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Context and Motivations (1)

= Central Banks collect, process and disseminate a wide set of
statistical data: Data Quality Management (DQM) is crucial to
support decision making.

= DQM in Bank of Italy: automated checks to verify pre-
determined relationships in the data (e.g. accounting, logical
and mathematical relationships).

= When deterministic relationships are weak DQM entails
plausibility checks (trend-based) that rely on “acceptance
regions” to isolate outliers.



Context and Motivations (2)

= Shortcomings of plausibility checks:

e Calibration not straightforward,
* Periodical revision and update needed,
* Large number of acceptance thresholds.

" Complex and time-consuming system with highly granular data
and heterogeneous reporting patterns.

= Aim: employ ML to improve plausibility checks in granular
databases.

* Approach: a supervised learning algorithm (Quantile Regression
Forests) employed to detect potential outliers.




= Application to payment services data reported by banks.
Outliers cross-checked with reporting agents.

= Empirical findings:

New outliers detected (not identified by the current DQM
system).

High accuracy (77% precision; reduced “false positives”).

= I[mprovements:

 Thresholds tailored to the characteristics of banks and to the
degree of granularity of the data.

* Dynamic thresholds that are automatically updated as new
data are reported. Reduced involvement of analysts.



= Focus on debit cards issued:

e Unit of analysis = n. of cards issued by bank (i), at the end of
the semester (t), for a given province (p).

e Data extracted from DWH. Period: Dec-2014 to Jun-2018.

= Additional data on bank features:

* n. of customers by province of the counterparty,
* type of customer accounts,
» other payment services offered (business model).

" Final sample: 18,000 observations corresponding to 213 banks.



The Algorithm (1)

= Analysis of the empirical distribution of the n. of debit cards (Y)
conditional on bank characteristics (Xs).

= Estimation of quantile functions g, (Y|X) :

Prob(Y < q;(X)) = F(q.(X)) =1

" Quantile functions combined to form prediction intervals
(acceptance thresholds) associated with a given probability (a):

PI(X) = [q %(X); ql_%(X)]

= Qutliers: values outside the intervals; unlikely to occur (too
high/too low) given the reporting context.



The Algorithm (2)

= Sampling:
* Train set to estimate quantile functions q,(x) for different 7s.

* Test set to compute intervals [§,,(x), §,,(x)] and detect
outliers.

" Training:

e Algorithms: Quantile Regression Forest, Linear Quantile
Model, Linear Quantile Model with Fixed-Effects.

* Model selection with 10-folds cross validation.

= Testing:

* Rolling window with two snapshots of data. Last two
semesters in each snapshot as test set.
e Qutliers communicated to banks for cross-check.



The Algorithm (3)

= Model:

q: (xl-pt) = Po + Brdepositors;y: + faperc_caiy + P3size; + Paiss_acq_ratio;,

+pstrend + Bgsem + a; +

=  Predictors:

depositors;,:= N. of depositors (of a bank in a given province)
perc_ca;y:= % of depositors with current accounts

size;;= Total transacted amounts (as an issuer and as an acquirer)
Iss_acq_ratio;;= Balance between issuing and acquiring services
sem = Semester dummy

t = N. of semesters starting from the first period in the dataset
a;= Bank fixed effects

i, = Province fixed effects



The Algorithm (4)

= Estimated acceptance thresholds:
PI;(x) = [q0.01(x),q0.99(x)]
PI;(x) = [q0.025(x), 90.975(x)]

PI3(x) = [qo25(x) — 1.5 (qo.75(x) — @o.25(x)), Go.75(x) + 1.5+ (qo.75(x) — qo.25(x))]

= Observations falling outside any of the intervals flagged as
potential outliers.



Cross check of outliers with banks
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Concluding Remarks

= Potential to improve DQM: more precise quality checks to
detect outliers at a fine grained level with reasonable level of

accuracy.

" Maintanance of DQM system: dynamic thresholds and
periodical training of the algorithm vs manual update of
acceptance thresholds.

= Additional challanges:

* New processes and IT solutions for the production phase.
 Communication of anomalies to banks becomes more
complex.
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® Extensions:

* Application to other payment services data (e.g. credit cards).

* Analysis of data at the collection stage (i.e. before delivery to
the DWH).

 Classification algorithms (exploiting variations to reported
data).

* Unsupervised algorithms for outlier detection.

" |n perspective: extend the ML approach to other granular data
collections (in particular when current checks are weak).
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