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Some example of TM in Bank of Italy

Type of Text Docs’ Length Frequency Main challenges

Tweets Very short Very High Merging criteria; informal language; 

special characters/emoticons; noise;  

real estate dwellings Short Low Duplicates; incongruences; images

Web site’s scraping Medium Medium Identify elements; structure’s changes; 

access limitations.

Institutional Reports 

and Speeches

High Low Differences between sources; difficulty 

to obtain text (especially in the past) 

Newspapers articles High High Large corpus; performance issues;

heterogeneity; spurious text; 
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TITLE

SNIPPET

BODY

TEXT=TITLE+SNIPPET+BODY

PUBLICATION DATE

BYLINE

ID=‘LAREP00020190501ef510002p’
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PERIOD

Sub-query 1
«Economics & 

Finance»

Sub-query 2
«Inflation»

Source & Language

Query
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# documents: 2,158,637 

# words:  566,349,655



Deriving Indicators from a large corpus of Italian documents 6Rome, 21/10/2019

Query



We follow current literature practices [Thorsrud (2018); Hansen 

et al. (2014), with some differences:

 Italian Language (no English Translation)

 Ad Hoc Query (no full newspaper)

 Different methods for selecting words (dictionary)

 Computational challenges 

 In-sample & Out-of-sample validation (Inflation forecasts)
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Tools and Languages

Big Data platform on-premise based on Hadoop

 Distributed/Parallel computations;

 In-memory computations;

 Spark MLLib

 Number of executors: 8

 Number of executor cores: 4

 Executor Memory: 20G

 Driver Memory: 10G

 Python language (Jupyter Notebooks);
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Text Mining Pipeline

Cleaning the corpus

Finding the topics

Constructing time series

• Lower case

• Remove numbers

• Remove 
punctuation

• Tokenization

• Filter

• Dictionary for LDA

• LDA (Latent Dirichlet 
Allocation)

• Select best model

• Daily topic intensity 

• Sentiment Analysis

• Finding correlations

• Time series forecasting

We worked only on ‘Inflation’ subquery, removing online sources (~300k docs)
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Cleaning’s phase

• Lower case

• Remove numbers

• Remove punctuation

• Tokenization (split words)

• Stopwords (Italian & English)

• Remove common names and surnames (from ‘byline’ field)

• Remove words with length < 3 or > 26

• Lemmatization/Stemming

• Bigram/Trigram

• TF-IDF or ZIPF’s Law

Raw text 

Unique

words

Identify

collocations

Remove

stopwords Stemming

TF-IDF 

adjustment Min DF

Number

of words 221,080,503 508,605 508,952 492,246 294,104 123,315 9,942
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Building the Dictionary

TF/IDF  (25% totale; DF>300)   ~10.000 words

“the frequency of any word is inversely 

proportional to its rank in the frequency 

table”

Zipf Law  (8 < log(freq(w)) < 11)  ~3.500 words

TF-IDF ZIPF’s LAW
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• Finding the LDA Model with best K (Number of Topics)

• List of K values used [10, 20, 30, 50, 80]

• TrainSet [80%] – TestSet [20%]

• Optimizer: Online variational Bayes 

• Alpha (Doc-Concentration) = uniformly (1.0 / K)  [default]

• Beta (Topic-Concentration) = (1.0 / K)  [default]

• Evaluation Metrics:
• Topic Perplexity (how model captures the distribution of the held out set)

• Topic Coherence (the degree of semantic similarity between its high scoring words)

Latent Dirichlet Analysis
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LDA metrics

Perplexity Coherence
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News Topics (K = 30)
topic name words

1Cars cars, version, engine, vehicles, gasoline, liter, volkswagen, chrysler, gamma, suv, diesel, launched, gear, automatic, electric

2Traveling children, kids, journey, tourists, people, family, holidays, to live, tells, night, hotel, reservations, help, hotels, take

3 Markets dollars, rise, performance, discount, investment, sale, analysts, actions, wall_street, american, indicated, btp, loss, wait, be worth

4Air Transport company, plane, passengers, ships, low_cost, pilots, climbing, transport, malpensa, insurance, route, ryanair, traffic, air_france, wanted

5Telecommunications digital, customers, telephony, dollars, offer, smartphone, use, data, users, electronics, launched, software, function, technology, calls

6School

students, study, teaching, training, salary, professional, university students, schools, graduates, temporary workers, graduate, employment, 

researchers, staff, employees

7Restaurants revenues, closed, ugly, turnover, disabled_access, drink, pizza, useful, margins, sale, dividends, open, positive, restaurant, menu

8Railways chinese, trains, transport, ticket, tons, steel, speed, journey, railway, railways, station, minutes, ilva, duties, siderurgy

9Holidays liguria, beach, restaurant, tourists, stability, season, shower, beach club, local, bath, concession, pool, beach umbrella, holidays, sand

10Pensions pension, article, decree, paragraph, intended, income, fiscal, tax, contributions, application, payment, employees, december, expense, within

11Laws article, paragraph, application, contract, decree, such, intended, subjects, obligation, law, indicated, relative, procedure, provision, rule

12Politics reform, premier, votes, parliament, left, elections, electoral, candidate, agreement, wants, voters, theme, opposition, senate, referendum

13Agriculture production, wine, milk, agricultural, quality, agriculture, tons, consumption, exports, kilo, breeders, harvest, supply chain, wheat, meat

14Credit credit, loans, debt, mortgages, banking, financing, liquidity, financial, institutions, loss, bankruptcy, obligation, rate, repayment, bad debts

15Salaries unions, employees, salaries, strike, salary, protest, blockade, regional, expense, contract, approved, municipalities, managers, announced, agreement

16Economy inflation, pil, debt, deficit, recession, measures, eurozone, too much, american, unemployment, world, fiscal, financial, monetary, expectations

17 Inflation hundred, expense, gasoline, tariffs, income, taxes, fuels, average, inflation, price increases, cents, consumption, women, bills, growth

18Real estate real estate, inhabitants, rent, apartments, area, owners, building, property, housing, local, renovation, land, investment

19Labour

contract, reform, productivity, unions, need, agreement, theme, represents, resources, intervention, performance, need, investment, necessary, 

measures

20Chronicle/Politics power, death, american, that, people, to live, perhaps, newspapers, parliament, man, to hear, remember, left, dollars, law

21Traffic parking, workers, hold, factory, area, open, traffic, local, tax, time, half, roads, closed, entrance, firm

22Oil and Energy energy, oil, electric, production, plants, dollars, nuclear, petroleum, emissions, medium, opec, supplies, world

23Health drugs, waste, sanitary, care, doctor, asl, hospitals, pharmaceutical, saipem, evil, good, medicines, regions, landfill, expense

24Justice prosecution, power of attorney, investigation, magistrates, crime, court, suspects, trial, justice, judicial, affair, conviction, corruption, legal, false

25Finance actions, offer, partners, participation, controls, opa, acquisition, agreement, merger, mediobanca, cda, transfer, holding, investment, financial

26Production registered, data, hundred, estimates, increase, previous, indicated, confirm, signals, grow, result, decrease, production, sign, positive

27Auctions auction, tomorrow, wednesday, organization, data, friday, thursday, october, participation, november, monday, tuesday, dedicated, february, december

28Crimes police, arrest, police, people, tells, finished, seizure, reported, drugs, death, agents, criminals, mafia, man, palestinian

29Rating/Investments

information, rating, equity, various, redemption, flexibility, tariffs, balance sheets, guarantee, yield, subscription, index, daily, investment_grade, 

reserves

30Shopping shops, customers, balances, quality, idea, tells, good, think, buy, true, clothing, open, choice, better, search
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Topics concentration



Topics – correlation
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Time Series (Topics over time)

• Daily frequencies: we collapsed all the articles for a particular day into one document 
and then we computed, using the estimated word distribution for each topic, the topic 
frequencies for this newly formed document. This yields a set of K daily time series;

• Sentiment analysis: 

1. We adopt the Italian dictionary CNR to infer the number of negative and positive words for 
each article (https://dspace-clarin-it.ilc.cnr.it/repository/xmlui/handle/20.500.11752/ILC-
73?show=full#)

2. Totally we have 25.098 words, but we keep 6.453 words: they are the words with strongest 
polarities (≤ −0.5 and ≥ 0.5 )

3. For each day and topic, find the article that is best explained by each topic, and from that 
identify the tone of the topic, that is, whether or not the news is positive or negative
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Topic 16 – Intensity
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Topic 16 – Sentiment
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Topic 16 – Intensity * Sentiment
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Forecasts

HICP (Harmonized Index of 

Consumer Prices) = Year-on-

year rate of change at the 

monthly frequency.

Out-of-sample exercise on a 

rolling window of five years.

Forecast for Headline Inflation 

(HICP) and the relative 

prediction obtained with a AR(1)-

X model (Benchmark).
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Forecasts

AR(1) vs. AR(1)-X (plus 

Intensity indicator for each 

topic).

Rolling window of five years 

(60 monthly observations). 

The grey cells indicate that 

the Root Mean Squared Error 

(RMSE) of the AR(1)-X is 

lower than that of the AR(1).
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Predictive Power

Y-Axis: number of times each 

news topic on the x axis 

helps predicting the inflation 

rate with respect to an AR(1) 

benchmark using a rolling 

window of 60 months. 

We depict a different bin for 

each different topic measure 

(intensity, sentiment and 

score, which is the intensity 

weighted for the score).
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Y-Axis: how many topic-

based models outperform 

the benchmark using 

intensity, sentiment or the 

score of each topic. 

As highlighted in the 

previous literature for other 

languages - see for example 

(Thorsrud, 2018) – weighting 

the intensity indicators using 

sentiment or tonality does 

indeed help in predicting the 

variable of interest.

Predictive Power
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Conclusions and future work

 We build a large corpus of articles from Italian newspaper related to 

process and inflation from queries against Factiva archives;

 After filtering, we calculate 30 topics that exhibit good coherence , 

low correlation and uniform distribution of the articles;

 Indicators derived from that topics revealed some additional 

predictive power against a simple benchmark model in forecasting 

inflation.  

 Further researches are already in progress, to improve the cleaning 

phase and to better quantify the informative gain from the news 

topics;

 We are also working on the other sub-query, concerning monetary 

policy and economic phenomena in general (~700k docs).
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