Listening to the buzz: social media sentiment and retail depositors’ trust

Workshop Harnessing Big Data & Machine Learning Technologies for Central Banks

Discussant: Ralph Verhoeks
Added value

• The paper makes use of Twitter data to better describe the behavior of retail depositors

• Besides measuring sentiment towards banks, it introduces an original method to capture informational spillovers across banks

• It shows the impact of contagion channels and its relevance for policy
Suggestions for further improvements

 - From a period of 13 months, it is difficult to draw strong conclusions
 - A short period does not cover many swings in attention (compare with business cycle).
 - Until November ‘15 no significant variation in sentiment
 - The period after the time horizon is interesting with distress at Italian banks
 - Currently, the study is more a specific case study for a few months with some banks being in distress in that period
Suggestions for further improvements

2. Definition of distressed banks

• You show there is an important difference between distressed and other banks

• This distinction is being made on the basis of “public interventions in banks”.

• Being in distress may not be a black/white issue, but a gradual scale.

• Alternative: measure distress more based on financial indicators.

• Objectify the measurement of distressed banks

→ This is important, as the results are mainly interesting for distressed banks with only $13 \times 8 = 104$ observations
Suggestions for further improvements

3. Dictionary to classify tweets

- A self-made dictionary is employed with a list of 130 words
- An external word list is preferable, as it is less subjective
- See for instance Loughran and McDonald (2011), who developed an alternative for the *Harvard Psychological Dictionary*, better reflecting the tone of financial text
- Alternative: Italian translations of an external dictionary
- Include your list of words with English translation
- Sensitivity analysis: to what extent are outcomes sensitive to the dictionary used?
Suggestions for further improvements

4. **Forecasting vs. ‘nowcasting’**

\[
D_{i,t} = \alpha_i + \beta S_{i,t} + \gamma I_{i,t} + \delta S_{i,t} \times T1 R_{i,t-1} + \sum_{k} \zeta_k C_{k,i,t-1} + \eta Y_{i,t-1} \\
+ \theta D_{i,t-1} + \varepsilon_{i,t}
\]

- ‘Forecasting’ and ‘nowcasting’ are being mixed up sometimes
- E.g.: ‘the forecasting power of the benchmark market discipline model is improved by Twitter information’
Suggestions for further improvements

- This raises some interesting questions:
 1. Is sentiment leading and can it be used as a predictor?
 2. Does it capture ‘animal spirits’ not yet captured by fundamentals?
 3. Is there any causality? What is leading what?
Thank you!