Big Data and ML Workshop 2019 Centro Carlo Azeglio Ciampi, October 21-22, 2019

Weaving the Property Graph of Company Ownerships

Luigi **Bellomarini** Andrea **Gentili** Michela **Iezzi**

The **opinions** expressed and conclusions drawn are those of the **authors** and do **not** necessarily reflect the views of the **Bank of Italy**.

Divisione Ricerca sulle Tecnologie Avanzate Dipartimento **IT**

Company graphs

We build graphs of company networks, to:

1. reveal **power**

- 1. finding **controllers**
- 2. studying the **structure** of Italian market 3. studying **dispersion** of control
- 4. global **shareholding** analysis
- 2. detect **collusion** and do **forensics**
 - 1. support **AML**
 - 2. detecting **ultimate beneficial owners**
- 3. evaluate **risks**
- 4. model propagations (e.g., of shocks)
- 5. guarantee **compliance**
- 6. perform enhanced **due diligence**
- 7. understand complex foreign shareholder structures
- 8. know real **cash flows**

The setting

- 4%
- Who takes **decisions**?
- Who's the ultimate **beneficial owner**?
- Is there **collusion**?
- How does **risk** propagate?
- What are the **real cash flows**?

The setting

Ownership and Control

owners of a company

• **Control** is about voting power • of any direct and indirect owner of a company

• Integrated ownership is about direct and indirect, • it can be seen in terms of cash flow rights

A has 100% decision power

Integrated Ownership

• Traditional systems only store the first-level (the closest) shareholders for a specific company

Indirect ownership

 $0.2 \times 0.3 = 0.06$

 $0.06 \times 0.9 = 0.054$

Parallel ownership

0.19 + 0.3 = 0.49

• Cycles (direct)

• Cycles (indirect)

Cycles (nested)

Integrated Ownership: real cases

• Cycles (nested)

Integrated Ownership: our model

The weight of a path P in an ownership graph is $w(P) = \prod_{(p_i, p_i) \in P} w(p_i, p_j)$

An ϵ -Baldone path P from s to t is a sequence $[s, p_1, \dots, p_n, t]$ such that $s \neq p_i$, for $i = 1, \dots, n$ and $w(P) > \epsilon$ with $\epsilon \in \mathbb{R}^+$

The ϵ -Baldone ownership of a company s on a company t in an ownership graph G is a function $\mathscr{O}_{\epsilon}^{G}(s,t): (s,t) \to \mathbb{R}$ defined as $\sum w(P_{i})$ where B is the set of all possible ϵ -Baldone paths from s to t.

The **Baldone ownership** of a company s on a company t in an ownership graph G is a function $\mathscr{O}^{G}(s,t): (s,t) \to \mathbb{R}$ defined as $\lim_{\epsilon \to 0} \mathscr{O}_{\epsilon}(s,t)$ where B is the set of all possible ϵ -Baldone paths from s to t.

Problem complexity

Computing "all-to-all" Baldone ownerships can be solved in polynomial time in the number of companies. Conjecture: $n^y, y \in [2,3]$

- Our approaches:
 - **Closed-form expression** (let's see how it works)

computation methods

• **Pure Reasoning** (for approximated but efficient results) Ad-hoc algorithm (ongoing, for top-level performance)

Adjacency matrix

	1	2	3	4
1		.50	.09	.20
2	.30		.18	.40
3				
4			.20	

 $A_{ik} = \sum A_{ij} \times A_{jk}$

	1	2	3	4		1	2	3	4
1		.50			1		.50		
2	.30		.10	.40	2	.30		.10	.40
3					3				
4			.20		4			.20	

Squared Adjacency Matrix

 $A_{ik} = \sum A_{ij} \times A_{jk}$

2 3 4 1 2 1 3 4 .20 1 .05 .15 1 .50 2 .10 .15 .08 2 .30 .40 3 3 .20 4 4

Cubed Adjacency Matrix

2 3 4 2 1 1 3 4 .15 .05 .20 1 .50 2 .15 .08 .30 .10 2 .40 3 3 .20 4 4

Cubed Adjacency Matrix

A2

partial integrated ownership

	1	2	3	4			1	2	3	4
1		.075	.04			1	.15	.575	.09	.20
2	.045		.015	.06		2	.345	.15	.195	.46
3						3				
4						4			.20	
ĄЗ				-		{ +	A	2+,	A	

N–1 $A^1 + A^2 + \ldots = \sum A^i$ i=1

 $\hat{W}_{st} = W_{st} + \sum \hat{W}_{sk} W_{kt}$ which can be manipulated into: $k \neq s$

 $\hat{W} = (I - \text{diag}(\hat{W})) W + \hat{W}W$

and solved as:

 $\hat{W} = diag(V)^{-1}VW$ with $V = (I - W)^{-1}$

In summary

- Ownership problem characterization
 - Theoretical study (e.g., complexity analysis)
 - Novel algorithms to compute all-to-all Baldone ownerships
 - Efficient and fully transparent ownership model
- Construction of the Italian company graph
 - all Italian companies, all links, all shareholders
 - 4.059M nodes, 3.960M edges, ~4M SCC, ~600K WCC
 - family links between shareholders
- Data available soon + basic AI tools for many applications ...

Conclusions

- 1. reveal **power**
 - 1. finding **controllers**
 - 2. studying the **structure** of Italian market
 - 3. studyng **dispersion** of control
 - 4. global **shareholding** analysis
- 2. detect **collusion** and do **forensics** 1. support **AML**
 - 2. detecting ultimate beneficial owners
- 3. evaluate **risks**
- 4. model **propagations** (e.g., of shocks)
- 5. guarantee **compliance**
- 6. perform enhanced **due diligence**
- 8. know real **cash flows**

7. understand complex foreign shareholder structures

Big Data and ML Workshop 2019

Open discussion

