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FINANCIAL INTELLIGENCE

Money laundering cycle: PLACEMENT, LAYERING, INTEGRATION 



Statistical  approaches: 
Social Network Analysis

Algorithmic & machine learning approaches: 
Neural networks,  

Classification and sub-tasks such as clustering,  

Classical graph algorithms 

Embeddings

Reasoning approaches:
Knowledge Graphs
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STATISTICAL APPROACHES: Social Network Analysis



*  descriptive statistics 

*  core-periphery analysis 

*  exploratory analysis 

* inapplicable to specific cases 

* neglects analyst’s knowledge 

* cannot extract evidence for judicial or law enforcement authorities from SNA 

STATISTICAL APPROACHES: Social Network Analysis



Statistical  approaches: 
Social Network Analysis 

Machine learning approaches: 
Graph Embeddings  

Neural networks  

Classification and sub-tasks such as clustering 

Classical graph algorithms 

Reasoning approaches: 
Knowledge Graphs
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MACHINE LEARNING APPROACHES

*  access to a large toolbox of techniques and algorithms  

* support for low experience personnel     

     

* neglects analyst’s knowledge 

* mostly supervised methods  

* highly unbalanced training sets 

* few true positives to train models 

* scarce or absent explainability  
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Knowledge Base

Q: Who are the pairs of persons of the same generation?

REASONING IN KNOWLEDGE GRAPHS

Knowledge Graph
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Detecting Collusion with KG and Reasoning  

If a bank owns more than 50% of another one, then 
the first controls the second 
Brothers are in the same family 
Two partners are in the same family 
 Relations are transitive
Two banks whose CEOs and/or major shareholders 
are in the same family are in a person-based link
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A vision: reasoning approaches will disrupt the way AML is performed in the 
next years. 

A challenge: knowledge graphs approaches entail a holistic approach to the 
contrast of financial crimes phenomena, which is almost absent now.

FINAL REMARKS




