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Abstract
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1 Introduction

The recognition that earnings distributions reflect both worker and firm heterogeneity dates back

decades. In his overview of earnings functions, Robert Willis (1986) highlighted the presence of

“an imbalance in the human capital literature which has emphasized the supply far more than the

demand for human capital”.

The growing availability of matched employer-employee records has led to a broader examina-

tion of firm-level differences.1 A workhorse of the applied literature is the two-way fixed-effect

model popularized by Abowd et al. (1999). This approach subsumes unobserved heterogeneity of

workers and firms into additively separable measures whose contribution to the variance of ear-

nings can be transparently quantified. In this context, the covariation between firm and worker

fixed effects is often interpreted as evidence of non-random sorting of workers across employ-

ers, or lack thereof. An influential body of work on matching in the labor market,2 however,

cautions against drawing inference about match-specific productivity from fixed effect estima-

tes. This follows from the observation that non-linear, and possibly non-monotonic, patterns of

complementarity are hard to characterize within the boundaries of additively separable models of

worker and firm heterogeneity.3 These considerations inform richer empirical frameworks (e.g.,

Bonhomme et al., 2018; Lentz et al., 2018) that nest non-linear matching mechanisms within set-

tings with two-sided unobserved heterogeneity. To preserve tractability these approaches resort

to dimension reduction techniques based on grouping.

Across the range of methods and data sources, most studies lend support to the hypothesis

that genuine firm-level earnings variation occurs above and beyond what is captured by indu-

stry and occupation heterogeneity. When subsumed within employer fixed or random effects,

this variation reflects firm-specific premia for otherwise identical workers as well as unobserved

differences in work force composition. Therefore the interpretation of evidence on firm-level va-
1E.g., Card et al. (2013), Card et al. (2016), Song et al. (2018), Lamadon et al. (2019).
2See Shimer and Smith (2000); Eeckhout and Kircher (2011).
3For this reason, several studies (e.g., Hagedorn et al., 2017; de Melo, 2018; Jarosch et al., 2019) pursue a

different route and posit explicit structural assumptions to identify the productivity gains associated to specific
matching patterns, while others highlight the role of amenities and non-pecuniary returns for matching (Sorkin,
2018).
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riation depends on how one accounts for worker-level heterogeneity. A common approach is to

rely on realized earnings to draw inference about worker ability; that is, ex-ante worker diffe-

rences are teased out from ex-post realizations of labor market returns. By design, this implies

that distinct dimensions of worker heterogeneity are lumped together, conflating returns to, and

endowments of, different individual characteristics.4

In this paper we link two direct, ex-ante measures of worker skills to administrative earnings

data from Sweden, matching employees to their employers. The skill measures summarize cog-

nitive and non-cognitive abilities that are tightly linked to individual labor market outcomes, even

over decade-long intervals. Our analysis reveals the presence of significant skill sorting across

firms and, perhaps more importantly, suggests that worker sorting is associated to pronounced

firm-level heterogeneity in returns to identical worker skills. That is, we document how similar

skill bundles command very different returns across firms. This observation carries non-trivial

implications since workers cannot rent out their different skill endowments to different employ-

ers; this basic indivisibility problem was originally examined in theoretical work by Mandelbrot

(1962) and later revisited by Heckman and Scheinkman (1987). The latter paper also rejects the

null hypothesis of homogeneous pricing of individual skills in PSID data.

We show that ex-ante measures of idiosyncratic ability are not only a helpful complement to

account for heterogeneity in returns to identical bundles of skills but can be used to identify the

firm-specific returns to each separate attribute. To this purpose, we develop a tractable two-step

procedure that recovers estimates of the heterogeneous firm-level skill returns. Then, we use our

estimates to characterize the sorting of workers to firms in a setting in which multi-dimensional

heterogeneity implies varying degrees of worker-firm complementarity. This exercise is relevant

in light of the growing interest in multidimensional sorting and mismatch in equilibrium assign-

ment models (see Lindenlaub, 2017; Lindenlaub and Postel-Vinay, 2017; Guvenen et al., 2020).

Figure 1 illustrates some stark features of the distribution of skills in the cross-section of

worker-firm matches. The left panel of Figure 1 shows a scatter of the averages of cognitive

4Similar considerations affect the interpretation of estimates of the returns to schooling in the absence of direct
proxies for ability. These have been the object of much debate for decades (see Griliches, 1977).
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and non-cognitive worker skills across firms and industry sectors. It is apparent that: (i) the va-

riation in skill intensity across firms is much wider than what is measured between two-digit

industry sectors;5 (ii) while cognitive or non-cognitive skill intensities are positively correlated,

large differences occur in their relative composition.

Figure 1: Firms’ Skill Intensities

(a) Firms (b) Industry sectors

Notes: The figure plots average cognitive (x-axis) and non-cognitive (y-axis) skills of workers (males aged 20–60)
in firms and 19 non-primary and non-public broad industry sectors. Both dimensions of skills are coded as Stanine,
i.e., integers 1(lowest) to 9 (highest) and approximating the normal distribution. The pairwise correlation coefficient
between cognitive and noncognitive skills in the underlying population of workers is 0.36. We condition on firms
with at least on average 10 workers which exist for five years or more (31,613 unique firms during 1990–2017) to
minimize idiosyncratic fluctuations in these statistics.

The right panel of Figure 1 zooms into the scatter plot, providing a coarser view of average

skill intensity across industries. This highlights the presence of a few skill intensive sectors (i.e.,

where firms hire workers with generally higher skills), such as IT, law, consulting and accounting

professions, as well as sectors with much lower average skills, such as construction or low-

tech manufacturing. Sectors also exhibit variation in relative skill composition: for example, IT,

university education, law and consulting are more intensive in cognitive ability.

Large differences in skill intensity and composition across firms suggest the presence of sys-

tematic selection and we examine this selection through the lens of a model with different layers
5To mitigate measurement error, we use firms with 10 or more employees which exist for at least five years. In

the Appendix we show this variation also conditioning on detailed industry cells.
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of heterogeneity in production arrangements. In Section 2 we report estimates of the distribution

of firm-level wage premia for different skill bundles. These estimates show that the premia for

skill bundles across firms are very heterogeneous and that workers sort into firms according to

these premia.

These results, which rely on minimal assumptions, have two limitations: (i) they conflate in

one skill premium both firm-specific return and worker skill endowment; (ii) they offer no in-

formation about marginal returns to a specific attribute (i.e. cognitive vs non-cognitive traits). In

Section 4 we suggest a method-of-moments approach to unbundle the returns to different worker

attributes. This is necessary to analyze the extent of empirical sorting on either trait. Using the

notion of first order stochastic dominance we document how workers with different characteris-

tics sort across firms with different returns. The latter exercise sheds light on the factors driving

wage dispersion and the trade-offs faced by individual workers when matching with different

employers.

Our estimates of firm-specific returns to individual worker attributes provide insights into the

nature of firm heterogeneity, moving beyond a characterization where all heterogeneity is col-

lapsed into an employer fixed effect. This allows us to draw attention to the growing polarization

of skill returns across firms. Specifically, we highlight a rising covariation between cognitive

and non-cognitive rewards in the cross-section of firms between 1990 and 2017. This, in con-

junction with higher returns to non-cognitive skills, accounts for much of the convexification of

the wage-skill distribution observed in the same period.

2 Stylized Facts about Wage Premia

2.1 Data

We use matched employer-employee data from Sweden between 1990 and 2017, including an-

nual earnings from labor, employer, occupation and industry, and standard worker characteristics

such as age, gender, and education. This information is directly linked to military enlistment
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tests, including measures of cognitive skills and assessments of non-cognitive traits based on

interviews with trained psychologists. Prior research has shown that these test scores are highly

significant at predicting earnings and other labor market outcomes, both on their own and con-

ditionally on each other or any rich set of control variables (e.g., Lindqvist and Vestman, 2011;

Fredriksson et al., 2018). Cognitive and non-cognitive measures are recorded on a Stanine (stan-

dard nine) scale which approximates the Normal distribution6 and facilitates comparisons across

birth cohorts.

We restrict the worker sample to males, for whom the skill measures are always available, aged

20–60. We also restrict attention to firms which exist for at least five years and employ at least

ten such male workers on average. Our dataset reports both organization and workplace (i.e.,

organization by geographic location and industry) identifiers. We use workplaces as our “firms”

as this is closest to the theoretical notion of a production unit and is consistent with existing

approaches in the literature (e.g., Card et al., 2013). The resulting sample during 1990–2017

contains 415 thousand firm-year observations and more than 14 million individual worker-year

pairs.

To reduce measurement error and ease interpretation, we granularize test scores for each attri-

bute and divide them into three ranked groups (high, medium or low). Every worker has a bundle

of attributes s = (c,n), with the first letter denoting cognitive and the second non-cognitive traits.

A skill type s is within the set S = {(c,n)|c ∈ {L,M,H};n ∈ {l,m,h}}. The cognitive ranks are

{L,M,H} for high, medium and low, while {l,m,h} is the rank set of non-cognitive attributes.7

In summary, there are nine skill types, one for each combination of cognitive and non-cognitive

ranks. Details about data and sample construction are in the appendix.

6Measures are standardized for each birth year in the population. A score of 5 is reserved for the middle 20
percentiles of the population taking the test. The scores of 6, 7, and 8, are given to the next 17, 12, and 7 percentiles,
and the score of 9 to the top 4 percent of individuals. Scoring below 5 is symmetric.

7Low skill ranks correspond to stanine scores 1 to 3. Middle ranks subsume stanine 4 to 6. The high ranks refer
to stanine scores 7 to 9.
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2.2 Non-Parametric Wage Premia

Under the null hypothesis that firms have idiosyncratic skill yields, pecuniary labor market re-

turns entail two firm-specific components: (i) a base wage common to all workers in a firm,

irrespective of their attributes; (ii) a skill bundle premium. This generalizes the Abowd et al.

(1999, AKM) specification, as it features worker-firm complementarities in addition to firm and

worker fixed effects:

ln(wi jt) = θ j +µi + ∑
si∈S

∆ js1[si = {s}]+Xitbt + εi jt , (1)

with skill types in S = {(L,m),(L,h),(M, l),(M,m),(M,h),(H, l),(H,m),(H,h)}. Wage premia

are relative to the (omitted) type s = (L, l), which corresponds to the lowest skill group and

the firm’s base wage. The controls Xitbt account for observable individual and economy-wide

influences, whose effects may vary over time and by age as we fully stratify these variables and

their interactions.

Interpreting parameters. For the subset of workers of baseline type s = (L, l) (the omitted

skill bundle), equation (1) collapses to a standard AKM specification with firm fixed effects θ j,

time-varying controls including year and age dummies, and a worker fixed effect µi. Intercepts θ j

are identified, up to a normalization, from wage changes of (L, l) workers upon switching firms.

For other skill bundles, (1) augments the AKM specification by allowing for firm-specific

returns. These premia on the baseline wage are denoted by ∆ js with s ∈ {(L,m),(L,h), ...}. Each

premium ∆ js is identified from information about job switches by workers with skill bundle s,

and by their wage changes relative to those of workers with base skill bundle (L, l).

The availability of worker-level measures of multidimensional skills is key for the estimation

of heterogeneous returns. While additively separable worker fixed effects flexibly account for

unobserved heterogeneity in wage levels, variation in ability measures helps identify the premium
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associated to observable skill types.8 In the appendix we report results from event studies that

illustrate the mechanics of how skill premia ∆ js are identified.

Estimation. Bringing equation (1) to data requires the estimation of a large number of employer-

specific parameters from a sample of more than twenty thousand unique firms per period. The

results of this massive estimation exercise are reported in the appendix. It is well-known, howe-

ver, that estimation based on individual firm observations may suffer from measurement error

and lead to biases due to limited mobility of workers across employers.9 To address these issues,

Bonhomme et al. (2018) suggest to group firms into a smaller number of bins; this alleviates

biases and delivers consistent estimates of the within-bin average of the parameters of interest.

In light of these concerns, we develop a simple grouping estimator.10 To reduce dimensionality,

we rank firms into quintiles according to their relative hiring of each skill bundle. Each quintile

corresponds to a categorical variable gs ∈ {1,2,3,4,5}, with s indicating the skill bundle; the va-

lue of the categorical variable denotes the rank of the firm in that particular skill bundle intensity.

Since employment of workers with the base skills (L, l) grows with the intercept term θ j, we also

group firms into quintiles according to employment relative to the base skills. These intercept

groups are denoted by the categorical variable g = gθ .

The firm-specific parameters from the implementation of the grouping estimator in (1) reduce

to θgθ ( j) and ∆gs( j). For convenience, we refer to them by their shorthand θ js and ∆ js wherever

there is no ambiguity. Group assignments for different skill bundles are, by design, flexible and

independent of one another. For example, two firms in the same quintile of the (H,h) bundle need

not be in the same gθ or gs bins for the other skill bundles. This is the least restrictive assumption,

8Since si is time-invariant, the key restriction for the identification of ∆ js, up to a normalization, is that the µi do
not vary across firms.

9Limited mobility may generate serious problems for smaller firms. An incidental parameters problem can in-
troduce an upward bias for the variance of firm and worker fixed effects in AKM-style estimation, and a downward
bias in their covariance (Andrews et al., 2008).

10This empirical approach is corroborated in the next section using a labor market model with two-sided multi-
dimensional heterogeneity. The model implies that ln( q js

q j(L,l)
), the relative hiring of type s relative to the base skill,

rises with the firm-specific skill premium ∆ js.
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since each ln( q js
q j(L,l)

) is a sufficient statistic for grouping firms into bins with similar ∆ js, and it is

consistent with the way we later cast heterogeneity in the model.

In the appendix we experiment with alternative grouping approaches such as clustering based

on the k-means algorithm (Bonhomme et al., 2018), where each firm is allocated to one unique

bin. These exercises deliver results similar to what we obtain for the benchmark grouping esti-

mator; similar qualitative results hold even if we do not group at all and estimate (1) with fully

flexible parameters for each individual firm. In Section 4, we verify that the estimates of ∆ js are

robustly related to each firm’s hiring of the corresponding skill type s.

2.3 Estimates

Table 1 summarizes the benchmark estimates of (1) between 1998 and 2006. The employment-

weighted mean of θ j is normalized to zero. The cross-sectional variation of θ j around its average

reflects differences in base wages (independent of skills) across firms, with a standard deviation

of about 4 log points and a 5-95 interquantile range of 15 log points.

All wage premia parameters are relative to the base skill and rise with the skill rank within each

bundle, e.g., ∆̄(L,m) = 0.09, ∆̄(M,m) = 0.25, and ∆̄(H,m) = 0.30. This is reassuring and suggests that

skill bundles based on cognitive and non-cognitive measures convey genuine information about

abilities rewarded in the labor market.

The returns to the highest observable bundle (H,m) are on average 45 log points and they can

reach 61 log points or more in firms that reward highly skilled workers the most. However, these

estimates are not sufficient to establish whether cognitive or non-cognitive traits are more im-

portant for ranking skill returns. For example, while we find that ∆̄(L,m) = 0.09 vs ∆̄(M,l) = 0.09

or ∆̄(L,h) = 0.17 vs ∆̄(H,l) = 0.20, no individual skill return can be uniformly ranked using esti-

mates for skill bundles. In Section 4 we explicitly tackle this question and show that some firms

put more weight on cognitive traits while others reward non-cognitive attributes more heavily.

By unbundling skills, we also distinguish between endowments and returns and characterize the

distributions of firm-specific yields from individual attributes.
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Table 1: Firm-specific skill bundle premia: estimates

(sample period: 1999–2008)
mean sd p5 p50 p95

θ j 0.00 0.04 -0.06 -0.00 0.07
∆ j(L,m) 0.10 0.04 0.03 0.09 0.16
∆ j(L,h) 0.17 0.06 0.08 0.17 0.24
∆ j(M,l) 0.09 0.04 0.02 0.07 0.15
∆ j(H,l) 0.19 0.07 0.08 0.19 0.32
∆ j(M,m) 0.26 0.04 0.22 0.23 0.37
∆ j(M,h) 0.28 0.05 0.21 0.28 0.40
∆ j(H,m) 0.30 0.05 0.23 0.30 0.41
∆ j(H,h) 0.46 0.06 0.37 0.45 0.59

Notes: The table shows moments of the distributions of estimated skill-bundle
premia across firms. The sample statistics displayed are the mean, standard
deviation, and percentiles 5, 50, and 95. The sample covers 25,604 unique
firms between years 1999 and 2008.

Table 1 documents the significant dispersion of skill premia across firms, with standard devi-

ations between 4 and 7 log points. The 5–95 interquantile ranges are large, between 13 and 24

log points. Means are close to medians and estimates are sufficiently precise so as to rule out

implausible skill premia. For example, down to the 5th percentile of firms, there are no negative

premia relative to (L, l) wages.

As we show in the appendix, when estimating (1) with no grouping restrictions, results are

marginally different: in this case the 5th percentile skill premia are below the (L, l) baseline. This

observation, together with much larger standard errors, indicate significant measurement error

when estimating returns for individual (non-grouped) firms. In the appendix we also document

that estimates are qualitatively similar for two alternative 9-year estimation periods (1990–1999

and 2008–2017). Skill premia generally rise from the earlier period and there is evidence of

growing dispersion between 1998 and 2014. We also present evidence that (i) estimates of the
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between-firm heterogeneity in skill returns are robust and fairly conservative,11 and (ii) signifi-

cant worker sorting is associated to return heterogeneity.

While these findings lend to support to the view that skill premia are heterogeneous in the

cross-section of firms, it is hard to draw inference about the returns to each attribute. In particular,

one cannot assess if firm-specific marginal returns (or skill endowments) account for estimated

premia, and whether there is a pattern in the evolution of cognitive versus non-cognitive yields

(e.g., Deming, 2017). The unbundling of skill premia is the object of the next section.

3 A Labor Market with Two-Sided Heterogeneity

To examine the interaction of employer and employee heterogeneity we develop an empirically

tractable model where workers have different cognitive and non-cognitive abilities. We consider

a static setting with a continuum of firms, each producing its own distinct product using labor.

All firms benefit from more able workers, although each firm exhibits an idiosyncratic return to

skills. Firm-specific skill returns act as a force for sorting of high-skill workers into high-return

firms, something that the matching literature has long emphasized. These layers of heterogeneity

are embedded within a labor market where employers choose how many workers to hire based

on the demand for their output. Equilibrium in the labor market is assumed by imposing full

employment.

3.1 Production and Market Structure

There is measure one of workers who differ in their cognitive (c) and non-cognitive (n) abilities

and we let G(c,n) denote the probability measure describing the distribution of worker types

in the economy. As in Lise and Robin (2017), the production function is defined at the level of

the match and we do not model complementarity between workers within a firm. A worker of

type (c,n) employed at firm λ produces according to fλ(c,n), where the function fλ describes

11In fact, the heterogeneity documented in Table 1 is likely a conservative estimate of the true cross-sectional
variation in firm-specific skill bundle premia.
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the output from the firm-worker match. Technology is CRS and a firm’s output is the sum of all

employees’ products.12 Firm λ’s total output, as a function of its employment, is

yλ(M) =
∫

fλ(c,n) dMλ(c,n) (2)

where Mλ(c,n) denotes the measure of different worker types employed by the firm. Worker

types are observable and firms face upward sloping labor supply curves for each worker type. If

firm λ decides to hire a share qλ(c,n) of all workers of type (c,n) in the economy, it has to pay

to each worker of this type a wage wλ(c,n) such that:

log(qλ(c,n)) = log(h(c,n))+ log(aλ)+β log(wλ(c,n)) (3)

where aλ in (3) captures non-pecuniary benefits of working for firm λ, which shifts the labor

supply curve given a labor supply elasticity β .13 The intercept h(c,n) is an equilibrium outcome

of market clearing, defined as

h(c,n) =
[∫

aλeβwλ(c,n) dF(λ)

]−1

(4)

where dF(λ) is the density over the range of possible firm types. In the output market, firms face

a downward sloping demand curve for their products. Firm λ’s inverse demand is

log(pλ) = log(φλ)−
1
σ

log(yλ) (5)

where pλ is product price, yλ is output, φλ is a firm-specific (inverse) demand intercept, and σ

is the output demand elasticity w.r.t. price.

12Additive separability is often assumed in matching models with one-to-many sorting. In the empirical section
we show how this technology specification delivers an accurate approximation of returns to different skill bundles.
While convenient, the separability assumption is not crucial for our findings about sorting and returns heterogeneity.

13The labor supply equation can be micro-founded by aggregating workers’ idiosyncratic preferences for firms.
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The firm’s problem. Given output demand and labor supply curves, a firm decides how many

workers to hire for each skill type. Firm λ’s profit maximization problem is:

max
qλ(c,n)

pλyλ−
∫

wλ(c,n)qλ(c,n) dG(c,n)

s.t. yλ =
∫

fλ(c,n)qλ(c,n) dG(c,n)

log(pλ) = log(φλ)− 1
σ

log(yλ)

log(qλ(c,n)) = log(h(c,n))+ log(aλ)+β log(wλ(c,n))

(6)

This problem has a closed form solution, with equilibrium wages in firm λ

wλ(c,n) =

(
β

1+β

) σ

σ+β fλ(c,n)
(

σ−1
σ

φλ

) σ

σ+β[∫
fλ(c,n)1+β h(c,n)aλ dG(c,n)

] 1
σ+β

(7)

3.2 The Firm’s Wage Intercept and Skill Premia

Firms’ production choices can be characterized along the two input dimensions (cognitive and

non-cognitive). In view of the ordinal nature of the empirical skill measures used in the descrip-

tive data analysis, we categorize skill bundles again by assigning one of three levels (high, me-

dium, or low) to each ability endowment. Every worker has a type within the set S = {(c,n)|c ∈

{L,M,H};n∈{l,m,h}}, with the first letter denoting cognitive level and the second non-cognitive

level. For example, a worker of type s = (H, l) has high cognitive and low non-cognitive ability.

The wage premium associated to skill bundle (c,n) in firm λ is

e∆λ(c,n) =
fλ(c,n)
fλ(L, l)

(8)

for all (c,n)∈ S. The premium e∆λ(c,n) is proportional to the (measurable) productivity of a (c,n)

worker in firm λ relative to a baseline worker of type (L, l). The parameter ∆λ(c,n) subsumes

two sources of variation: (i) the skill endowment bundle (c,n), and (ii) the return to that bundle

in firm λ. By definition, ∆λ(L, l) = 0 and one can redefine baseline match productivity in firm λ

as Tλ = fλ(L, l), which is the output of workers of type (L, l). Using Tλ and ∆λ(c,n), we write
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the technology of firm λ as yλ = Tλ ∑
s∈S

e∆λ(s)qλ(s) and recast the profit maximization as a choice

over a discrete set of skill bundles S.

Optimal hiring behavior in the discrete maximization problem implies:

wλ(s) =
β

1+β︸ ︷︷ ︸
Monops.Markdown

× σ −1
σ

φλTλ

(
1

yλ

) 1
σ

︸ ︷︷ ︸
Marg.Revenue

× e∆λ(s)︸ ︷︷ ︸
Skill Productivity

(9)

The latter expression captures different aspects of market structure. The marginal revenue is an

increasing function of the firm’s output demand φλ. However, the monopsonistic firm sets wages

at a fraction β

1+β
of the marginal revenue generated by the worker, with the fraction approaching

one in more competitive markets where the labor supply elasticity β is larger. Crucially, an extra

unit of skill s rescales marginal revenues proportionally to the firm’s skill return ∆λ(s).

In log form, the equilibrium wage is the sum of a base intercept, a firm fixed effect, and a

skill-specific return, lending theoretical support to empirical specifications like equation 1 in the

previous section. That is:

ln(wλ(s)) = α +θλ+∆λ(s). (10)

The intercept α ≡ ln
(

β

1+β

σ−1
σ

)
is common across firms and skills, while θλ ≡ ln

(
φλTλy

− 1
σ

λ

)
is the firm-specific baseline wage, which does not vary with worker skills, and ∆λ(s) is a firm-

specific return to skill bundle s. Under the model’s null hypothesis, the firm’s demand intercept

φλ is subsumed in the fixed effect component θλ.

Optimal behavior implies that firms with higher returns to s-type skills tend to hire a larger

share of s-type workers.14 The latter observation suggests that firms with similar returns to a skill

14That is, for two firms denoted as λ1 and λ2, the following holds

E
[

log
(

qλ1(s)
qλ1(L, l)

)
− log

(
qλ2(s)

qλ2(L, l)

)
|∆λ1(s),∆λ2(s)

]
= β (∆λ1(s)−∆λ2(s))

This condition is satisfied under the null hypothesis of our model, where the distributions of workers’ preferences
for firms and skill returns to specific skill bundles are independent. However, the result is robust to violations of the
independence assumption. For example, it holds as long as the correlation between preferences for firms and skill
returns is positive (that is, if skill-biased firms exhibit, on average, better non-pecuniary returns for higher type s
workers). Weak negative correlations are also not sufficient to overturn the grouping result.
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bundle can be grouped together based on their share of workers with that particular skill bundle,

and that firm-specific returns to different skill bundles can be identified from a cross-section

of grouped worker wages if direct skill measures are available, lending further support to our

estimation approach for the skill type premia in the previous section.15

3.3 Separating Skill Endowments and Returns

The estimated wage premia presented in Section 2 are non-parametric and do not depend on

functional assumption about the production technology. While this approach requires fewer as-

sumptions, those estimates convey little or no information about the way the firm’s premium to a

particular skill bundle is shaped by heterogeneous returns to each skill attribute. In this section we

impose the minimum amount of structure necessary to recover firms’ marginal returns to different

ability traits. To this purpose it helps to posit that skill endowments are comparable in a cardinal

sense. We let c and n denote worker skill levels, defined over the cognitive and non-cognitive

range. In the setting of our model this means that, for a given s-type worker, s = (c,n) ∈ R2
+ for

all s∈ S. A worker receives wages w js = wage j(c,n) working at firm j, where wage j(·, ·) denotes

a (continuous) wage function of c and n. After a first-order approximation of wage j, we obtain a

bilinear log wage equation:

ln(w js)≈ λ
0
j +λ

c
j c+λ

n
j n (11)

where λ c
j and λ n

j are firm j’s marginal returns to cognitive and non-cognitive endowments of a

worker of type s = (c,n). This approximation is exact for the widely used Cobb-Douglas pro-

duction function.16

15An additional implication of firms’ optimal hiring behaviour is that the total number of workers
employed by a firm λ grows with the wage intercept θ j. This follows from the observation that
E [log(qλ1(L, l))− log(qλ2(L, l))|θλ1 ,θλ2 ] = β (θλ1 −θλ2).

16The bilinear wage function in levels is w js = eλ 0
j · (ec)λ c

j · (en)λ n
j . This is consistent with Cobb-Douglas output

by worker type (c,n) at firm j in a model with a (constant) surplus sharing rule. This includes our model where the
monopsony markdown is β/(1−β )).
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An iterative method-of-moments estimator. We use a GMM approach to jointly estimate the

linear returns in (11) and a set of skill endowments (up to an affine normalization) that span

the full set of observed skill bundle premia. By matching variation in skill premia, rather than

individual worker wages, we indirectly account for observed and unobserved covariates such as

individual fixed effects, general life-cycle returns, flexible time effects, and more.

The wage equation expresses the non-parametric estimates of bundled premia as the product

of marginal returns and skill endowments. As marginal skill returns are, by design, the loadings

necessary to account for between firm variation in wage premia, the skill nodes serve the pur-

pose of holding ability values fixed when estimating marginal skill returns. That is, returns can be

identified by within-firm wage variation over a set of skill nodes that are common across firms.

Given its simplicity, it is easy to explore departures from the baseline specification. For example,

we verify that adding interaction effects c×n improves the empirical fit of the model very mar-

ginally.17 Using skill bundle premia from the previous section as targets, the GMM optimization

problem in the bilinear wage model is:

min
{λ 0

j ,λ
c
j ,λ

n
j }J

j=1
s=(c,n)∈S

∑
j

∑
s∈S

[
λ 0

j +λ c
j c+λ n

j n− log(w js)
]2

(12)

To estimate the (minimizing) parameter values we adopt an iterative procedure. First, we set a

starting value for skill levels c and n, and solve for the firm-specific set of λ j. Then, holding the

λ j fixed, we minimize the objective with respect to c and n to obtain updated values that can be

entered into (12) to solve for a new set of λ j. These steps are repeated until parameter estimates

converge. The first-order conditions for the estimation parameters and the explicit solutions of the

minimization problem are reported, in matrix notation, in the appendix. The objective function

is convex and, in each step, we minimize it in the subspace of returns and skill levels. Since a

global minimum exists, and given continuity of the objective function, the procedure converges

to a minimum.18

17The interaction model is ln(w js) = λ 0
j +λ c

j · c+λ n
j ·n+λ

c×n
j · c ·n.

18In practice, the value of the objective function shrinks monotonically with each iteration. Estimation procedures
for other functional forms (e.g., the c×n interaction model) work accordingly.
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Empirical fit. The optimization in (12) has infinitely many solutions, as we can identify skill

values and returns up to an affine transformation. For example, the cognitive skill premium λ cc

might be high because the skill endowment is high or because returns are high (or some combi-

nation of the two). This requires a scale assumption and we normalize upper and lower bounds of

each ability so that l = L = 0 and h = H = 1. Given the normalization, our approach delivers esti-

mates of intermediate skill levels (nodes) within the bounded cognitive and non-cognitive ranges.

These nodes, in conjunction with the firm-specific marginal returns, are sufficient to characterize

the whole set of bundled skill premia.

The number of intermediate nodes estimated within each skill range depends on the number

of skill bundles being targeted. Furthermore, the baseline specification posits three firm-specific

parameters to target nine firm-specific moment conditions.19 We also consider an extension that

includes additional moments for c× n skill interactions. The baseline specification fits the mo-

ments in (12) remarkably well, accounting for over 96% of cross-sectional variation. The fit can

hardly be improved by richer functional forms.

Estimates of skill endowments. Skill nodes help match the variation across the whole range

of bundled skill premia. Pair-wise differences between nodes capture the skill endowment gaps

between ordered ability categories. Given our nine-way grouping of skill bundles, and the nor-

malization of the higher and lower bounds, this leaves us to estimate one intermediate node for

each skill. These estimates lie in the upper half of the [0,1]-interval: the intermediate skill le-

vel in the cognitive dimension is 0.59, while the non-cognitive node is 0.66. The fact that the

intermediate skill endowments are closer to their upper bounds implies that the (cardinal) skill

increase when moving from low to middle is much larger than when moving from middle to high

endowments. For reference, the intermediate values estimated for other periods are similar: in the

1990–1999 estimation period, they are 0.60 for cognitive and 0.59 for non-cognitive; in 2008–

2017 they are 0.62 for cognitive and 0.61 for non-cognitive. While not restricted to be identical,

the endowment node estimates are almost the same when we consider a model with higher-order

19The moment conditions are the nine skill bundle premia (the combination of three stanine groups for each skill).
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interaction terms, such as c×n. This indicates that estimated skill nodes are not the by-product

of functional form alone.

Marginal returns in the cross-section of firms. Figure 2 plots the distribution of returns to

cognitive and non-cognitive skill endowments in the population of firms, documenting that he-

terogeneity is stronger for the cognitive (λ c
j ) than the non-cognitive (λ n

j ) returns in all three

estimation periods. The pecuniary incentive for skill sorting is, therefore, somewhat stronger in

the cognitive dimension.

Comparing distributions over time, their locations—and thereby the levels of the returns to

skills—have shifted notably across the estimation periods. The average λ c
j in the population of

firms increased from 18 log points in 1990–1999 to 25 log points during 2008–2017, whereas

the average λ n
j more than doubled from 12 to 25 log points. While cognitive skills remain a key

driver of sorting (as we discuss in the following sections), non-cognitive skills have become sub-

stantially more important for pecuniary rewards. This evidence is consistent with the burgeoning

literature on the rising labor market value of non-cognitive traits (Deming, 2017; Edin et al.,

2018), and provides external corroboration of results from different data sources.

4 Implications for Matching

Breaking down wage premia into skill returns (prices) and endowments (quantities) is valuable

to characterize the mechanics of matching in a setting with multiple skill dimensions. Table 2

shows that returns to cognitive and non-cognitive skills (c and n) are positively correlated in the

cross-section of firms. This correlation grows significantly over the sample period, with returns

λC
j and λ N

j becoming more aligned within firms. Most of this increase in the cross-sectional

correlation of skill returns occurred between 1990 and 2008, when it went from 2% to 28%.

How did the changing firm heterogeneity affect the allocation of workers to employers? To

answer this question, we adapt the notion of assortative matching with multidimensional skills

to a setting with many-to-one matching. In the process we derive several theoretical results lin-
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king the higher moments of within firm skill distributions to the intensity of worker-firm sorting

and use them to gain insights about the extent of matching implied by our estimates of firm

heterogeneity.

4.1 Matching and Firm-Specific Skill Distributions

To describe worker sorting across firms we adopt the characterization of multidimensional one-

to-one matching proposed in Lindenlaub (2017) and describe worker-firm matching through a

mapping that assigns heterogeneous λ firms to skill endowments (c,n). However, our framework

allows for many workers matching to a single firm. For this reason, while we begin by defining

the matching function over average skill levels rather than individual worker skills, we later

expand the analysis to account for within firm heterogeneity. The latter step is instrumental to

relating the theoretical restrictions to the rich employer-employee data that are used to examine

sorting.

First, we introduce some notation. The model posits that firms can differ in several dimensions;

namely, a labor supply intercept a and return-to-skill parameters λ 0, λ c, and λ n. Define λ =

(a,λ 0,λ c,λ n) and let F(λ) denote the probability measure describing the distribution of firms

in their cross-section. Recall G(c,n) denotes the measure of worker skill vectors in the working

population.

From the labor supply equation, and imposing a bilinear wage function, firm λ hires a fraction

qλ(c,n) of the total workforce of type (c,n), where

log(qλ(c,n)) = log(h(c,n))+ log(a)+β (λ 0 +λ
cc+λ

nn) (13)

Define Qλ to be the total number of workers in firm λ. We have

Qλ =
∫

qλ(c,n)dG(c,n) (14)
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Table 2: Estimated Skill Returns

λ c λ n sd(λ c) sd(λ n) corr(λ c,λ n)

1990–1999 0.18 0.11 0.06 0.05 0.02

1999–2008 0.23 0.20 0.06 0.04 0.28

2008–2017 0.25 0.25 0.05 0.04 0.26

Notes: The table reports descriptive statistics for the estimated skill returns and their
changes over time. The standard deviations and correlations of skills in the population
of workers are constant at sd(c) = 0.33, sd(n) = 0.31, and corr(c,n) = 0.31 for all
three periods.

We can also define average cognitive and non-cognitive ability of workers in firm λ as follows:

cλ =
∫

c h(c,n)aeβ (λ0+λcc+λnn)

Qλ
dG(c,n)

=
∫

c dMλ(c,n)
(15)

nλ =
∫

n h(c,n)aeβ (λ0+λcc+λnn)

Qλ
dG(c,n)

=
∫

n dMλ(c,n)
(16)

where Mλ is a probablity measure of the worker-skill distribution within firm λ. It is worth

noting that Mλ does not depend on a and λ 0 and only varies with cognitive and non-cognitive

skill returns λ c and λ n.

Assortative Matching. We can define the matching function µ(λ)= (cλ,nλ), which maps firm

returns into average worker skills. The notion of assortative matching, whether positive (PAM)

or negative (NAM), is described as a set of properties of the matching function. In matching

problems with one dimensional heterogeneity this boils down to the sign of one derivative only.

With multidimensional skills, all elements of the Jacobian of the matching function play a role

(see Lindenlaub, 2017).
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Definition 1. The sorting pattern is PAM (NAM) if for all (λ c,λ n)

• ∂c
∂λ c > 0 (< 0)

• ∂n
∂λ n > 0 (< 0)

• ∂c
∂λ c

∂n
∂λ n − ∂c

∂λ n
∂n

∂λ c > 0

Proposition 1. The Jacobian of the matching function evaluated at λ is equal to the covariance

matrix of the worker-skill distribution at firm λ.

dµ(λ)

d(λ c,λ n)
= β COVMλ

[c,n] (17)

where the covariance is taken under the Mλ measure.

Proof.

∂cλ
∂λ c =

∫
β c2 h(c,n) eβ (λcc+λnn) dG(c,n)∫

h(c,n) eβ (λcc+λnn) dG(c,n)
−β

[ ∫
c h(c,n) eβ (λcc+λnn) dG(c,n)∫
h(c,n) eβ (λcc+λnn) dG(c,n)

]2

= β
∫

c2 dMλ(c,n)−β [
∫

c dMλ(c,n)]
2

= β ·varMλ
[c]

∂cλ
∂λ n =

∫
β cn h(c,n) eβ (λcc+λnn)) dG(c,n)∫

h(c,n) eβ (λcc+λnn)) dG(c,n)
−β

∫
ch(c,n) eβ (λcc+λnn) dG(c,n)∫
h(c,n) eβ (λcc+λnn) dG(c,n)

×
∫

nh(c,n) eβ (λcn+λnn) dG(c,n)∫
h(c,n) eβ (λcc+λnn) dG(c,n)

= β
∫

cn dMλ(c,n)−β
∫

c dMλ(c,n)×
∫

n dMλ(c,n)

= β · covMλ
[c,n]

Similarly we can show ∂nλ
∂λ n = β ·varMλ

[n] and ∂nλ
∂λ c = β · covMλ

[c,n]

Proposition (1) has implications for sorting. For example, given (arbitrary) upward sloping

labor supply and a bilinear wage equation, PAM always holds. Perhaps more interestingly, the

simple bilinear wage specification implies a natural analogy to a moment generating function: for
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example, one can show that the second derivative ∂cλ
∂λ n∂λ n is equal to the (uncentered) third mo-

ment of the within-firm distribution of cognitive abilities (a similar result holds for non-cognitive

abilities).

These results suggest that the elements of the Jacobian function are tightly related to the pre-

vailing distribution of skills within each firm. This is not surprising. Since the matching function

is an equilibrium object, its exact functional form depends on the overall skills and returns dis-

tributions in the economy. However to the extent we can approximate this function with a linear

one, we could, at least to a first order approximation, link the economy-wide skill dispersion to

within firm dispersion.

cλ = δ1c +δ2cλ c +δ3cλ n (18)

This approximation together with proposition (1) imply all firms have the same within second

moments. In particular δ2c = β ·varMλ
[c]≡ β ·VARw/n[c] and δ3c = β ·covMλ

[c,n]≡ β ·COVw/n[c,n].

Taking expectations from (18) we have

var[cλ] = β 2
{

VARw/n[c]2 ·var[λ c]+

COVw/n[c,n]2 ·var[λ n]+

2VARw/n[c] ·COVw/n[c,n] · cov[λ c,λ n]
} (19)

We can decompose the total variance of cognitive skills across the economy (similar for non-

cognitive skills) using the usual conditional variance formula as follows:

var[c] = var[cλ]+VARw/n[c], (20)

where var[cλ] is the variance between firms and VARw/n[c] the variance within firms (which is

constant across firms in our approximation (18)).
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By combining these two equations (19) and (20) we get

var[c]−VARw/n[c] = β 2
{

VARw/n[c]2 ·var[λ c]+

COVw/n[c,n]2 ·var[λ n]+

2VARw/n[c] ·COVw/n[c,n] · cov[λ c,λ n]
}
,

(21)

and an analogous result for the variance of n skills var[n]−VARw/n[n].

The Matching Jacobian in Data. Table 3 presents an empirical test of whether PAM holds,

on average, in each of the sample subperiods. Specifically, we run regressions of firm-specific

average skills onto their skill returns,

cλ = δ1c +δ2cλ c +δ3cλ n + εc

nλ = δ1n +δ2nλ c +δ3nλ n + εn

(22)

These regressions estimate the elements of the Jacobian from cross-sectional variation in firm

returns and average skills. To see this, note that the first regression provides the best linear ap-

proximation to the conditional expectations function E(cλ |λ c,λ n) ≈ δ1c + δ2cλ c + δ3cλ n and
∂E(cλ |λ c,λ n)

∂λ c = E( ∂cλ

∂λ c |λ c,λ n) ≈ δ2c. Therefore, δ2c is an average of the theoretical derivatives
∂cλ

∂λ c = β · varMλ
[c] from above across all λ combinations. Accordingly, E( ∂cλ

∂λ n |λ c,λ n) ≈ δ3c,

E(∂nλ

∂λ c |λ c,λ n)≈ δ2n and E( ∂nλ

∂λ n |λ c,λ n)≈ δ3n.20

The positive and significant coefficients on δ2c and δ3n throughout Table 3 show that the own-

derivative conditions in Proposition 1 clearly hold in each estimation period. Moreover, the Ja-

cobian is also positive definite, as the determinant δ2cδ3n− δ3cδ2n is always and unambigously

larger than zero. Therefore, PAM holds in all three estimation periods in the large set of Swedish
20Estimating the relationships in (22) using unconditional, bivariate regressions may give the wrong results. For

example, running
cλ = δ

short
1c +δ

short
2c λ

c + ε
short
c

yields E(cλ |λ c) ≈ δ short
1c + δ short

2c λ c and dE(cλ |λ c)
dλ c = E( dcλ

dλ c |λ c) ≈ δ short
2c = δ2c + δ3c

cov(λ c,λ n)
var(λ n) . The last summand

is due to the omitted variables bias (OVB) formula and not in general zero. Therefore, the regression yields a
comparison of changing average c skills across firms with higher λ c and λ n that tends to come with it. Instead,
Proposition 1 makes a prediction about the partial derivative ∂cλ

∂λ c only, holding λ n constant.
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Table 3: Estimated sorting parameters

1990–1999 1999–2008 2008–2017
cλ nλ cλ nλ cλ nλ

estimated δ2 and δ3:
λ c 1.86 0.74 2.04 0.75 1.95 0.82

(.01) (.01) (.01) (.01) (.01) (.01)
λ n 0.70 1.36 0.87 1.55 1.15 1.46

(.01) (.01) (.02) (.01) (.01) (.01)

R2 0.653 0.514 0.717 0.600 0.654 0.524
# f irms 19,634 25,249 21,755

Notes: The table reports estimated sorting coefficients δ2 and δ3 from regression (22). Bootstrapped stan-
dard errors in parentheses.

firms. This result is far from trivial and it lends empirical support to our baseline model with

bilinear returns. It also lends indirect support to our estimates of marginal skill returns, which

were obtained solely from workers’ wages while the left-hand side of (22) subsumes variation in

the relative quantities of workers within firms.

Additional theoretical restrictions can also be verified in Table 3. In particular, δ3c > 0 and

δ2n > 0 in period 1 indicate that there is positive cross-sorting such that higher returns to one

skill tend to raise the average of the other, ceteris paribus.21 Moreover, in none of the estimation

periods we see that δ2c < δ3c and δ3n < δ2n.22 Results in Table 3 do not—and according to

the theory should not—change when we include controls for firm employment size or bilinear

intercepts λ 0. Finally, about 50–70 percent of the differences in average skills across firms can

be explained by the estimated λ c and λ n returns alone.

Stochastic Dominance. An interesting corollary of PAM is that, for any given skill attribute,

the distribution of higher-skilled workers over firm-specific returns should stochastically domi-

21Table 2 shows that in estimation period 1990–1999 the cov(λ c,λ n) ≈ 0. If this also implies independence of
returns, one can prove that ∂cλ

∂λ n > 0 and ∂nλ
∂λ c > 0 when cov[c,n]> 0.

22Because of the variance property varMλ
[c] ·varMλ

[n]> 2 · covMλ
[c,n] for any measure Mλ, it can never be that

both ∂cλ

∂λ c <
∂cλ

∂λ n and ∂nλ

∂λ n <
∂nλ

∂λ c .
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nate that of lower-skilled workers.23 Figure 3 illustrates this result in our data, separately plotting

the λ c and λ n cumulative distributions for the skill levels c ∈ {0,Mc,1},n ∈ {0,Mn,1}. This is

done for the pooled estimation period 1999–2008. The corollary states that, if we hold n , the

proportional hiring of higher c workers should rise with λ c. Equivalently, the hiring of higher n

workers should increase with λ n when holding c constant.24

The left panels of Figure 3 show that indeed, holding n constant, the CDF of λ c shifts to the

right for each higher level of c. A similar first-order stochastic dominance result exists when sor-

ting workers by their n endowments and looking at their distributions over λ n (right panels of the

same figure). Therefore, all else equal, variation in each individual skill dimension is consistent

with theoretical patterns of stochastic dominance in the distribution of the corresponding firm

returns. This corroborates the finding of PAM and the sorting model with bilinear returns more

generally.

Another corollary to the sorting theory is that its intensity should be stronger in the skill dimen-

sion exhibiting higher dispersion of returns. This is intuitive as workers become more selective

when proportional differences in firm-specific returns increase. As shown in Table 2, cognitive

returns are substantially more dispersed than non-cognitive ones. We also observe in Figure 3

that sorting on cognitive ability is more intense. This is consistent with the observation that wi-

der differences in cognitive returns lead to more intense sorting on c attributes.

Before moving on to an analysis over time, it is worth examining our new theoretical result

(17) in more detail. The ∂cλ
∂λ c = β · varMλ

[c] formula provides a concise description of how c

skills in the firm will react to a change in returns λ c. This has two components; the labor supply

elasticity β which indicates that the more willing workers are to follow pecuniary incentives, the

23Lindenlaub and Postel-Vinay (2017) derive similar predictions In a competitive setting with search frictions
and argue that the distribution for workers with higher c over the range of firm-specific returns λ c should first-order
stochastically dominate its counterpart for workers with lower c (similar results hold for n and λ n).

24Formally, positive FOSD sorting in either cognitive or non-cognitive dimension implies:

if c1 > c2 then CDFc(c1,n,λ c)≤CDFc(c2,n,λ c) for all n,λ c

if n1 > n2 then CDFn(c,n1,λ
n)≤CDFn(c,n2,λ

n) for all c,λ n
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more skill sorting will differ for a given difference in returns. The second component is more

subtle and related to the types of workers that the firm hires. The higher the dispersion of c skills

inside the firm, the more diverse in terms of c skill is the set of workers that are at the margin of

joining the firm. Thus, if in a high varMλ
[c] firm return λ c rises, the newly attracted workers tend

to come from high up in the c skill distribution (at least compared to cλ of existing workers) and

the more the average c skill in the firm is affected. In contrast, in a low varMλ
[c] firm, an increase

in return λ c draws in relatively similar marginal compared to existing workers and cλ does not

react much.

Table 4: Interacted sorting regression

1990–1999 1999–2008 2008–2017
cλ nλ cλ nλ cλ nλ

λ c 1.53 0.55 1.84 0.50 1.58 0.55
(.01) (.01) (.01) (.01) (.02) (.01)

λ n 0.24 1.03 0.46 1.02 0.50 1.11
(.02) (.02) (.02) (.01) (.02) (.02)

λ c ·1{varMλ
[c]> p50} 0.54 0.25 0.36

(.03) (.02) (.03)
λ n ·1{covMλ

[c,n]> p50} 0.82 0.74 0.83
(.03) (.03) (.03)

λ c ·1{covMλ
[c,n]> p50} 0.45 0.39 0.54

(.02) (.02) (.02)
λ n ·1{varMλ

[n]> p50} 0.71 0.67 0.54
(.03) (.02) (.03)

R2 0.696 0.563 0.744 0.680 0.727 0.618
# f irms 19,634 25,249 21,755

Notes: The first column in each estimation period reports the δ2c,δ3c,δ6c,δ7c coefficients from regression
cλ = δ1c+δ2cλ c+δ3cλ n+δ4c1

{
varMλ

[c]> p50
}
+δ5c1

{
covMλ

[c,n]> p50
}
+δ6cλ c ·1

{
varMλ

[c]> p50
}
+

δ7cλ n ·1
{

covMλ
[c,n]> p50

}
+εc. Regression for nλ accordingly in the second columns. Bootstrapped standard

errors in parentheses.

To explain the case of the cross-derivative ∂cλ
∂λ n = β ·covMλ

[c,n], consider a firm where covMλ
[c,n]<

0. When λ n rises, additional high n workers are drawn in. However, in this firm high n tends to

come with low c and therefore cλ declines. Conversely, when covMλ
[c,n]> 0, which is the case
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in our data, a rise of λ n increases cλ by drawing in high n workers at the margin which tend

to also be high c in this firm. This economic interpretation of (17) is of course the same for
∂nλ
∂λ n = β ·varMλ

[n] and ∂nλ
∂λ c = β · covMλ

[c,n].

We also test this new theoretical prediction in the data. Table (4) shows regressions like (22)

but interacting the returns regressors with indicators of the variances varMλ
[c], varMλ

[n] and co-

variances covMλ
[c,n] above their median. We see that the baseline sorting coefficients decline

compared to Table 3 but that the interaction effects with high variances or covariances of skills

within firms are very substantial and significant throughout. Thus, indeed the economic pre-

diction that effects of λ c and λ n increases are substantially and significantly stronger for firms

with high variances and covariances of skills within them is borne out unequivocally in the data.

The results of Table (4) underscore once again that sorting theory is very powerful in explaining

the differences in average skills across firms. It also points at the importance of the distribution

of skills inside the firm, which goes beyond the representative average worker interpretation of

the matching function. The next section will hone in on the economic importance of within-firm

skill distributions and their changes over time.

4.2 Deconstructing Wage Variation

The bundling, and correlation, of different skill attributes are key to understand worker assign-

ments to employers. Of course, this assignment is not without consequences for earnings. Non-

linearities due to the matching of high-skill workers to high-return firms help shape earnings’

growth across the whole distribution of wage percentiles. As sorting increases, skilled workers

accrue more of the gains from production complementarities and this induces a convexification

of the earnings curve across different percentiles. To help interpret the impact of skill returns on

the economy-wide earnings structure, we write the bilinear wage model (11) as:

lnwλ(c,n)≈ λ
0 + λ̄

cc+ λ̃
cc+ λ̄

nn+ λ̃
nn. (23)
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where λ̃ c ≡ λ c− λ̄ c is the demeaned firm-specific return to cognitive skills, and similarly for λ̃ n.

First, we observe that the linear returns to skills λ̄ c, λ̄ n are independent of sorting. In contrast,

wage dispersion does depend on the assignment of high skills to high returns and reflects wage

non-linearities due to complementarities such as (λ c− λ̄ c)c and (λ n− λ̄ n)n. As high-skilled

workers sort into high-return firms, the wage curve becomes convex over the skill range.25

Using partial projections,26 one can write the economy-wide (unconditional) return to cogni-

tive skills c as an additively separable function of first and second moments of skill returns:

cov(lnwλ(c,n),c)
var(c)︸ ︷︷ ︸
overall

= λ̄
c︸︷︷︸

λ c-level

+ λ̄
n cov(n,c)

var(c)︸ ︷︷ ︸
λ n-level

+
cov(λ 0,c)

var(c)︸ ︷︷ ︸
λ 0-sorting

+
cov(λ̃ cc,c)

var(c)︸ ︷︷ ︸
λ c-sorting

+
cov(λ̃ nn,c)

var(c)︸ ︷︷ ︸
λ n-sorting

. (24)

The first two summands in the right-hand side of (24) capture the level effects due to the average

λ c
j and λ n

j across firms. If workers were randomly allocated to firms, the average return to c

attributes would equal λ̄ c. Moreover, there would be an additional return to the worker’s n traits,

since n covaries with c. The covariation yield is λ̄ n cov(n,c)
var(c) .

The remaining summands in (24) subsume the systematic sorting of skills across firms. The

λ 0-sorting component is the contribution of cognitive skill covariation and employer-specific

intercepts. The last two terms on the RHS reflect own- and cross-sorting on cognitive skills.

The λ c-sorting is the own-sorting into high cognitive return firms, which is substantial given the

large coefficients in Table 3. Accordingly, the λ n-sorting measures the cross-sorting into high

non-cognitive return firms.

An equivalent decomposition can be obtained for the economy-wide return to non-cognitive

skills.27 Table 5 shows results from the empirical implementation of (24) and (25). During the

25Lindenlaub (2017, Proposition 6) formally derives the same result in a frictionless model.
26The coefficient from a regression of lnwλ(c,n) onto c is cov(lnwλ(c,n),c)

var(c) . Given additive separability, the covari-
ance of (23) with c, normalized by var(c), delivers the decomposition result in (24).

27Specifically, for non-cognitive skills we have

cov(lnwλ(c,n),n)
var(n)︸ ︷︷ ︸
overall

= λ̄
c cov(c,n)

var(n)︸ ︷︷ ︸
λ c-level

+ λ̄
n︸︷︷︸

λ n-level

+
cov(λ 0,n)

var(n)︸ ︷︷ ︸
λ 0-sorting

+
cov(λ̃ cc,n)

var(n)︸ ︷︷ ︸
λ c-sorting

+
cov(λ̃ nn,n)

var(n)︸ ︷︷ ︸
λ n-sorting

. (25)

28



intermediate period in our sample (middle panel, 1999–2008) the overall return to cognitive skills

is 35 log points. The average λ̄ c accounts for 23 log points, or roughly 2/3 of the total variation.

Another 6 log points are explained by high c workers having, on average, better n attributes.

This leaves 6 log points, or about 17 percent of cognitive returns, unexplained. Most of this, 4

log points, is cognitive own-sorting due to the high standard deviation sd(λ c), reported in Table

2. Finally, cross-sorting effects due to the positive covariation between skill returns and wage

intercepts each add another 1 log point to the overall return to cognitive traits.

Table 5: Deconstructing the economy-wide returns to c and n skills.

(1) (2) (3) (4) (5) (6)
overall λC

j -level λ N
j -level λ 0

j -sorting λC
j -sorting λ N

j -sorting

1990–1999
C-return 0.25 0.18 0.03 0.01 0.04 0.00
N-return 0.21 0.06 0.12 0.00 0.02 0.01

1999–2008
C-return 0.35 0.23 0.06 0.02 0.04 0.01
N-return 0.33 0.08 0.22 0.02 0.02 0.01

2008–2017
C-return 0.38 0.25 0.07 0.02 0.03 0.01
N-return 0.39 0.08 0.25 0.02 0.02 0.01

Notes: The table shows the wage decompositions (24) and (25) for our three estimation periods. Column
(1) gives the economy-wide (unconditional) return to each respective skill, which is split into its individual
components in the remainder of the table. Columns (2) and (3) are the contributions of the level return to
the respective skill averaged across firms. Column (4) is the correlation of workers’ skills with firm wage
intercepts. Columns (5) and (6) are the effects due to own-sorting (λ c-sorting for c skills and λ n-sorting
for n skills) and cross-sorting (λ c-sorting for n and λ n-sorting for c).

Similarly, the economy-wide return to non-cognitive attributes between 1999 and 2008 is 33

log points. The average return λ̄ n accounts for 22 log points; 8 log points are explained by high-

n workers also having better cognitive skills and therefore benefiting from the large λ̄ c return.

Interestingly, for non-cognitive skills the effect of cross-sorting (2 log points) is more important

than own-sorting (1 log points). This means that indirect matching effects account for much of the
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return from sorting on n skills.28 Adding the λ 0-sorting effect due to covariation of skill returns

and intercepts, we find that five out of 33 log points, or 15% of the return to non-cognitive skills,

is explained by worker sorting.

In the earliest estimation period, 1990–1999, total returns to skills were substantially lower

than in the main period. As shown in Figure 2, the change is stark in the case of returns to

n skills.29 These differences are mostly due to lower levels of skill returns, rather than lower

contributions of own- or cross-sorting. In fact, sorting accounted for 20 and 14 percent of, re-

spectively, cognitive and non-cognitive returns to skills between 1990 and 1998. Similar patterns

are detected between 1999 and 2017, with a slightly higher effect of sorting on λ 0.

Wages: random assignment versus assortative matching. Table 5 documents how the assig-

nment of skills to firms changes the distribution of labor market returns in the economy. Over

time, the distribution of these returns across wage percentiles has become more convex.

To verify the impact of sorting on the distribution of returns, Figure 4 plots the wage distri-

bution in the bilinear model under random empirical allocation versus the empirical distribution

with positive assortative matching. The distribution with random allocation of workers to firms

is less dispersed than the empirical one. The much fatter right tail of the empirical distribution

implies higher wages (and better productive efficiency) on average. Endogenous sorting seems

to increase wages in a first-order stochastic dominance sense.

5 Discussion and Conclusions

We explore a new dimension of firm-level heterogeneity and document that identical skill bundles

command different returns across employers. Our empirical analysis relies on matched employer-

28This is easily reconciled in Table 2: while the correlations of n with λ c and λ n are similar, the dispersion of
cognitive returns—sd(λ c) = 0.05—is larger than the its non-cognitive counterpart—sd(λ n) = 0.04.

29Comparing all three sample periods, average firm return to non-cognitive skills λ̄ n increased by 14 log points
from an initial base of 11 log point. This is substantially stronger than the increase of λ̄ c of 7 log points from a base
of 18, and it is consistent with technical change that is particularly biased toward n (or social) skills as argued in
Deming (2017) and Edin et al. (2018).
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employee population records in conjunction with direct measures of workers’ cognitive and non-

cognitive skills.

The fact that workers are unable to sell different factors (cognitive, non-cognitive) to different

firms implies a non-trivial sorting problem which crucially depends on the firm-specific marginal

returns to each skill attribute. We propose a procedure to recover the distribution of these marginal

returns by unbundling the wage premia associated to different skill combinations. This procedure

delivers estimates of the distribution of firm-specific rewards to cognitive and non-cognitive skills

for different time periods between 1990 and 2017.

Having established basic facts about the distribution of firm-specific skill complementarities,

we study the properties of a worker-to-firm assignment problem with multi-dimensional skills

and returns. We show that key theoretical restrictions are borne out in data. In particular, we

document that workers with higher endowments of specific skills populate firms with higher

marginal returns to those skills. Crucially, we also show that the intensity of sorting on each skill

dimension depends on the dispersion of that skill’s return across firms: as dispersion grows, so

does the incentive for more skilled workers to seek a better match.

When examining the empirical properties of the worker-firm assignment problem, we find

evidence of significant cross-sorting, whereby workers with high cognitive skills experience a

higher than average return in the non-cognitive dimension. The latter phenomenon is due to (i)

the positive correlation of different skills in workers’ skill bundles; and (ii) the growing alignment

of cognitive and non-cognitive skill returns within firms.

Our estimates suggest that, over time, worker-firm matching due to skill complementarities has

become more intense, resulting in a convexification of the wage distribution across the range of

worker skills.

We find that returns to skills have grown significantly between 1990 and 2017, especially

for non-cognitive traits. Sorting patterns have also become more intense over that period; as

mentioned before, the latter observation can be attributed to cognitive and non-cognitive returns

becoming progressively more aligned within firms. The most productive firms exhibit, by the end

of our sample period, disproportionately large returns in both dimensions. This phenomenon has
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alleviated the frictions due to the fact that workers cannot unbundle their skills and separately

rent them out to different firms. Stronger multi-dimensional matching in later years has bolstered

the gains from firm-worker complementarities resulting in more inequality of earnings.

References

ABOWD, J. M., F. KRAMARZ, AND D. N. MARGOLIS (1999): “High wage workers and high

wage firms,” Econometrica, 67, 251–333.

ANDREWS, M. J., L. GILL, T. SCHANK, AND R. UPWARD (2008): “High wage workers and

low wage firms: negative assortative matching or limited mobility bias?” Journal of the Royal

Statistical Society: Series A (Statistics in Society), 171, 673–697.

BONHOMME, S., T. LAMADON, AND E. MANRESA (2018): “A Distributional Framework for

Matched Employer Employee Data,” Mimeo, University of Chicago.

CARD, D., A. R. CARDOSO, AND P. KLINE (2016): “Bargaining, sorting, and the gender wage

gap: Quantifying the impact of firms on the relative pay of women,” The Quarterly Journal of

Economics, 131, 633–686.

CARD, D., J. HEINING, AND P. KLINE (2013): “Workplace Heterogeneity and the Rise of West

German Wage Inequality*,” The Quarterly Journal of Economics, 128, 967–1015.

DE MELO, R. L. (2018): “Firm Wage Differentials and Labor Market Sorting: Reconciling The-

ory and Evidence,” Journal of Political Economy, 126, 313–346.

DEMING, D. J. (2017): “The growing importance of social skills in the labor market,” The Quar-

terly Journal of Economics, 132, 1593–1640.

EDIN, P.-A., P. FREDRIKSSON, M. NYBOM, AND B. OCKERT (2018): “The Rising Return to

Non-Cognitive Skill,” IZA Discussion Paper.

32



EECKHOUT, J. AND P. KIRCHER (2011): “Identifying Sorting In Theory,” The Review of Eco-

nomic Studies, 78, 872–906.

FREDRIKSSON, P., L. HENSVIK, AND O. N. SKANS (2018): “Mismatch of talent: Evidence on

match quality, entry wages, and job mobility,” American Economic Review, 108, 3303–38.

GRILICHES, Z. (1977): “Estimating the returns to schooling: Some econometric problems,” Eco-

nometrica, 1–22.

GUVENEN, F., B. KURUSCU, S. TANAKA, AND D. WICZER (2020): “Multidimensional skill

mismatch,” American Economic Journal: Macroeconomics, 12, 210–44.

HAGEDORN, M., T. H. LAW, AND I. MANOVSKII (2017): “Identifying equilibrium models of

labor market sorting,” Econometrica, 85, 29–65.

HECKMAN, J. AND J. SCHEINKMAN (1987): “The Importance of Bundling in a Gorman-

Lancaster Model of Earnings,” The Review of Economic Studies, 54, pp. 243–255.

JAROSCH, G., J. S. NIMCZIK, AND I. SORKIN (2019): “Granular search, market structure, and

wages,” Tech. rep., National Bureau of Economic Research.

LAMADON, T., M. MOGSTAD, AND B. SETZLER (2019): “Imperfect Competition, Compensa-

ting Differentials and Rent Sharing in the US Labor Market,” Tech. rep., National Bureau of

Economic Research.

LENTZ, R., S. PIYAPROMDEE, AND J.-M. ROBIN (2018): “On Worker and Firm Heterogeneity

in Wages and Employment Mobility: Evidence from Danish Register Data,” .

LINDENLAUB, I. (2017): “Sorting multidimensional types: Theory and application,” The Review

of Economic Studies, 84, 718–789.

LINDENLAUB, I. AND F. POSTEL-VINAY (2017): “Multidimensional Sorting under Random

Search,” in Meeting Papers, Society for Economic Dynamics.

33



LINDQVIST, E. AND R. VESTMAN (2011): “The labor market returns to cognitive and noncog-

nitive ability: Evidence from the Swedish enlistment,” American Economic Journal: Applied

Economics, 3, 101–128.

LISE, J. AND J.-M. ROBIN (2017): “The macrodynamics of sorting between workers and firms,”

American Economic Review, 107, 1104–35.

MANDELBROT, B. (1962): “Paretian distributions and income maximization,” The Quarterly

Journal of Economics, 76, 57–85.

SHIMER, R. AND L. SMITH (2000): “Assortative matching and search,” Econometrica, 68, 343–

369.

SONG, J., D. J. PRICE, F. GUVENEN, N. BLOOM, AND T. VON WACHTER (2018): “Firming

up inequality,” The Quarterly Journal of Economics, 134, 1–50.

SORKIN, I. (2018): “Ranking Firms Using Revealed Preference*,” The Quarterly Journal of

Economics, qjy001.

WILLIS, R. J. (1986): “Wage determinants: A survey and reinterpretation of human capital ear-

nings functions,” in Handbook of labor economics, Elsevier, vol. 1, 525–602.

34



Table 6: Average return to ability in different five-year periods (men, age 30 and 40). Standard
errors in parenthesis.

(1) (2) (3) (4) (5) (6)
Age 30 Age 40 Age 30 Age 40 Age 30 Age 40

Rtrn to cognitive ability (1990-94) 4.77 7.42 3.37 6.17
(0.00) (0.00) (0.00) (0.00)

difference in 1995-99 0.05 0.50 0.23 -0.02
(0.58) (0.00) (0.01) (0.85)

difference in 2000-04 0.57 1.71 0.42 0.68
(0.00) (0.00) (0.00) (0.00)

difference in 2005-09 -0.78 0.83 -0.93 -0.09
(0.00) (0.00) (0.00) (0.32)

difference in 2010-14 -1.51 -0.01 -1.53 -0.90
(0.00) (0.91) (0.00) (0.00)

Rtrn to non-cogn. ablty (1990-94) 5.69 6.27 4.15 4.15
(0.00) (0.00) (0.00) (0.00)

difference in 1995-99 0.08 1.30 0.12 0.88
(0.43) (0.00) (0.26) (0.00)

difference in 2000-04 0.74 3.65 0.78 2.60
(0.00) (0.00) (0.00) (0.00)

difference in 2005-09 -0.14 3.79 0.45 3.34
(0.15) (0.00) (0.00) (0.00)

difference in 2010-14 -0.77 2.64 0.07 2.66
(0.00) (0.000 (0.53) (0.00)

N 808,213 832,946 808,213 832,946 808,213 832,946
R-sq 0.190 0.273 0.196 0.264 0.196 0.264
Sample Men Men Men Men Men Men

Notes: p-values are under the coefficients.
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Figure 2: Distribution of marginal returns to cognitive (c) and non-cognitive (n) skills in the
population of firms

(a) λC
j s in 1990–1999 (b) λ N

j s in 1990–1999

(c) λC
j s in 1999–2008 (d) λ N

j s in 1999–2008

(e) λC
j s in 2008–2017 (f) λ N

j s in 2008–2017

Notes: The figures plot histograms of λ c
j s and λ n

j s estimates in the cross-section of firms. The dashed line corre-
sponds to the average in the respective period.
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Figure 3: Own-sorting and first-order stochastic dominance. Cumulative shares of: c skills over
λ c (left panels); and n skills over λ n (right panels). Years: 1999–2008.

Notes: The top left panel in this figure separately plots the cumulative distribution function (CDF) for three groups
of workers with progressively higher c skills (i.e., low=0, mid=Mc, and high=1) over the estimated λ c of the firms
where they are employed. The CDF of high c workers first order stochastically dominates that of middle c workers;
the latter dominates that of low c workers. The top left panel holds the n skill at its low value. Moving down the left
panels of the figure, the same graph is plotted holding n skill at middle and high, respectively. The right panels show
similar results for the CDF of low, middle and high n over the estimated λ n.
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Figure 4: Wage distribution with and without sorting (1999–2008)

Notes: The blue line in the figure depicts the wage distribution kernel when employment of c,n skills is allocated
equally across firms in estimation period 2. That is, what one would observe, on average, under random allocation
of workers to firms. The red line plots the observed wage distribution, i.e., with workers sorting into firms as in the
actual data.
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