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Relevance of the Two Projects

1 The projects speak to an increasing literature that analyzes news text
for stock price prediction and nowcasting macroeconomic variables
(for a review, Gentzkow et al. 2019).

Most of the literature relies on dictonary-methods and word counts
(e.g., Tetlock 2007; Loughran and McDonald 2011).
There is room to exploit machine learning based techniques of text
analysis to improve economic forecasts.

2 “The field of economics should be expanded to include serious
quantitative study of changing popular narratives” (Shiller 2017).

Topic modeling is a promising direction for the rigorous assessment of
narratives’ impact on economics fluctuations.
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Main Results

1 Based on large corpora of Italian news, the projects derive time series
of latent topics and dictionary-based sentiment scores.

LDA appears to effectively capture relevant information content.

2 (Some) topic-augmented models show enhanced forecasting
performance vis-à-vis näıve models.
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Strengths

1 Data
⇒ The projects make use of novel and rich datasets.
⇒ The use of Factiva DNA is the state of the art for text data retrieval.

2 Transparency
⇒ The projects describe in a well-structured and replicable manner their

pipelines from query construction to model specification.
⇒ Efforts are put to minimize the degree of arbitrariness of important

reseach design decisions (e.g., number of topics in LDA model).

3 Visualisation
⇒ LDA results are visualised in a clear and informative manner.
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Room for Improvement: Ex Ante Decisions

1 Where is theory?
⇒ The reason why certain topics have more predictive power than others

is a black box.
⇒ Is it possible to have a more “theory-informed” approach and

hypothesis-testing?

2 Text preprocessing
⇒ Denny and Spirling (2018) show that preprocessing decisions have

profound effects on the results of unsupervised learning models.
⇒ Is it possible to minimize and standardize the amount of preprocessing

choices (e.g., bi-gram inclusion, document-term matrix trimming)?

3 Unsentimental sentiment
⇒ “[Off-the-shelf] dictionaries are able to produce measures that are

claimed to be about tone or emotion, but the actual properties of these
measures – and how they relate to the concepts they are attempting to
measure – are essentially a mystery” (Grimmer and Stewart 2013).
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Room for Improvement: Model Selection

1 Perplexed about “perplexity”
⇒ Held-out likelihood is not (or is negatively) correlated with human

judgement (Chang et al. 2009).
⇒ Paradox: models with better statistical fit have worse topic

interpretability.
⇒ Is this an ultimately informative metric to evaluate LDA performance?

2 Coherence-exclusivity trade-off
⇒ Roberts et al. (2014) propose to measure topic quality through a

combination of semantic coherence and exclusivity of words to topics.
⇒ FREX metric (Bischof and Airoldi 2012) is used to measure exclusivity

in a way that balances word frequency.
⇒ Coherence and exclusivity are inversely proportional. Worth considering

this trade-off in model selection.
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Coherence-Exclusivity Trade-Off: An Example
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Room for Improvement: Evaluation and Prediction

1 Look-ahead bias
⇒ The second project tries to address the problem with a rolling sample,

but this yields relatively worse predictions.
⇒ Is forecasting performance driven by information that is not available

during the time period being simulated?

2 Time period
⇒ In the first project, the sample of articles goes from 1996 to 2019.
⇒ Why only the 2007-2019 sample is considered for inflation forecasts?

3 Forecasting model
⇒ Similar forecasting exercises with text-based time series typically rely

on VAR frameworks (e.g., Tetlock 2007).
⇒ Is AR(1) too much of a “näıve” model?
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Methodological Suggestions for Future Research

Dynamic topic models (Blei and Lafferty 2006)
⇒ They can be used to analyze the over time evolution of topics.
⇒ Useful for long time frame, as words are more likely to change.
⇒ DtmModel from gensim Python library.

Structural topic models (Roberts et al. 2016)
⇒ They include document-level covariate information, which can improve

topic inference and qualitative interpretability.
⇒ Example of document-level covariate: media outlet (e.g., Corriere, etc.)
⇒ stm package in R.

Supervised learning
⇒ It outperforms dictionaries in sentiment analysis (Barberá et al. 2016).
⇒ Labelling takes time, but it makes validation easier.
⇒ scikit-learn library in Python and e1071 package in R.
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⇒ Labelling takes time, but it makes validation easier.
⇒ scikit-learn library in Python and e1071 package in R.

Federico M. Ferrara (ECB) Workshop Discussion 21 October 2019 9 / 12



Thank you for your attention!

Federico M. Ferrara (ECB) Workshop Discussion 21 October 2019 10 / 12



References I
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