Forecasting with Economic News

L. Barbagliaa,1, S. Consolia, S. Manzanb

aEuropean Commission Joint Research Centre
bZicklin School of Business, Baruch College, United States

2020 Banca d’Italia and Federal Reserve Board Joint Conference on Nontraditional Data & Statistical Learning

1The views expressed are purely those of the writer and may not in any circumstance be regarded as stating an official position of the European Commission.
Consider news as additional data source for economic forecasting:

- Build **fine-grained aspect-based** economic sentiment indicators
- Forecast/nowcast in **real-time** major economic variables in the US
- **In-sample** and **out-of-sample** performance assessment
- Explore the performance at **different quantile** levels
Fine-Grained Aspect-Based Sentiment analysis

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term selection</td>
<td>Baker et al. (2016)</td>
</tr>
<tr>
<td></td>
<td>Shapiro et al. (2020)</td>
</tr>
<tr>
<td>Topic modeling</td>
<td>Bybee et al. (2019)</td>
</tr>
<tr>
<td></td>
<td>Thorsrud (2016)</td>
</tr>
</tbody>
</table>

Our sentiment analysis approach is:

Aspect-based: sentiment computed only about a token-of-interest (ToI) → identify words that characterizes the ToI based on some semantic rules

Fine-grained: assign a sentiment score between $[-1, 1]$ to a sentence based on dictionary customized for economic applications → human-annotated scores of the Loughran & McDonald (2011) lexicon
Fine-Grained Aspect-Based Sentiment analysis

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term selection</td>
<td>Baker et al. (2016)</td>
</tr>
</tbody>
</table>

Our sentiment analysis approach is:

Aspect-based: sentiment computed only about a token-of-interest (ToI) → identify words that characterizes the ToI based on some semantic rules

Fine-grained: assign a sentiment score between $[-1, 1]$ to a sentence based on dictionary customized for economic applications → human-annotated scores of the Loughran & McDonald (2011) lexicon
Natural Language Processing (NLP) pipeline

If the sentence contains the token of interest, apply this NLP pipeline:

- **Tokenization and stop word filtering**
 - text is split into words
 - removed common words or punctuation (e.g., the, a, :, !, ;-)

- **Lemmatization**: transform a word in its base form (e.g., is \rightarrow be)

- **Part-Of-Speech and Dependency tagging via** **spaCy**

- **Negation handling**

- **Tense** (present, past, future, NA) and location detection

- **Assign a sentiment to the words using a set of** **semantic rules** and a customised **economic dictionary**
News data

Data from Dow Jones Data News Analytics (DNA):

- Articles from January 1984 to end of December 2019
- DNA categories: Commodity/Financial Market, Economic and Corporate/Industrial, Political/General
- **6.6 million articles** and 4.2 billion words
- **Major US outlets:**
 - New York Times
 - Wall Street Journal
 - Washington Post
 - Dallas Morning News
 - San Francisco Chronicle
 - The Chicago Sun-Times
- 24 economic sentiment indicators (6 **topics** and 4 **tenses**)

Luca Barbaglia (EC JRC) | Forecasting with Economic News | Nontraditional data
Tokens-of-Interest (ToI)

We construct six indicators of economic sentiment that capture different aspect of economic activity and policy:

- **Economy**: economy
- **Financial Sector**: bank, derivatives, lending, borrowing and permutations of [banking, financial] with [sector, commercial, and investment]
- **Inflation**: inflation
- **Output**: manufacturing and permutations of [industrial, manufacturing, construction, factory, auto] with [sector, production, output, activity]
- **Monetary Policy**: central bank, federal reserve, money supply, monetary policy, federal funds, base rate, and interest rate
- **Unemployment**: unemployment
"Her comments played into the concern that after years of uneven growth, the US economy is becoming more vulnerable to the global slowdown."

- **ToI & location**: economy & US
- **Rule**: verb followed by adjectival complement and adverbial modifier
- **Verb**: become (sentiment: 0; present tense)
- **Adjectival complement**: vulnerable (sentiment: -0.5)
- **Adverbial modifier**: more (sentiment: 0.4)

Overall sentiment: \(-0.5 + (-0.5 \times 0.4) = -0.7\)
Economic Sentiment Measures

ECONOMY

FINSECTOR

INFLATION

MONPOL

OUTPUT

UNEMPLOYMENT

Smoothed with a 30-day MA. Grey area: NBER recessions

Luca Barbaglia (EC JRC) Forecasting with Economic News Nontraditional data
Forecasting setup

The goal is to predict the first release in day d in period t

- In-sample and out-of-sample with expanding window 2002-19
- Consider forecast horizons h from 1 week to 1 year
- Include all available information at time $d - h$

Real-time variables\(^2\):

- **Dependent variables**: GDPC1, INDPRO, PAYEMS and CPIAUCSL
- **additional regressors**: Chicago Fed National Activity Index (CFNAI) and National Financial Condition Index (NFCI)
- 24 economic *sentiment indicators* added one at the time

\(^2\)Source of macro variables: Saint Louis Fed ALFRED

Luca Barbaglia (EC JRC) Forecasting with Economic News Nontraditional data 8 / 17
Forecasting models augmented with sentiment

Unrestricted MIDAS approach (Marcellino Schumacher, 2010)

\[Y_t^d = \sum_{p=1}^{P} \beta_{h,p} Y_{t-p}^{d-h} + \sum_{q=1}^{Q} \gamma_{h,q} CFNAI_{t-q}^{d-h} + \sum_{w=1}^{W} \delta_{h,w} NFCI_{t,w}^{d-h} + \eta_h S_{d-h} + \epsilon_t^d \]

The forecasting models:

- **AR**: \(\gamma_{h,q}, \delta_{h,w}, \eta_h = 0 \) for all \(w, q \)
- **ARS**: the AR model augmented with sentiment \((\gamma_{h,q}, \delta_{h,w} = 0) \)
- **ARX**: the model that includes lags, CFNAI and NFCI \((\eta_h = 0) \)
- **ARXS**: ARX model with sentiment
Forecasting models augmented with sentiment

Unrestricted MIDAS approach (Marcellino Schumacher, 2010)

\[Y_t^d = \sum_{p=1}^{P} \beta_{h,p} Y_{t-p}^{d-h} + \sum_{q=1}^{Q} \gamma_{h,q} CFNAI_{t-q}^{d-h} + \sum_{w=1}^{W} \delta_{h,w} NFCI_{t,w}^{d-h} + \eta_h S_{d-h} + \epsilon_t \]

The forecasting models:

- **AR**: \(\gamma_{h,q}, \delta_{h,w}, \eta_h = 0 \) for all \(w, q \)
- **ARS**: the AR model augmented with sentiment \((\gamma_{h,q}, \delta_{h,w} = 0)\)
- **ARX**: the model that includes lags, CFNAI and NFCI \((\eta_h = 0)\)
- **ARXS**: ARX model with sentiment
In-sample R^2

- Upward slope R^2 curves: effect of the information flow
- Augmenting AR always useful, in particular at forecasting horizons
- Sentiment useful also in ARX with CFNAI and NFCI
Macroeconomic releases decrease RMSPE (largest decline in t)
- GDPC1: *Economy* (fu), *Financial Sector* (pr/pa) → max gain 11.4%
- INDPRO: *Unemployment* (pr), *Output* (pa) → average gain 1.3%
Out-of-sample: DM test statistics

Negative statistics below the critical value: model outperforms the ARX
In-sample: Pseudo-R^2 quantile regression

QARX better than QAR in particular for low quantiles

Economy and *Output* most relevant in for median and low quantiles

Inflation and *Financial sector* selected for high quantiles
Out-of-sample quantile regression: RMSPE

Luca Barbaglia (EC JRC) Forecasting with Economic News Nontraditional data
Out-of-sample quantile regression: DM test

Luca Barbaglia (EC JRC)
Forecasting with Economic News
Nontraditional data
Conclusions

- Advanced NLP to extract economic sentiment from news

- Sentiment is useful in forecasting, while marginally in nowcasting

- Possible explanation: reporting of economic news is not only about the past events, but also discusses future scenarios

- Other works:
 - Explore the narrative aspect of our sentiment algorithm
 - Application to EU (translate news to English)
 - Compare with other approaches: EPU, LMD, ...
References

- Bybee, Kelly, Manela, Xiu (2020) The structure of economic news (No. w26648) *National Bureau of Economic Research*

Our **working papers** is available at:

Sentiment analysis: benefits and costs

Advantages

- easy to interpret and create a narrative
- sentiment is expressed as a number in \([-1, 1]\)

Disadvantages

- the set of rules mapped by the algorithm is limited
- this approach works only with the English language
 → we rely on the machine learning eTranslation service by the European Commission
World Bank Ontology

Selection of economic synonyms of an economic concept with SPARQL queries on the World Bank Group Ontology:

- Classification schema of economic concepts to describe and link language and terminology
- Concepts are stored and linked in a logical hierarchy and can relate across subject areas

For instance, Industrial Production:

⇒ manufacturing; industrial output; secondary sector; industry productivity; manufacturing development; industrial growth; manufacturing productivity ...

http://vocabulary.worldbank.org/thesaurus.html
Kernel density of the economic sentiment measures

- ECONOMY
- FINSECTOR
- INFLATION
- MONPOL
- OUTPUT
- UNEMPLOYMENT

expansion recession
In-sample Lasso variable selection

GDPC1

- GDPC1
- NFCI
- CFNAI
- UNEMPLOYMENT present
- UNEMPLOYMENT past
- UNEMPLOYMENT future
- OUTPUT present
- OUTPUT past
- OUTPUT nan
- OUTPUT future
- MONPOL present
- MONPOL past
- MONPOL future
- INFLATION present
- INFLATION past
- INFLATION nan
- INFLATION future
- FINSECTOR present
- FINSECTOR nan
- FINSECTOR future
- ECONOMY present
- ECONOMY past
- ECONOMY nan
- ECONOMY future

t−4 t−3 t−2 t−1 t release

statistic

-5.0 -2.5 0.0 2.5 5.0

main