Consumer Protection in an Online World: An Analysis of Occupational Licensing

Farronato, Fradkin, Larsen, Brynjolfsson

Harvard	Boston	Stanford	MIT
& NBER	University	& NBER	& NBER

Workshop on "The Economics of Occupational Licensing" Bank of Italy, Rome November 8, 2019

Occupational Licensing is Very Common

- As of 2008, 30% of US workers were in licensed occupations. -> Twice as many as in unions (Kleiner and Krueger 2010).
- All states license doctors, lawyers, teachers, barbers.
 - -> Barber licensing hours can be more than police training!
- Some states license fortune tellers, auctioneers, interior designers.

In a world with information asymmetries:

- (+) licensing ensures minimum quality level.
- (-) licensing restricts competition and increases prices.

Theory (Shapiro, 1986):

• Licensing not needed when good reputation mechanisms are in place.

Occupational Licensing in an Online World

Online platforms:

- Are a primary way to find professionals in many industries.
- Track transactions and reviews, potentially making some licensing requirements less necessary.
- Provide a new way to measure the effects of licensing.

Our context: online platform for home improvement services.

Research Questions

1. How do consumers value licensing information when choosing providers? How important is licensing relative to online reputation and prices?

Results (from platform data and consumer survey):

- Reviews & prices matter a lot more that knowing that a provider is licensed.
- 2. What are the effects of stricter licensing on competition, prices, quality?

Results (exploiting variation in licensing across occupations and states): More stringent licensing regimes lead to:

- Less competition, higher prices.
- No detectable effect on (what we can measure of) customer satisfaction.

1. Setting

2. Individual Choices

- Event Study
- Choice Regressions
- Survey Evidence

3. Aggregate Outcomes

Setting

Online platform for home improvement services. -> National reach and millions of transactions.

Let's get started finding Water Heater Installation Services.

Please answer a few quick questions to help us match you with the best providers for your project.

Next

Online Platform for Home Improvement Services

- Customer posts a detailed job request.
- Providers (pros) pay to submit a quote.
- Customer can choose to hire a pro.

Interiors by Farronato	Interiors By Farronato
\$324	Chiara Farronato 🧳 (123) 456-7981 💡 Oakland, CA
Fradkin Design LLC ****** 25 Reviews \$303	View Profile View Photos Website View Credential View Credential
Larsen Renovations 7 Reviews \$212	Chiara Farronato 3 Days Ago
Al Interior Design by Erik B. 3 Reviews \$95	Hi Buyer, My price is \$324. I have availability in the next few days. References can be provided at your request.
	A Reply Hire X Decline

Online Platform for Home Improvement Services

- Customer posts a detailed job request.
- Providers (pros) pay to submit a quote.
- Customer can choose to hire a pro.

Platform License Validation

- To have a *license badge*, the pro can submit proof of license.
- Platform takes (variable) time to verify the license.
- Platform uses information available on government websites.

Licensee Detail		
License Number: 780		
Licensing Entity: Board of Registration of Home	Inspectors	
License Type: Home Inspector		
Type Class: 1		
License Issue Date: 02/13/2015		
License Expiration Date: 05/31/2018	Status: Current	
Current Discipline:		
Prior Discipline:		
Name: LAWRENCE J DIPIETRO		
Business Name:		
DBA Name:		

Most Common Licenses in Home Services

- Contractor (HVAC, painting, mason, roofing)
- Plumber
- Electrician
- Home Inspector
- Pest Control and Pesticide Applicator
- Mold Assessor

Data

- 8-month period in 2015.
- Many different service categories, all 50 states.
- >2M bids submitted on hundreds of thousands of job requests.
- Tens of thousands of pros.
- Data:
 - At bid level e.g. hired, price, licensing status, reviews, time.
 - At request level e.g. category, location, time, detailed Q&A.
 - At pro level e.g. starting year, employees, pictures.

1. Setting / Descriptive Stats

2. Individual Choices

• Event Study

- Choice Regressions
- Survey Evidence

3. Aggregate Outcomes

Event Study: License and First Review

Time when:

- license is verified (after being submitted).

- Outcome: Hired.
- Controls: Pro FE, request FE, license-submitted dummy.
- Coefficients of interest: Weeks relative to license verification.
- Omitted category: bids submitted >1 month before verification.

Does Hire Rate Change around Verification?

Does Hire Rate Change around Verification?

Does Hire Rate Change around Verification?

No additional supply response on: quote speed, # and \$ of competing bidders.

Does Hire Rate Change around First Review?

Does Hire Rate Change around First Review?

No additional supply response on: quote speed, # and \$ of competing bidders.

But pro bids on more projects after review.

1. Setting / Descriptive Stats

2. Individual Choices

• Event Study

<u>Choice Regressions</u>

• Survey Evidence

3. Aggregate Outcomes

For request *r* and pro *j*, estimate linear probability model:

 $hired_{jr} = \beta_1 license_{jr} + \beta_2 price_{jr} + \beta_3 reviews_{jr} + \beta_4 rating_{jr} + X'_{jr}\alpha + \gamma_j + \mu_r + \varepsilon_{jr}$

For request *r* and pro *j*, estimate linear probability model:

 $hired_{jr} = \beta_1 license_{jr} + \beta_2 price_{jr} + \beta_3 reviews_{jr} + \beta_4 rating_{jr} + X'_{jr}\alpha + \gamma_j + \mu_r + \varepsilon_{jr}$

Unobserved pro quality correlated with:

- 1. Licensing information
- -> Exploit time lag b/w submission and verification.

For request *r* and pro *j*, estimate linear probability model:

 $hired_{jr} = \beta_1 license_{jr} + \beta_2 price_{jr} + \beta_3 reviews_{jr} + \beta_4 rating_{jr} + X'_{jr}\alpha + \gamma_j + \mu_r + \varepsilon_{jr}$

Unobserved pro quality correlated with:

- 1. Licensing information
- -> Exploit time lag b/w submission and verification.
- 2. Price
- -> Instrument with geographic distance between pro and consumer.

For request *r* and pro *j*, estimate linear probability model:

 $hired_{jr} = \beta_1 license_{jr} + \beta_2 price_{jr} + \beta_3 reviews_{jr} + \beta_4 rating_{jr} + X'_{jr}\alpha + \gamma_j + \mu_r + \varepsilon_{jr}$

Unobserved pro quality correlated with:

- 1. Licensing information
- -> Exploit time lag b/w submission and verification.
- 2. Price
- —> Instrument with geographic distance between pro and consumer.
- 3. Online reviews (number of reviews and average rating score)
- —> Instrument with rater's harshness and propensity to review pros other than focal pro (Chen 2018).

For request *r* and pro *j*, estimate linear probability model:

 $hired_{jr} = \beta_1 license_{jr} + \beta_2 price_{jr} + \beta_3 reviews_{jr} + \beta_4 rating_{jr} + X'_{jr}\alpha + \gamma_j + \mu_r + \varepsilon_{jr}\alpha + \varepsilon_{jr$

Unobserved pro quality correlated with:

- 1. Licensing information
- -> Exploit time lag b/w submission and verification.
- 2. Price
- —> Instrument with geographic distance between pro and consumer.
- 3. Online reviews (number of reviews and average rating score)
- —> Instrument with rater's harshness and propensity to review pros other than focal pro (Chen 2018).

Similar results as event study + highly price sensitive consumers.

1. Setting / Descriptive Stats

2. Individual Choices

- Event Study
- Choice Regressions
- <u>Survey Evidence</u>

3. Aggregate Outcomes

Beyond Our Sample

Survey ~5K consumers who recently hired for home improvement. —> GOAL: Check what consumers know/think + external validity.

Beyond Our Sample

Survey ~5K consumers who recently hired for home improvement. —> GOAL: Check what consumers know/think + external validity.

How do consumers find professionals?

- Referral from friend (53%)
- Google/Yelp (25%)
- Online platform like ours (16%)
- Yellow Pages (4%)

Beyond Our Sample

Survey ~5K consumers who recently hired for home improvement. —> GOAL: Check what consumers know/think + external validity.

How do consumers find professionals?

- Referral from friend (53%)
- Google/Yelp (25%)
- Online platform like ours (16%)
- Yellow Pages (4%)

Top reasons for hiring:

- 'price' (50%), 'cost' (14%),
- 'quality' (14%), 'review' (13%), 'recommend' (13%), 'friend' (12%),
- <1% mentioned license.</p>

Do Consumers Know if Pro is Licensed?

Typically yes, but mostly because it's in the contract.

Do Consumers Know if License is Required?

Many are "not sure".

Are Consumers in Favor of Licensing Regulation?

53% are in favor of licensing regulation.

1. Setting / Descriptive Stats

2. Individual Choices

- Event Study
- Choice Regressions
- Survey Evidence

3. Aggregate Outcomes

- Different occupations and states have different levels of regulation.
- Estimate how stringency of regulation affects market outcomes:

 $y_{rctz} = \mu_z + \mu_c + \mu_t + \beta licensing_stringency_{state(z)occupation(c)} + \beta X_{rctz} + \epsilon_{rctz}$ request *r*, zip code *z*, category *c*, month-year *t*.

- Different occupations and states have different levels of regulation.
- Estimate how stringency of regulation affects market outcomes:

 $y_{rctz} = \mu_z + \mu_c + \mu_t + \beta licensing_stringency_{state(z)occupation(c)} + \beta X_{rctz} + \epsilon_{rctz}$ request *r*, zip code *z*, category *c*, month-year *t*.

• Outcomes:

quotes

Search

Quoted price

- Different occupations and states have different levels of regulation.
- Estimate how stringency of regulation affects market outcomes:

 $y_{rctz} = \mu_z + \mu_c + \mu_t + \beta licensing_stringency_{state(z)occupation(c)} + \beta X_{rctz} + \epsilon_{rctz}$ request *r*, zip code *z*, category *c*, month-year *t*.

	Pr(hire)	
Search	Hiring	
Quoted price	Winning quote	

- Different occupations and states have different levels of regulation.
- Estimate how stringency of regulation affects market outcomes:

 $y_{rctz} = \mu_z + \mu_c + \mu_t + \beta licensing_stringency_{state(z)occupation(c)} + \beta X_{rctz} + \epsilon_{rctz}$ request *r*, zip code *z*, category *c*, month-year *t*.

# auotes		
	Pr(hire)	Pr(5-star)
Search	Hiring	Post-hiring
Quoted price	Winning quote	Pr(post again)

- Different occupations and states have different levels of regulation.
- Estimate how stringency of regulation affects market outcomes:

$$y_{rctz} = \mu_z + \mu_c + \mu_t + \beta licensing_stringency]_{tate(z)occupation(c)} + \beta X_{rctz} + \epsilon_{rctz}$$

request *r*, zip code *z*, category *c*, month-year *t*.

# quotes	Pr(hire)	Pr(5-star)
Search	Hiring	Post-hiring
Quoted price	Winning quote	Pr(post again)

Measuring Licensing Stringency at State-Occupation Level

- Institute for Justice "License to Work" database:
 - Fees, exams, min grade / age, education, experience.
- Hand-collected same information for other occupations:
 - General contractors, electricians, plumbers.
- Derive one-dimensional score via principal component analysis.

Dimensionality Reduction

Licensing Stringency	Correlation
Fees	0.845
Days Lost	0.853
Exams	0.815
Min Grade	0.290
Min Age	0.746
Education (Years)	0.082
Education (Credits)	0.071
Experience (Years)	0.556

Dimensionality Reduction

Licensing Stringency	Correlation
Fees	0.845
Days Lost	0.853
Exams	0.815
Min Grade	0.290
Min Age	0.746
Education (Years)	0.082
Education (Credits)	0.071
Experience (Years)	0.556

Painters in Oregon:

- 18+ years old
- \$385 fees
- 16 clock hours of instruction
- 1 exam

Dimensionality Reduction

Licensing Stringency	Correlation
Fees	0.845
Days Lost	0.853
Exams	0.815
Min Grade	0.290
Min Age	0.746
Education (Years)	0.082
Education (Credits)	0.071
Experience (Years)	0.556

Painters in Oregon:

- 18+ years old
- \$385 fees
- 16 clock hours of instruction
- 1 exam

```
+ 1 sd
```

Electricians in Connecticut:

- 18+ years old
- \$702 fees
- 2 years of experience
- 3 exams

	$\mathrm{Nr.}$ Quotes	$\begin{array}{c} {\rm Avg} \ {\rm FP} \\ {\rm Quote} \\ (\log) \end{array}$
	(1)	(2)
Licensing Stringency	-0.027^{**} (0.014)	0.018^{***} (0.007)
Mean of Y: Observations R^2	$2.01 \\ 1,035,717 \\ 0.507$	$5.5\414,511\0.522$

Note:

p < 0.1; p < 0.05; p < 0.05; p < 0.01

- A one-standard deviation increase in licensing stringency:
- reduces # quotes by 0.05 (2.4%).
- increases quoted prices by 3.2%.

	$\mathrm{Nr.}$ Quotes	$\begin{array}{c} \operatorname{Avg}\operatorname{FP}\\ \operatorname{Quote}\\ (\operatorname{log}) \end{array}$	Hire	$egin{array}{c} { m Winning} \\ { m Quote} \\ ({ m log}) \end{array}$	
	(1)	(2)	(3)	(4)	
Licensing Stringency	-0.027^{**} (0.014)	0.018^{***} (0.007)	-0.001 (0.001)	0.014^{**} (0.006)	
$\begin{array}{l} \text{Mean of Y:} \\ \text{Observations} \\ \text{R}^2 \end{array}$	$2.01 \\ 1,035,717 \\ 0.507$	$5.5 \\ 414,511 \\ 0.522$	$0.16 \\ 848,947 \\ 0.073$	$5.02 \\ 64,818 \\ 0.575$	

Note:

*p<0.1; **p<0.05; ***p<0.01

- A one-standard deviation increase in licensing stringency:
- reduces # quotes by 0.05 (2.4%).
- increases quoted prices by 3.2%.
- has no effect on matching probability.
- increases winning quote by 2.5%.

	$\mathrm{Nr.}$ Quotes	$\begin{array}{c} \operatorname{Avg} \operatorname{FP} \\ \operatorname{Quote} \\ (\log) \end{array}$	Hire	$egin{array}{c} { m Winning} \\ { m Quote} \\ (\log) \end{array}$	5-Star Review	Post Again	Post Again Diff. Cat.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Licensing Stringency	-0.027^{**} (0.014)	0.018^{***} (0.007)	-0.001 (0.001)	0.014^{**} (0.006)	$0.001 \\ (0.001)$	-0.003^{**} (0.001)	-0.003^{**} (0.001)
$\begin{array}{c} \text{Mean of Y:} \\ \text{Observations} \\ \text{R}^2 \end{array}$	$2.01 \\ 1,035,717 \\ 0.507$	$5.5 \\ 414,511 \\ 0.522$	$0.16 \\ 848,947 \\ 0.073$	$5.02 \\ 64,818 \\ 0.575$	$0.48 \\ 140,571 \\ 0.105$	$0.24 \\ 140,571 \\ 0.129$	$0.23 \\ 140,571 \\ 0.129$

Note:

*p<0.1; **p<0.05; ***p<0.01

A one-standard deviation increase in licensing stringency:

- reduces # quotes by 0.05 (2.4%).
- increases quoted prices by 3.2%.
- has no effect on matching probability.
- increases winning quote by 2.5%.
- has no effect on customer satisfaction metrics.

	$\operatorname{Nr.}$ Quotes	Avg FP Quote (log)	Hire	$egin{array}{c} { m Winning} \\ { m Quote} \\ (\log) \end{array}$	5-Star Review	$\begin{array}{c} \operatorname{Post} \\ \operatorname{Again} \end{array}$	Post Again Diff. Cat.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Licensing Stringency	-0.027^{**} (0.014)	0.018^{***} (0.007)	-0.001 (0.001)	0.014^{**} (0.006)	$0.001 \\ (0.001)$	-0.003^{**} (0.001)	-0.003^{**} (0.001)
$ \begin{array}{c} \text{Mean of Y:} \\ \text{Observations} \\ \text{R}^2 \end{array} $	$2.01 \\ 1,035,717 \\ 0.507$	$5.5 \\ 414,511 \\ 0.522$	$0.16 \\ 848,947 \\ 0.073$	$5.02 \\ 64,818 \\ 0.575$	$0.48 \\ 140,571 \\ 0.105$	$0.24 \\ 140,571 \\ 0.129$	$0.23 \\ 140,571 \\ 0.129$

Note:

*p<0.1; **p<0.05; ***p<0.01

A one-standard deviation increase in licensing stringency:

- reduces # quotes by 0.05 (2.4%).
- increases quoted prices by 3.2%.
- has no effect on matching probability.
- increases winning quote by 2.5%.
- has no effect on customer satisfaction metrics.

Double-ML (flexibly controls for request characteristics)

	$\operatorname{Nr.}$ Quotes	Avg FP Quote (log)	Hire	$egin{array}{c} { m Winning} \\ { m Quote} \\ (\log) \end{array}$	5-Star Review	Post Again	Post Again Diff. Cat.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Licensing Stringency	-0.027^{**} (0.014)	0.018^{***} (0.007)	-0.001 (0.001)	0.014^{**} (0.006)	$0.001 \\ (0.001)$	-0.003^{**} (0.001)	-0.003^{**} (0.001)
$\begin{array}{c} \text{Mean of Y:} \\ \text{Observations} \\ \text{R}^2 \end{array}$	$2.01 \\ 1,035,717 \\ 0.507$	$5.5 \\ 414,511 \\ 0.522$	$0.16 \\ 848,947 \\ 0.073$	$5.02 \\ 64,818 \\ 0.575$	$0.48 \\ 140,571 \\ 0.105$	$0.24 \\ 140,571 \\ 0.129$	$0.23 \\ 140,571 \\ 0.129$

Note:

*p<0.1; **p<0.05; ***p<0.01

A one-standard deviation increase in licensing stringency:

- reduces # quotes by 0.05 (2.4%).
- increases quoted prices by 3.2%.
- has no effect on matching probability.
- increases winning quote by 2.5%.
- has no effect on customer satisfaction metrics.

Double-ML (flexibly controls for request characteristics) gives same results.

Results Broken Down by Price Point

	(4)	 1sd increase in stringency
Licensing Stringency	0.003	L J
	(0.007)	7% increase
Licensing Stringency* \geq \$200	0.041***	
	(0.013)	In matched quote
\mathbb{R}^2	0.576	$\frac{1}{1000}$

Matched Quote (log)

Results Broken Down by Price Point

	(4)	— 1sd increase in stringency
Licensing Stringency	0.003	
	(0.007)	7% increase
Licensing Stringency* \geq \$200	0.041***	in metabod queto
	(0.013)	in matched quote
\mathbb{R}^2	0.576	$\frac{1}{1000}$
Licensing Stringency	0.006 (0.006)	12% increase
Licensing Stringency* \geq \$500	0.069***	in matched quote
	(0.016)	for jobs above \$500.
\mathbb{R}^2	0.576	

Matched Quote (log)

Results Broken Down by Price Point

	Matched Quote (log)	
	(4)	- 1sd increase in stringency
Licensing Stringency	0.003	
	(0.007)	
Licensing Stringency* \geq \$200	0.041***	in motobod quoto
	(0.013)	
$\frac{R^2}{}$	0.576	for jobs above $$200$.
Licensing Stringency	0.006	- 100/ increase
	(0.006)	
Licensing Stringency* \geq \$500	0.069***	in matched quote
	(0.016)	for jobs above \$500.
$\frac{\mathrm{R}^2}{}$	0.576	-
Licensing Stringency	0.009	
	(0.006)	170/ increase
Licensing Stringency* \geq \$1,000	0.097^{***}	
	(0.028)	in matched quote
\mathbb{R}^2	0.576	tor jobs above $$1,000$.

Matched Quote (log)

Included Tasks	Matched to FP Quote
Observations	64,818

Conclusion

 How do consumers value licensing information when choosing providers? How important is licensing relative to online reputation and prices?

- Reviews and prices matter a lot more that knowing whether a professional is licensed.
- 2. What are the effects of stricter licensing on competition, prices, quality?

More stringent licensing regimes lead to:

- Less competition, higher prices.
- No detectable effect on (what we can measure of) customer satisfaction.

Thank you.