only the L2 penalty

is a Ridge regression (Hastie et al. 2009; Zou and Hastie 2005).
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ing method built using a forest of many regression trees. It is a non-parametric method and hence approaches

the multicollinearity problem slightly differently than parametric approaches such as OLS or ENT. Random

forest is also a bagging (bootstrap aggregation) approach, i.e., each tree is independently built from a sub-

set of the training dataset. Each sample could randomly select a subset of features from the available set

or the entire features set. The final prediction is performed by averaging the predictions of all regression

trees (Breiman 2001; Liaw and Wiener 2002).

Similar to the random forest, gradient boosting (GB) regression is a tree-based non-parametric ensemble

learning approach. However, unlike random forest, this approach is based on boosting in which a sequence

of weak learners (for example, small decision trees) are built on a repeatedly modified version of the training

dataset. The data modification at each boosting interaction consists of applying weights to each of the

training samples, and for successive iterations, the sample weights are modified (Friedman 2001).

3.1 Model Training and Cases Specifications

In the implementation of the above-discussed methods, we use the expanding window approach. We first

divide the dataset into two subsets: a training set and a testing set. Next, part of the training set, i.e., a

validation set, is kept aside for model tuning and cross-validation.14

We train the models in two steps. During the first step, we use the training and validation sets. For

each iteration (or fold) of the expanding window, we increase the training sample by one period and then

predict the next period from the validation set. At the end of this step, i.e., when we finish iterating over

the validation set, a few selected hyperparameters for each of the models are tuned using cross-validation.15

In the second step, the tuned models are used for prediction by reutilizing the expanding window approach

over the training and testing set. For the out-of-sample model evaluation, we use Root Mean Square Error

(RMSE) as the key performance indicator.16

As a benchmark, we first employ a linear regression model using OLS and then utilize more sophisti-

cated ML models discussed in section 3. The time horizon for nowcasting t + 1 is based on the payments

data availability. For example, if we use payments data available at t and first available lag (t−2 for GDP),

then the model F can be specified as

ĜDPt+1 = F (GDPt−2, Paymentst). (3)

In the naive benchmark, we use an autoregressive (AR) model using the first available lagged macro

variable. For GDP, retail, and wholesale trade sales, which are released with two months’ lag, we use the

second lag; and for all other macro variables, we use the first lag, as they are available with less than one

month lag. For example, to nowcast July’s GDP growth rates on August 1, we use official estimates of May

(second lag). Similarly, we use June’s official estimates to nowcast July’s unemployment growth rates.

14Refer to Figure 10 in Appendix D for schematic representation and further description.
15We choose the parameters which give the best performance (lowest RMSE) on both training and validation sets.
16All models utilized here are employed using Scikit-learn: Machine Learning in Python (Pedregosa et al. 2011).
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In the benchmark (or the base case), we use predictors from the naive case along with the Canadian

Financial Stress Indicator (CFSI) in the OLS model. For example, to nowcast July’s GDP on the first day

of August, we use CFSI for July’s and May’s GDP growth rate. The CFSI is a newly created composite

measure of systemic financial market stress for Canada. It is available immediately and is shown to track

the economic crisis (Duprey 2020). The CFSI is constructed using data from multiple market segments.17

Therefore, it is a useful predictor to nowcast macroeconomic indicators and hence is used as a benchmark

to compare information gain using payments data.

In the main case of interest, along with the predictors specified in the base case above, we use the

payments streams listed in Table 1. For example, to nowcast July’s GDP on the first day of August (at t+1),

we use payments data and CFSI for July (at t) and the GDP growth rate of May (at t − 2).18 The model

selection for the main case of each macroeconomic variable is performed using the following steps:

1. First, we compute prediction scores for payments streams for the selected macro variable using uni-

variate linear regression tests (see Appendix C for further details).

2. Next, we arrange payments stream in the descending order of their scores and incorporate one stream

at a time from that list for the prediction.

3. We repeat steps 1 and 2 for each regression method discussed in section 3 and get the in-sample

training and out-of-sample testing RMSEs for all cases.

4. Finally, we select the best model, i.e., the model with least in-sample training and out-of-sample

testing RMSEs, to report the nowcasting results.

4 Results and Discussion

We present the results of nowcasting for the cases specified above. Situations of severe shock are natural

areas in which our data and techniques are particularly useful. Therefore, we employ them to study the

economic crisis periods. We first demonstrate the usefulness of ACSS payments data during the global

financial crisis as a test case. Next, we use payments data to nowcast macroeconomic indicators for the

current COVID-19 period.

ACSS payments data used for these exercises range from Jan 2005 to Jul 2020 (p = 187 sample points).

YOY growth rates nowcasting of various macro variables for the benchmark and the main cases are per-

formed. The results of these exercises are discussed in the following sections.

17CFSI is computed using the data from the following seven market segments: the equity market, the Government
of Canada bonds market, the foreign exchange market, the money market, the bank loans market, the corporate bonds
market, and the housing market.

18Traditionally, predictions are performed at multiple time horizons, for example, extending from the start of the
month of interest until a day before the official release (Giannone et al. 2008; Galbraith and Tkacz 2018). However,
in this paper, we focus on the current period, which is critical for policymakers during crisis. Also, payments data are
shown to add the most value at nowcasting horizon, i.e., at t +1 (Galbraith and Tkacz 2018; Aprigliano et al. 2019).
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4.1 Global Financial Crisis

In this case, the in-sample training period is Jan 2005 to Oct 2008 (p = 46), and the out-of-sample testing

period is Nov 2008 to Jan 2010 (p = 14), i.e., the 2008 financial crisis period with significantly low growth

rates. In Table 4, we compare the nowcasting performance (in terms of RMSE) of the only best-performing

ML model (from the list of the following models: elastic-net, support vector machines, random forest, and

gradient boosting) on the main case data with the OLS on main case data and benchmarks.

ACSS payments data provide significant reductions in nowcasting RMSE for most of the macroeco-

nomic variables considered in this paper. The information gain using payments data is higher for the macro

variables, which have a higher delay period. For instance, we get 50 to 60% reduction in RMSE over AR

model and 38 to 44% RMSE reductions over benchmark case in nowcasting GDP, retail trade sale, and

wholesale trade sale (which are delayed by six to eight weeks).

Comparatively, the information gain using payments data is slightly lower for the macro variables, which

have a shorter delay period. For instance, we get about 20 to 50% reduction in RMSE over AR model and

12 to 21% reductions in RMSE over benchmark in nowcasting unemployment, CPI, and HPI (which are

delayed by only a week or two). Except for CPI and HPI, all other main case predictions are statistically

significant for the Diebold-Marino test using the benchmark.19

It is worth noting that the major gains in nowcasting accuracy are achieved by using payments data, i.e.,

we get 10 to 30% reduction in RMSE when payments data is used in the OLS model. However, the ML

models contribute to increasing prediction accuracy by 3 to 20% across all targets.

In nowcasting GDP and retail trade sale and wholesale trade sales, the gradient boosting regression

(a non-parametric and non-linear model) performs better than other models considered in this paper. The

linear and parametric models, such as support vector regression and elastic net, perform slightly better in

nowcasting CPI, HPI, and unemployment. However, overall the gradient boosting model gives the consis-

tently better performance across all targets. This is probably due to its ability to efficiently handle multiple

predictors and capture sudden and large changes in interaction between the predictors and target variables

during economic crisis periods.

Visual comparisons of in-sample and out-of-sample predictions are depicted in Figure 6. In all cases,

including the payments data provides downturn and recovery indications that are much better than the bench-

mark case in both in-sample and out-of-sample periods. We conjecture that this is due to the new information

provided by the payments data and the flexible ML models that allow this data to provide better predictions.

In the prediction of almost all of the targets, the Allstream value and Encoded Paper value scores20 high-

est among the payments steams, and they are identified as the most important streams for macroeconomic

nowcasting. In the case of GDP nowcasting, Allstream, Encoded Paper, ABM Network, and AFT Credit

values are more useful. Similarly, for RTS growth rate nowcasting, along with the Allstream and Encoded

Paper values, POS Payments, AFT Credit, and AFT Debit values are more beneficial.

19We recognize that Diebold-Mariano test has poor finite-sample properties; however, we use it to be comparable
with similar papers where it has been used, for example (Chernis and Sekkel 2017; Aprigliano et al. 2019).

20See Figure 9 in Appendix C for details on prediction scores for selected predictors.

17



Table 4: Global financial crisis: RMSE on testing period for seasonally adjusted YOY
growth rate nowcasting of macro variablesa

Targetb ARc Benchmarkd Main-OLSe Main-MLf RMSE Reduction (%)g

GDP 1.63 1.18 0.73** 0.66h** 44

RTS 5.12 4.12 3.32** 2.54h*** 38

WTS 5.74 4.73 3.67* 2.76h*** 42

CPI 0.61 0.54 0.49 0.47i 12

HPI 0.67 0.39 0.34 0.33i 16

UNE 6.86 6.21 5.08* 4.90i* 21
a In-sample training period: Jan 2005 to Oct 2008 (p = 46) and out-of-sample testing period: Nov 2008

to Jan 2010 (p = 14). Note that the seasonality adjustment of the payments streams is performed for the
sample up to Jan 2010, i.e., including the test set.

b GDP-Gross Domestic Product, RTS-Retail Trade Sales, WTS-Wholesale Trade Sales, CPI-Consumer
Price Index, HPI-New House Price Index, and UNE-Unemployment. Note, we use the latest release of
these targets. It is more appropriate for such exercises to use the first-release; however, we do not have
the historic (real-time releases) data for some of these macro variables.

c Autoregressive model using the first available lagged macro variable (for GDP, RTS, and WTS second
lag and others first lag).

d For benchmark, we use OLS with CFSI and the first available lagged macro variable.
e For the main-OLS case, we use payments data along with the predictors in the benchmark case in the

OLS model.
f For the main-ML case, we use payments data along with the predictors in the benchmark case and only

show RMSE of the best-performing models chosen from the list of the following models: elastic net,
support vector machines, random forest, and gradient boosting.

g Percentage reduction in RMSE over benchmark using main ML model.
h Gradient boosting regression model performs the best, giving an additional 10 to 20% reduction over

OLS with the main case, i.e., when payments data is included. These indicate the RMSE reductions due
to ML models over OLS. Also, for gradient boosting, we explore and tune the following hyperparame-
ters: number of estimators (trees), maximum depth of each estimator, and learning rate.
Refer to Appendix B, C, and D for additional details on the model and tuning procedure.

i Support vector regression model performs the best, giving an additional 3 to 5% reduction over OLS
with the main case. For SVR model, we explore and tune the following hyperparameters: kernel type
and regularization parameter value.

*, **, *** denote statistical significance at the 10, 5, and 1% level, respectively, for the Diebold-Marino test
using the benchmark.

18



Figure 6: Comparison of main case nowcasts during global financial crisis with the benchmark.
The in-sample training period is Jan 2005 to Oct 2008 and the out-of-sample testing period is Nov
2008 to Jan 2010 (highlighted in gray).
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4.2 Covid-19 Shock

In this section, we present the results of macroeconomic nowcasting for the ongoing COVID-19 period. For

this case, we have a longer in-sample training period, i.e., Jan 2005 to Mar 2020 (p = 183), compared to the

previous case. The trained models’ performance is examined on the out-of-sample testing period ranging

from Apr to Jul 2020. Since the testing sample is tiny and our primary focus is on the crisis period, we select

the best-performing model on the global financial crisis for predictions (i.e., the models used for predictions

in Table 4). The predictions for May, Jun, and Jul 2020 are presented in Table 5.

For May 2020, our model predictions using payments data are much closer to the officially released

values compared to the benchmark. In this case, the benchmark model could correctly predict the sign

(which is straightforward due to sharp drops in target values), but the actual predictions fall short of official

values. For this period, the nowcasting of macro variables that have higher delay periods, such as GDP,

RTS, and WTS, are more accurate than those with shorter delay periods (CPI, HPI, and UNE). For Jun and

Jul 2020, our model predicts faster recovery of all macro variables. This is in line with the information seen

in most payments streams showing signs of recovery starting in Jun 2020. In contrast, the benchmark model

predicts recovery at a much lower rate and only in Jul 2020. Note that the official estimations of all macro

variables for July 2020 will be available on Oct 1, 2020.

Employment is the hardest hit by COVID-19, and our model predicts that YOY growth rates of unem-

ployment increased by 80%, 74%, and 63% in May, Jun, and Jul 2020, respectively. Model prediction falls

short of the officially released estimates for that period; however, our model performs much better than the

benchmark model, which could not capture the drastic effects of COVID-19 shock on unemployment. Sim-

ilarly, our model performance is more reliable than the benchmark of CPI and HPI but falls short of actual

predictions in May and June 2020. According to our model predictions, YOY growth rates of CPI and HPI

for July 2020 will be 1.37 and 1.46. The visual comparisons of in-sample and out-of-sample predictions are

depicted in Figure 7. In all cases, including the payments data provides downturn and recovery indications

much faster than the benchmark case.

Using ML models gives an additional improvement in nowcasting accuracy over the OLS model with

the payments data. However, ML models’ use sometimes leads to a loss of interpretability and the problem

of overfitting. Nonetheless, the ML models employed in this paper are somewhat interpretable, and the

problem of overfitting is mitigated up to a certain extent using cross-validation techniques. Furthermore, we

find ML models useful when the emphasis is on improving prediction accuracy – which is the primary focus

of this paper.

The macro variables considered in this paper are complex and depend on a multitude of economic

activities. Independently, payments data, although they capture a variety of economic transactions, might

not be sufficient, but could be valuable in addition to other predictors traditionally used in macroeconomic

nowcasting. Moreover, the ACSS does not capture all retail payments instruments, and some of these, e.g.,

credit card and e-transfer, have seen strong growth during the COVID-19 period, pointing to some of the

limitations of this data for the current crisis. Nevertheless, our results indicate that the timeliness and variety

in ACSS payments data make it very useful for economic predictions during the crisis.
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Table 5: COVID-19 Shock: Seasonally adjusted YOY growth rate predictions for May to July 2020.a

May 2020 Predictions Jun 2020 Predictions Jul 2020 Predictionse

Targetb Official Benchmarkc Maind Official Benchmark Main Benchmark Main

GDP -13.8 -5.81 -17.1 NA -14.6 -13.6 -6.47 -2.97

RTS -18.4 -7.58 -25.2 NA -20.8 -9.89 -5.96 1.58

WTS -17.7 -3.32 -17.9 NA -17.8 -14.8 -9.60 -0.71

CPI -0.29 -0.19 -0.24 0.73 -0.23 0.68 0.77 1.37

HPI 1.06 0.53 0.57 1.26 0.86 1.15 1.15 1.46

UNE 139.7 8.87 78.3 118.4 10.11 72.1 7.98 62.6
a In-sample training period: Jan 2005 to Mar 2020 (p = 183) and out-of-sample testing period: Apr to Jul 2020

(p = 4). Note that the seasonality adjustment of the payments streams is performed for the sample up to July 2020,
i.e., including the test set. Also, since the test sample is tiny, we do not provide out-of-sample RMSEs.

b GDP-Gross Domestic Product, RTS-Retail Trade Sales, WTS-Wholesale Trade Sales, CPI-Consumer Price Index,
HPI-New House Price Index, and UNE-Unemployment. Note, we use the latest release of these targets.

c For the benchmark, we use OLS with CFSI and the first available lagged macro variable (for GDP, RTS, and WTS
second lag and others first lag).

d For the main case we use payments data along with the variables from the benchmark case and show the prediction
of the best-performing model from Table 4 for each predictor (i.e., we use gradient boosting for GDP, RTS, and WTS
and support vector regression for CPI, HPI, and UNE).

e On Aug 1, 2020, i.e., at the nowcasting horizon for Jul 2020, we do not get official estimates of any macro variables;
therefore, they are not included in the table. However, at the time of writing this paper, the Jul 2020 official estimates
of the target variables were available: GDP =-3.9, RTs =2.9, WTS =1.4, CPI =0.42, HPI =1.7, and UNE =89.2 (all
seasonally adjusted YOY growth rate).
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Figure 7: Comparison of main case nowcast with benchmark during COVID-19 shock period. The
in-sample training period is Jan 2005 to Mar 2020 and the out-of-sample testing period is Apr to
Jul 2020 (highlighted in gray).
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5 Conclusions

We utilize supervised ML techniques on Canadian retail payments system data to nowcast various macroe-

conomic indicators during economically stressed periods. Our results indicate that the major gains in now-

casting accuracy are achieved using payments data; However, the ML models increase prediction accuracy.

Overall, we see a 15% to 45% reduction in RMSE for nowcasting different macroeconomic series over the

benchmark when the payments data in conjunction with ML methods applied to the global financial cri-

sis. We also noted that the information gain using payments data is higher for the macro variables with a

longer delay period than those with shorter delay periods. While we are unable to use RMSE for the current

COVID crisis, we document that the nowcasts from our model are currently much closer to June and July

2020 macroeconomic data than the benchmark model predictions.

We observe that ML models’ performance changes slightly for different nowcasting cases; however, the

gradient boosting model gives good performance for most of the cases. Our study also exhibits that the

ACSS Allstream and Encoded Paper values are the most important predictors and have the most significant

contributions for macroeconomic nowcasting. We demonstrate that the payments data carry useful infor-

mation about extreme financial events. We also identify some of the limitations of ACSS payments data

for nowcasting, especially when official estimates are released with a short delay. To conclude, this study

signifies the importance of both retail payments systems data and ML models for nowcasting and extends

the set of information and the tools at the disposal of macroeconomic nowcasters during a crisis.
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A ACSS Payments Instruments Details

Overview of the different payment streams in the ACSS payment system. Note: the first letter indicates the

stream-ID, then stream label followed by a short description.

• A: ABM Adjustments - POS payment items used to correct errors from shared ABM network trans-

actions (Stream N)

• B: Canada Savings Bond - Part of Government items. It includes bonds (Series 32 and up and Pre-

mium Bonds) issued by the Government of Canada.

• C: AFT Credit - Direct deposit such as payroll, account transfers, government social payments, busi-

ness to consumer non-payroll payments, etc.

• D: AFT Debit - Pre-authorized debit (PAD) payments such as bills, mortgages, utility payments,

membership dues, charitable donations, RRSP investments, etc.

• E: Encoded Paper - Paper bills of exchange which includes cheques, inter-member debits, money

orders, bank drafts, settlement vouchers, paper PAD, etc.

• F: Paper-Based Remittances - These are used for bill payments and are identical to electronic bill

payments (Stream Y).

• G: Receiver General Warrants - Part of Government Items. Paper payment items payable by the

Receiver General for Canada

• H: Treasury Bills and Old-style Bonds - Part of Government paper items. Certain Government of

Canada paper payment items such as Treasury bills, old-style Canada Savings Bonds, coupons, etc.

• I: ICP Regional Image Captured Payment - Items entered into the ACSS/USBE on a regional basis

• J: On-line Payments - Electronic payments initiated using a debit card through an open network, most

commonly the internet, to purchase goods and services

• K: On-line Payment Refunds - Credit payments used to credit a Cardholder’s Account in the case of

refunds or returns of an Online Payment (Stream J)

• L: Large-value Paper - This is similar to Stream E; starting in Jan 2014, this stream merged into E

• M: Government Direct Deposit - Recurring social payments such as payroll, pension, child tax bene-

fits, social security, and tax refunds.

• N: Shared ABM Network - POS debit payments used to withdraw cash from a card-activated device.

• O: ICP National - Image Captured Payments are electronically imaged paper items that can be used

to replace the physical paper item: cheques, bank drafts, etc.
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• P: POS Payments - Point-of-service payment items resulting from the point-of-sale purchase of goods

or services using a debit card

• Q: POS Return - Credit payments used to credit a cardholder’s account in the case of refunds or

returns of a POS payment (Stream P)

• R: ICP Returns - Image captured payment returned items entered into the ACSS/USBE on a national

basis

• S: ICP Returns National - National image captured payment returned items entered into the AC-

SS/USBE on a national basis

• U: Unqualified Paper Payment - Paper items that are all other bills of exchange which do not meet

Canada Payments Association requirements for Encoded Paper classification

• X: EDI Payment - Electronic data interchanges are an exchange of corporate-to-corporate payments

such as purchase orders, invoices, and shipping notices

• Y: EDI Remittances - Electronic data interchange remittances are used for Electronic Bill Payments

such as online bill payments and telephone bill payments

• Z: Computer Rejects - Encoded paper items whose identification and tracking information could not

be verified through automated processes
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B Machine Learning Models

In this section, we briefly discuss the machine learning models employed for nowcasting. For each con-

sidered model there are many variations proposed in the literature; however, we have focused on the basic

version of each model. Note that all models are implemented using the Scikit-learn machine learning li-

brary (Pedregosa et al. 2011). See Appendix D for more details on the model training, tuning, and cross-

validation procedures.

B.1 Elastic Net Regularization

Elastic net is a regularized linear regression model. In ENT, the objective is similar to that of the OLS with

the addition of L1 and L2 penalties. A regression model that uses only the L1 penalty is called a Lasso

regression, and a model that uses only the L2 penalty is called a Ridge regression. In ENT, the combination

of L1 and L2 penalties allows for learning a sparse model like Lasso where few of the weights are non-zero.

It also maintains the advantages of the Ridge regression such as encouraging grouping effects, stabilizing

regularization paths, and removing limitations of the number of selected variables (Zou and Hastie 2005;

Hastie et al. 2009).

Consider a set X = {x1,x2, . . . ,xM} of M attributes (independent variables) and a target y (dependent

variable) and denote ŷ as the predicted target. With these specifications, in ENT, the objective function to

minimize is
min
w ‖y− ŷ(X ,w)‖2

2 +λ1 ‖w‖1 +λ2 ‖w‖2
2 , (4)

where w is a vector of unknown coefficients, and ‖.‖∗ is L∗ norm. This procedure can be viewed as a

penalized least squares method with penalty factor λ1 ‖w‖1 + λ2 ‖w‖2
2. The ENT is particularly useful

with multiple correlated features. Note that we explore and tune the following parameters: λ1 and λ2

by controlling constant α that multiplies the penalty terms, mixing parameter l1 ratio and the maximum

number of iterations (see Scikit-learn library documentation for details (Pedregosa et al. 2011)).

B.2 Support Vector Regression

Support vector regression is another model useful for the problems with multiple predictors. It uses a

different objective function compared to the OLS or ENT. The SVR is based on support vector machines

where the task is to find a hyperplane that separates the entire training dataset into, for example, two groups

by using a small subset of training points (called support vectors). In SVR the goal is to find a function, for

instance, a linear function f (xi) = wT xi+b (where b is a bias and i = 1,2, . . .N), that has at most ε deviation

from the actual y for all the training data. Therefore the objective function to minimize is

1
2
‖w‖2

2 +C
N

∑
i=1
|yi− f (xi)|ε , (5)
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subject to

yi− f (xi)≤ ε (6)

f (xi)−yi ≤ ε, (7)

where N is the number of training samples and C is a regularization parameter constant (Smola and Schölkopf

2004). A different type of kernel functions (linear, polynomial, sigmoid, etc.) can be specified for the de-

cision function; therefore, it is versatile. For further details of SVM theory and formulation, refer to Smola

and Schölkopf 2004; Hastie et al. 2009. Note that we explore and tune the following hyperparameters:

kernel type, and regularization parameter constant C (refer to Pedregosa et al. 2011 for details).

B.3 Random Forest

Another popular approach is the random forest regression. It is a decision tree–based ensemble learning

method built using a forest of many regression trees. It is a non-parametric method and hence approaches

the multicollinearity problem slightly differently than parametric approaches such as OLS or ENT. In RF,

each tree is independently built from a bootstrapped subset of the training dataset. Each bootstrap sample

could randomly select a subset of features from the available set or the entire features set. The final prediction

is performed by averaging the predictions of all regression trees. The procedure is visually depicted in Fig. 8

(left). The two levels of randomness (i.e., the random subset of sample and features) incorporated to build

decision trees can help to reduce variance in the predictions. RF has been shown to handle highly non-linear

interactions between multiple predictors and a target variable (Breiman 2001; Liaw and Wiener 2002).

Figure 8: Random forest with K trees using n samples and m features for each tree.

Note, we explore and tune the following hyperparameters: the number of trees in the forest n estimators,

the maximum depth of the tree max depth, and the minimum number of samples required to split an internal

node min samples split (refer to Pedregosa et al. 2011 for details).
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B.4 Gradient Boosting

Similar to the random forest, gradient boosting (GB) regression is a tree-based non-parametric ensemble

learning approach. It is a general technique of boosting in which a sequence of weak learners (for example,

small decision trees) are built on a repeatedly modified version of the training dataset. The data modification

at each boosting interaction consists of applying weights to each of the training samples, and for successive

iterations, the sample weights are modified (Friedman 2001; Friedman et al. 2001).

Gradient Boosting Regression Trees are additive models whose prediction ŷ for a given input X for each

instance i can be written as

ŷi = Hp(Xi) =
p

∑
1

hp(Xi), (8)

where hp are weak learners, for example, decision trees (Friedman et al. 2001) and p is number of learners.

The model HP(X) is built as

Hp(X) = Hp−1(X)+ γhp(X), (9)

where the newly added weak learner hp (decision tree) is used in order to minimize a sum of losses Lp:

hp =
arg min

p Lp. (10)

The γ is learning rate used to regularize the contribution of each new weak learner.

Note: we explore and tune the following hyperparameters: The number of trees in the forest n estimators,

learning rate, and the maximum depth of the tree max depth. Also, both random forest and gradient boost-

ing techniques are interpretable up to certain extent. These models use decision trees as their base learners.

These decision trees perform feature selection from the provided set by selecting appropriate split points.

This information can be used to measure the importance of each feature (see Pedregosa et al. 2011 for

additional details).
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C Feature Selection

To select k best predictors from the set of available attributes, we employ the SelectKBest method from

Scikit-learn (Pedregosa et al. 2011). This method removes all but the k highest-scoring features using

univariate linear regression tests. It is a linear model for testing the individual effect of each of many

regressors. To select K-best variables, it employs the following steps: First, the correlation between each

predictor and the target is computed. Next, the computed correlations are converted to F-scores (using the

F-test), then to p-values. Finally, these F-scores with p-values are used to select k highest-scoring features.

In Figure 9, we plot the scores of a few of the selected payments streams for GDP (top) and Unemploy-

ment (bottom) over the expanding window for the period ranging from Jan 2007 to Dec 2015. The F-scores

are steady over the entire training period. For both GDP and Unemployment, the ACSS Allstream and En-

coded Paper values are the most crucial predictor over the entire training period. Starting in early 2009, the

scores for most of the features increase rapidly. This is in line with the global financial recession starting

point, and scores for all streams reduce slightly after the recovery period. This indicates the importance of

payments data during the crisis period. The scores for most of the streams remain steady throughout the

remaining training periods.

Figure 9: The F-score of a few of the selected streams for GDP and Unemployment (UNE). These
plots are obtained after each training session of the expanding window approach over the period
ranging from Jan 2007 to Dec 2015.
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D Model Parameter Selection and Cross-Validation

The hyperparameter tuning and cross-validation of ML models employed in this paper are performed using

the following approach.

• Split the original dataset into a training set and testing set.

• Keep aside part of the training set for cross-validation, as shown in Figure 10.

• Select the range of hyper-parameters for each model.

• Using the selected parameter, for each step (or fold) of the expanding window do the following:

(a) Fit the model using the training sample and get the training RMSE.

(b) Using the trained model, predict for the next point in the validation set.

(c) Get the average training RMSE across all folds and the validation RMSE.

(d) Select the parameters for which the average testing RMSE is low and close to the validation score.

• Use the tuned model to get the RMSE for the testing set.

This is a simplified procedure that assists in selecting the hyperparameters for each ML-model and hence

reduces the chances of overfitting, consequently improving out-of-sample performance. For more sophis-

ticated approaches for cross-validation and model tuning, refer to the following articles and references

therein (Arlot and Celisse 2010; LeCun et al. 2015; Goodfellow et al. 2016).

Figure 10: Schematic of five-fold expanding window approach for training, cross-validation, and
out-of-sample prediction. The available dataset is divided into a training set, validation set, and
testing set. In each fold the (�) represents the training set and (•) represents the test set.
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