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Motivation and Research question

Policy makers and academics are increasingly interested about the
macroeconomic impact of shocks related to:

® Uncertainty, especially due to institutional and global factors;

® Cyber-Security and the safety of the electronic money.

This paper investigates for Italy the reaction of Italian households to
news about:

® Economic Policy Uncertainty (see Visco 2017);

® Payment system frauds and Cyber-risks (see Draghi 2017).

We use a unique daily data set on debit card expenditures, tracking
private consumption.

We apply Big-Data techniques on Bloomberg and Twitter to build daily
indexes of news.
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Our data set



Payment System Data: POS
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¢ Daily POS purchases extracted from the Italian payment system BI-
comp (2007-2016); no revisions and observation errors.

® The dynamics is in line with consumption, as in Duarte et al. (2017)
C&P:

® 75% of Italian households own a card, according to the SHIW survey;
¢ 1.8 Billions transactions in 2016 (approx. 70 Billions of euros).

® Caveat: strong seasonal patterns and calendar effects. Bplot 5



Payment System Data: ATM
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¢ ATM withdrawals extracted Bl-comp.
® Comparison with POS: similar seasonality; around half of the amounts.

® The ratio ATM/POS is considered a proxy for the preference for cash (see
Ardizzi et al. 2014). Chart ATM&IP

® Caveat: We only refer to the withdrawals charged by a fee, as made by
customers of other banks (so called “not on us operations”).
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Seasonality of Payment Data (2)

Seasonality is a salient feature of our daily data on payments:

Day-of-the-week;

Day-of-the-month;

Day-of-the-year,

Fixed Holidays (eg. Christmas, June the 1° , May the 1° );
Moving Holidays (eg. Easter).

We investigate the seasonal components with two approaches:

® TBATS, by De Livera, Hyndman and Snyder (JASA 2011) is based on
state space models, as in Harvey, Koopman and Riani (1997) but allows
for a larger parameter space; TBcycles

® Prophet, by Taylor and Lethman (2017), is a flexible bayesian model
that decomposes the time series with complex seasonal patterns in a)
trend, b) seasonal components and c) calendar effects.



Seasonality of POS in TBATS
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yearly weekly holidays trend

monthly

Seasonality of POS in Prophet

2.0e+08 - =

1.8e+08- ———
——:
1.6e+08 - /
1.4e+08 - !
1.2e+08 - l [ ) [ 1
2008 2010 2012 2014 2016
ds

1e+08-

5e+07 -

0e+00 - {“_ﬁ‘y_]_‘rfg“!‘rr_'_r“ e
-5e+07 - I

2008 2010 2012 2014 2016
ds
e s
2500000 - e e
0- = — e
- \-h -H-%h__—’-‘_ g’
2500000~ — e e
-5000000 - e e
domenica lunedi martedi mercoledi giovedi venerdi sabato
Day of week

4e+07 - \\

2e+07 - \
0e+00- \““\\_ ————— e e
-2e+07 - : e l . e ' .
gennaio 01 aprile 01 luglio 01 ottobre 01 gennaio 01
Day of year
2e+06- e = el
0e+00- — e —
-2¢+06- e e
-4e+06 - \““\ __,//-
Be+06- . . ; , — .
01/02 01/09 01/16 01123 0130

ds



Daily E(P)U indexes for Italy
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Notes: indexes computed with Bloomberg. E(P)U contains at least the
keywords (E) and (U). The dotted red line shows the 99 percentile. Keywords
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Our indexes are consistent with the series of Baker et al. (2016); The Twitter

based index excludes the P keywords.



News on Card Frauds/Cybersecurity
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4

o ® Index focused on POS.
- Keywords: FRAUD' AND
2 l | | | J "PAYMENT' AND "POS'
= |1 1 AND “ITAL*.

a ® Index focused on ATM.
> | Keywords: FRAUD' AND
25 "ATM" AND "ITAL*

S U ERE ]
' Cybersecurity frauds
45

- ® Index focused on
Cybersecurity.
Keywords: "CYBER*

AND "FRAUD' AND
Wl | et v

NNNNNNNNNNNNNNNNNNNNNNNNNNN

o
i e P g T - iy . S - g Sl gl & ey P Mg - iy | iy T (s T gy T - s | g iy ¢ g
OO " NO 1T AN NODO T 1 NODO A NODO T NOD A NNO
e = o i M R e i i o e S o s~ e i e g B e - g T e W M
T O N A =N O N OO NW™e"MOMN™TOON<T OO Y N O
o o o o o O - O - O O - o o



The econometric analysis
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Econometric framework

® We build daily impulse response functions with Local projections (LP, by
Jorda, AER 2005), with the following specification:

Yesn — Yo = aplndex; + Y By, i+ vilndex,_
+h IJ

i=0) 7=1

+dety+¢,, h=1.....H, v={EPU, Frauds}.

® We fully exploit our data set, using daily data =>
¢  Around 2400 observations (02/04/2007 — 30/09/2016),

® No need of mixed frequency models; no time aggregation issues; negligible
concerns for endogeneity.

® LP are more robust than VAR to misspecification, the more for large
horizons of the IRFs => given the lack of macroeconomic daily

observables. 14
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{a) Impulse of payments to a shock in unecertainty (EPLT
with words in English]}.
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{c) Impulse of payments to a shock in uneertainty (Twit-
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(b) Impulse of payments to a shock in nneertainty (ELT
with words in English].

EPU generates a non negligible
reduction in purchases.

The effects tend to vanish after
1-2 months (except for the
Twitter measure).

Baker et al. (2016) find a
contraction on production and

employment.
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POS and EPU: 2007-2012
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In the first half of the sample of the whole sample the contractionary effect is

confirmed
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POS and EPU: 2012-2016
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POS and news about frauds/cyber-risks

Percenta
b

5 0 i5 I 215 3 = 41 EE S =

Daws

1 POS response to increase in POS fra invcdesc,

Prercentage paints
&
[}

=03

0.5

I5 - E= = 45 51 = Eal
Cays

5 i 15 0

(o) POS response to a temporary increase in the Cyhber-
serurity fraud indes.

2
E 02
]
E 1.3
04
0.3
DE |
5 i0 i5 20 25 &= k= 40 45 5d BS Bl

Caws
(b) POS response to a temporary inerease in the AT
fraud index.

® An increase of the news about

frauds related to POS or
Cyber-attacks has a
persistent iImpact on
expenditures.

® Kosse (2013) finds similar
effects, on the number of

transactions for Netherland.
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ATM and news about frauds/cyber-risks

(a) ATM response to increase in POS fraud index. (bNATM response to a temporary increase in the Al
fraud ex

Clogh ! ® An increase of the news about
L frauds related to ATM has a
| persistent impact on
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Days
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Preference for cash and cyber-risks
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® News about frauds and
cybersecurity increase the
ratio ATM/POS.

® This is consistent with the
finding (see Alvarez and Lippi,
ECA, 2009) that consumers
increase the cash withdrawals
20 2 vaf 5 6o when the probability of theft

(c) ATM/POS ratio response to a temporary increase INCreases.
in the Cvyvbersecurity frand index. 20
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Robustness check: monthly estimates

® Monthly Local Projections

® We claim that the daily frequency, is crucial as it rules out problems of
endogeneity and is suited to identify effects within the quarter.

® In order to check the relevance of the frequency we also estimate local
projections of EPU on POS with data.

® Whatever the index or the horizon, there are no effects on purchases
monthly LP.

®* Monthly VAR with Cholesky identification.
® Variables: EPU, industrial production, HICP and POS purchases.

® Both payments and industrial production do not to respond to EPU
at monthly frequency IRFs.

® Not claim that EPU shocks are not relevant => At monthly frequency
the macro effects can be masked by the profile of the response within

the month.
21



Conclusion: main results

The series of payments with cards are correlated with quarterly
consumption; at daily frequency have strongly seasonal components.

Our indexes on news on EPU are consistent with those of Baker, Bloom and
Davis (2016).

EPU shocks have temporary but not negligible contractionary effects on
purchases, mainly during the crisis => “Protracted (political) instability may
undermine confidence”.

The fears about the security of the payments have a clear negative
impact both on POS and ATM=> the safety of the payment system is key to
sustain the use of debit cards.

The preference for cash increases following cyber-attacks => In the age
of cryptocurrencies cash remains the safe haven.

22



Thanks!
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Seasonality of Payment Data (1)

log(POSC) by month of year log(POSC) by week of the month
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Seasonality of Payments in TBATS (1)

Decomposition by TBATS model
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E(P)U Index in Italian

® Computed from Bloomberg (EPU - story counts normalized
by the # of all news a la Google Trends) containing

Keywords:

® (E): «Economia» or «Economico» or «Economica» or
«Economici» or «kEconomiche»

® (P): «Tassa» or «Tasse» or «Politica» or «Regolamento» or
«Regolamenti» or «Spesa» or «Spese» or «Deficit» or «Banca
Centrale» or «Banca d’ltalia» or «Budget» or «Bilancio»

® (U): «Incerto» or «Incerta» or «lncerti» or «lIncerte» or
«Incertezza»

As in Baker, Bloom and Davis (2016)
* If E(P)U, policy keywords not included to match Twitter

-
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E(P)U Index in English with country Identifier

® Computed from Bloomberg (EPU - story counts normalized
by the # of all news a la Google Trends) containing

Keywords:

® (E): «<Economic» or «<Economy»

® (P): «Congress» or «Bank of Italy» or «Legislation» or
«Regulation» or «Parliament» or «Government» or «Deficit»
or «Central Bank» or «Budget»

® (U): «Uncertain» or «Uncertainty»
® (IT): AND «ltal*»

As in Baker, Bloom and Davis (2016) but
adapted to Italian case

-
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E(P)U Index in Italian from Twitter

® Computed from Twitter (EPU - Tweet counts normalized by
the max a la Google Trends) containing

Keywords:

® (E): «Economia» or «Economico» or «Economica» or
«Economici» or «<kEconomiche»

® (U): «Incerto» or «lIncerta» or «lncerti» or «Incerte» or
«Incertezza»

As in Baker, Bloom and Davis (2016)

®* (P) part excluded for limited number of tweets. Remember: a
tweet has max 140 characters (around 12/13 words)

-
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Fraud/Cyber-security Index in Italian anc

English with country identifier

® Computed from Bloomberg (story counts normalized by the # of all news a la
Google Trends) containing

Keywords:

1. ("debit card" OR "skimming fraud" OR "credit card" OR "skimming fraud" OR
"ATM fraud" OR "debit card fraud") AND ITAL*

2. ("skimming fraud" OR "credit card fraud" OR "ATM fraud" OR "debit card fraud")
AND ITAL*

3.  (("PIN code" OR "debit card" OR "credit card" OR "magnetic stripe") AND
("crime" OR "copy" OR "victim" OR "hacking" OR "violation")) AND ITAL*

4. ("Bancomat" OR "carta di credito" OR "carta di debito" OR "POS" OR "ATM" OR
"codice PIN" OR "striscia magnetica") AND ("frode" OR "frodi" OR "crimine" OR
“crimini" OR "clonata" OR "clonate" OR "vittima" OR "truffa" OR "copia" or
"duplica*")

5. "FRAUD" AND "PAYMENT" AND "ITAL*“
6. "FRAUD" AND "CARD" AND "ITAL**

7. ("BANCOMAT" OR "CARTA") AND ("FROD*" OR "FRAUD*" OR "CRIMIN*" OR
"CLON*" OR "TRUFF*") «



POS and Consumption
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Effects of EPU on POS payment data, Monthly

data

Response to Cholesky One S.D. Innovations = 2 S.E.

Response of POS payment to Industrial production Response of POS payments to HICP index
3 3
2 2
1 1
0 S —— - 0 N R e
1 T T -1 7”\”7‘ T T T T T T T T
i 2 3 4 5 6 7 8 9 10 i1 2 3 4 5 6 7 8 9 10
Response of POS Payments to Uncertanty index (EPU Italy) Response of POS payment to POS payment
3 3
2 2 |
1 1
0 ettt .0 I 7:___ :::: o -
l 1 T T
1 2 3 4 's5 e 7 8 9 10 1 2 3 4 5 6 7 8 9 10

31



Monthly LP of EPU on POS
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POS, univariate results with daily data

(1)

Impact of an increase in EPU index on POS purchases fig. PDL
¢ Strong and lasting effects (2/3 weeks)=>» POS purchases are -2% lower

® Economic activity increases POS transactions

Shocks to Card Fraud/Cyber security index have a minor impact on POS
purchases than shocks to EPU index

®* Temporary effects showing up 2/3 days after a positive innovation of our
fraud news indicator

® POS purchases go down by -0,7%, value in line with Kosse (2013)
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POS, PDL on EPU and Econ Activity
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ATM/PQOS, PDL on EPU and Econ Activity
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