NEW FRONTIERS FOR NETWORK ANALYSIS
IN ANTI-MONEY LAUNDERING

L. Bellomarini, C. Bentivogli, E. Laurenza

.4\ A/D\WPJ <‘63arch T;E l ' I F IH;J'
OXFORD

The views expressed in this paper are those of the authors and do not necessarily reflect those of
the Bank of Italy or Financial Intelligence Unit for Italy




FINANCIAL INTELLIGENCE

o Money laundering cycle: PLACEMENT, LAYERING, INTEGRATION
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STATISTICAL APPROACHES: Social Network Analysis




STATISTICAL APPROACHES: Social Network Analysis

* descriptive statistics
* core-periphery analysis

* exploratory analysis

* inapplicable to specific cases
* neglects analyst’s knowledge

* cannot extract evidence for judicial or law enforcement authorities from SNA



ARTIFICIAL INTELLIGENCE: NETWORK ANALYSIS

~ Machine learning approaches:
Graph Embeddings

Neural networks
Classification and sub-tasks such as clustering

Classical graph algorithms



MACHINE LEARNING APPROACHES

* access to a large toolbox of techniques and algorithms

* support for low experience personnel

* neglects analyst’s knowledge
* mostly supervised methods
* highly unbalanced training sets

* few true positives to train models

* scarce or absent explainability
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REASONING IN KNOWLEDGE GRAPHS

Knowledge Base
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Detecting Collusion with KG and Reasoning
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Detecting Collusion with KG and Reasoning
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Money Laundering Geometries
Finding Beneficial Owner




Money Laundering Geometries
Finding Beneficial Owner
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FINAL REMARKS

A vision: reasoning approaches will disrupt the way AML is performed in the
next years.

A challenge: knowledge graphs approaches entail a holistic approach to the
contrast of financial crimes phenomena, which is almost absent now.





