Discussion:
Cross-country differences in the size of venture capital financing rounds
Tobias Cagala / Deutsche Bundesbank
October 22, 2019

The presentation represents the author’s personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank or its staff.
Summary

- **Outcome**: \(y := \text{Size of venture financing rounds} \)
- **Analysis**: \(y = f(\hat{X}) \)
- **Model**: Predict \(\hat{X} \) with ML
- **Results**:
 1. Firm- and country characteristics \(\rightarrow y \)
 2. Degree of development of venture capital industry \(\not\rightarrow y \)
Degree of development of venture capital industry $\not\in \times$

Lack of identifying variation $\not\equiv$ Lack of causal effect

size of vc financing
Degree of development of venture capital industry $\not\in X$

Lack of identifying variation $\not= \text{Lack of causal effect}$
Degree of development of venture capital industry $\not\in X$

Lack of identifying variation $\not\in$ Lack of causal effect

- size of vc financing
- development of vc
- country characteristics
Comments: Main Result

Degree of development of venture capital industry $\not\in \mathcal{X}$

Lack of identifying variation $\not\equiv$ Lack of causal effect

![Venn Diagram]

- Size of VC financing
- Development of VC
- Country characteristics
Comments: Main Result

Degree of development of venture capital industry $\not\equiv X$

Lack of identifying variation \neq Lack of causal effect

- size of vc financing
- development of vc
- country characteristics
Degree of development of venture capital industry \(\not\in X \)
Lack of identifying variation \(\not\equiv \) Lack of causal effect

- size of vc financing
- development of vc
- country characteristics

T. Cagala (BBk)
Discussion – Oct 22
Page 2 / 8
Comments: Main Result

Degree of development of venture capital industry $\not\in X$

Lack of identifying variation $\not\in$ Lack of causal effect

Possible solution

- Redundancy argument (already in the paper)
 - You show a high correlation (R^2 of 50% compared to R^2 of 10% in main analysis)
 - Disentangle relationship between variables by moving away from lower dimension (correlation between individual components)

- Move away from agnostic approach
 - More careful selection of control variables
 - Exploit variation over time (if existent)
Use of cluster-robust standard errors

- Standard errors **incorrect** for two-step procedure:
 1. Generate \hat{X}
 2. Estimate $y = f(\hat{X})$ with cluster-robust standard errors
Use of cluster-robust standard errors

- Standard errors incorrect for two-step procedure:
 1. Generate \hat{X}
 2. Estimate $y = f(\hat{X})$ with cluster-robust standard errors

- Ignores sampling variance in the first-stage estimates

- Similar to 2SLS in IV-estimation, we have to correct the standard errors

 - Angrist & Pischke ‘Mostly Harmless Econometrics’ Ch. 4
Comments: Inference

Standard errors are incorrect for two-step procedure

Possible solution

- Asymptotic results likely not available
- Use block-bootstrap for entire two-step procedure
Comments: Machine Learning

Use of specific ML procedure is not properly motivated

Alternative approaches for dimensionality reduction
 - PCA
 - Neural Networks (Autoencoder)
 - Selection by domain experts

Possible solution

 - Show results with alternative approaches
 - Evaluate benefits of ML procedure (gain in efficiency?)
 - Compare out-of-sample predictive accuracy
Interpretability

- Interpretation of marginal effects of \hat{X} is very difficult
- Agnostic ML approach bears many risks

Example: The World Bank’s Starting a Business Scores of Germany and Sierra Leone are very similar

Possible solution

- ML procedure for robustness check
- Main analysis:
 - Panel model with fixed effects; show within and between R^2, or
 - Careful variable selection and modelling choices (e.g., interactions with OECD dummy, ...)
Minor Points

- Low in-sample fit ($R^2 \approx 10\%$)

 Ideas on the source of unexplained variation?

- Null effect as main result

 Convince reader that null is precisely estimated (e.g., by showing confidence interval)

- Do not interpret size of insignificant coefficients

- “Boosted trees and stacked generalization allow us to construct variables that summarize all the information...”

 Dimensionality reduction always implies loss of information