

Panel Discussion: Other CBs' perspective

Tobias Cagala / Deutsche Bundesbank October 21, 2019

The presentation represents the author's personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank or its staff.

Applications

Machine Learning and Data Science

- Survey by ECB TF on Machine Learning: Bundesbank as early adopter among central banks
- Applications by department:
 - Statistics: Automation, record linkage, DQM
 - Payments and Settlement System: Clustering payment profiles
 - Risk Controlling: Identification of counterparties, rating of bonds

- Informal and formal exchange and network of data scientists

Anomaly Detection with Network Embedding

- Data on financial interrelations \rightarrow Network data
- Deep learning (Autoencoder)
- Use reconstruction error and position (clustering) in lower dimensional space
- Results inspire econometric investigation

T. Cagala (BBk) Discussion – Oct 21 Page 2 / 4

Anomaly Detection with Network Embedding

- Data on financial interrelations \rightarrow Network data
- Deep learning (Autoencoder)
- Use reconstruction error and position (clustering) in lower dimensional space
- Results inspire econometric investigation

Record Linkage

- Internal and external firm-level data
- Match non-financial firms by company name
- Supervised learning model

T. Cagala (BBk) Discussion – Oct 21 Page 2 / 4

Anomaly Detection with Network Embedding

- Data on financial interrelations \rightarrow Network data
- Deep learning (Autoencoder)
- Use reconstruction error and position (clustering) in lower dimensional space
- Results inspire econometric investigation

Record Linkage

- Internal and external firm-level data
- Match non-financial firms by company name
- Supervised learning model

Supervised Learning for Prediction of Reporting Errors (DQM)

```
T. Cagala (BBk)
Discussion – Oct 21
Page 2 / 4
```

Anomaly Detection with Network Embedding

- Data on financial interrelations \rightarrow Network data
- Deep learning (Autoencoder)
- Use reconstruction error and position (clustering) in lower dimensional space
- Results inspire econometric investigation

Record Linkage

- Internal and external firm-level data
- Match non-financial firms by company name
- Supervised learning model

Supervised Learning for Prediction of Reporting Errors (DQM)

```
- Tomorrow, Session 7 at 09:30
```

```
T. Cagala (BBk)
Discussion – Oct 21
Page 2 / 4
```

Way Ahead

Opportunities and Challenges

- Opportunities
 - Efficiency gains if we use ML for automation
 - Larger toolbox for analyses
 - Data driven perspective on problem solving
- Challenges
 - Performance gain contingent on datasets with complex data structure
 - Implementation of new technologies in existing IT landscape
 - Trade-off between openness (open data, open source) and data privacy/security
 - Challenges in two fields of applications:
 - Agnostic: Finding relevant \widehat{y} cases
 - · Econometric: Causal inference

```
T. Cagala (BBk)
Discussion – Oct 21
Page 3 / 4
```

Way Ahead

Do we need data scientists in the medium (long) run?

- Increasing power/availability of AutoML
- Increasing availability of new (big) data sources
- Rising importance of specialists (as compared to generalist, i.e. data scientist):
 - Technical: Data Engineers
 - Analytical: Economists, experts on financial markets