Textual sentiment and sector-specific reaction

Wolfgang Karl Härdle Cathy Yi-Hsuan Chen Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

News moves Markets

- ☑ Zhang et al. (2016): textual sentiment provides incremental information about future stock reactions
- ☑ Sectors react differently to sentiment
- □ Unsupervised vs. supervised approach in sentiment projection

But there is a lot of news...

Dimensions of News

Source of news

- Official channel: government, federal reserve bank/central bank, financial institutions
- Internet: blog, social media, message board
- ⊡ Content of news: signal vs. noise
 - Signal: nuance of context
 - Noise: increasing imprecision of deep parsing
- Arrangement of information
 - Bag of words
 - Sentence based

Dimensions of News ctd

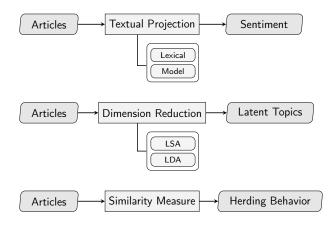
⊡ Type of news

- Scheduled vs. non-scheduled
- Expected vs. unexpected
- ► Specific-event vs. continuous news flows

Challenge

- ☑ News are sector-specific
- \boxdot How to distill sentiment across various sectors

The Power of Words: Textual Analytics



Sentiment Lexica

- Opinion Lexicon (BL) Hu and Liu (2004)
- Financial Sentiment Dictionary (LM) Loughran and McDonald (2011)
- Multi-Perspective Question Answering Subjectivity Lexicon (MPQA) Wilson et al. (2005)

Lexicon Correlation

Unsupervised Projection

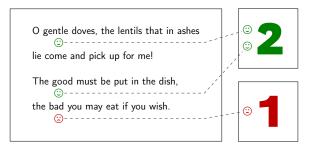


Figure: Example of Text Numerisization

- ☑ Many texts are numerisized via lexical projection
- □ Goal: Accurate values for positive and negative sentiment

Examples

Supervised Projection

□ Training data: Financial Phrase Bank by Malo et al. (2014)

- Sentence-level annotation of financial news
- Manual annotation of 5,000 sentences by 16 annotators

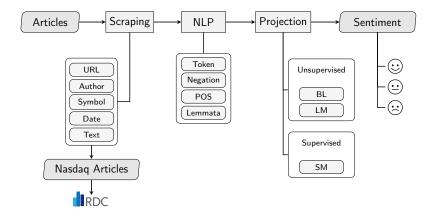
Research Questions

- □ Is the sentiment effect sector specific?
- □ Is supervised learning an effective approach in text classification?
- □ How well can one predict volatility or return?

Outline

- 1. Motivation \checkmark
- 2. Data Collection
- 3. Sentiment Projection
- 4. Panel Regression
- 5. ARIMA-GARCH
- 6. Outlook

How to gather Sentiment Variables?

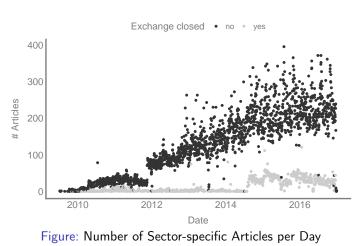


Nasdaq Articles

N Nasdaq		Enter symbol, name or keyword				
		QUOTES V	MARKETS	V NEWS V		ADVANCED
	Latest News					
	Weighing The Week Ahead: Will Inflation Data Extend The Market Declines? 02/10/2018 11:55 PM - SeekingAlpha Appears In: Stocks					
	• Top Driverless Ca 02/10/2018 8:46 PM - M Appears In: Stocks		ou Don't Wa	ant to Miss		
- -		•				

- ☑ Terms of Service permit web scraping
- 🖸 Data available at 📫 RDC
- Oct 2009 Dec 2016: 580k articles
- □ S&P 500 companies: 240k articles

Article Timeline



Attention Ratio

By Zhang et al (2016)

$$AR_{i} = T^{-1} \sum_{t=1}^{T} I(c_{i,t} > 0)$$
(1)

with $c_{i,t}$ as number of published articles for company *i* on day *t*.

Quantile						
Attention Ratio	0.01	0.18	0.22	0.30	0.44	0.99

Table: Quantiles of Attention Ratio for all Nasdaq Companies

- □ Media coverage differs between companies
- □ Higher signal to noise ratio: select 100 companies More

2-4

Sector-specific articles

	r		
Sector	Abbr.	# Articles	# Comp.
Consumer Discretionary	CD	30,360	19
Consumer Staples	CS	12,210	10
Energy	EN	10,410	8
Financials	FI	34,570	13
Health Care	HC	16,950	13
Industrials	IN	16,440	13
Information Technology	IT	44,120	18
Materials	MA	3,820	3
Telecommunication Services	TE	5,880	2
Utilities	UT	780	1

Table: Number of Articles per Sector, Removal of TE and UT

Lexical Sentiment

Project a sentence onto its polarity

$$S \in \{positive, neutral, negative\} = \{1, 0, -1\}$$
 (2)

$$S = \text{sgn}(\underbrace{\text{positive words}}_{w_{pos} - v_{pos} + v_{neg}} - \underbrace{\text{negative words}}_{w_{neg} - v_{neg} + v_{pos}})$$

$$= \text{sgn}\{w_{pos} - w_{neg} - 2(v_{pos} - v_{neg})\}$$
(3)

by counting polarity words as w and negated polarity words as $\boldsymbol{v}.$

Regularized Linear Models (RLM)

- □ Training data $(X_1, y_1) \dots (X_n, y_n)$ with $X_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$
- \Box Linear scoring function $s(X) = \beta^{\top} X$ with $\beta \in \mathbb{R}^{p}$

Example

Regularized training error:

with hyperparameter $\lambda \geq 0$.

RLM Estimation

- Optimize via Stochastic Gradient Descent More
- 5-fold cross validation More
- Oversampling More
- \Box Choice of: $L(\cdot), R(\cdot), \lambda, X$ (*n*-gram range, features) ...
- ⊡ Three categories: one vs. all sub-models

Model Accuracy - Polarity

Supervised Learning

- \boxdot Chosen model: Hinge loss, L1 norm, $\lambda = 0.0001, \ldots$
- ⊡ Mean accuracy (oversampling): 0.80
- □ Mean accuracy (normal sample): 0.82

Lexicon-based

- ☑ Mean accuracy BL: 0.58
- ☑ Mean accuracy LM: 0.64

Evaluation BL

Pred True	-1	0	1	Total
-1	214	268	32	514
0	203	1,786	546	2,535
1	89	627	452	1,168
Total	506	2,681	1,030	4,217

Table: Confusion Matrix - BL Lexicon Q TXTfpblexical

Evaluation LM

Pred True	-1	0	1	Total
-1	213	289	12	514
0	200	2,187	148	2,535
1	111	772	285	1,168
Total	524	3,248	445	4,217

Table: Confusion Matrix - LM Lexicon Q TXTfpblexical

Evaluation SM

Pred True	-1	0	1	Total
-1	389	67	58	514
0	96	2,134	305	2,535
1	105	198	916	1,168
Total	539	2,399	1,279	4,217

Table: Confusion Matrix - Supervised Learning, estimated withOversampling and evaluated on total SampleImage: Image of the supervised state of the

Confusion Matrix with Oversampling

Choice of λ

Results Logistic Loss

Fractions

\boxdot Aggregation of sentence-level sentiment

$$PF = n^{-1} \sum_{j=1}^{n} \mathbf{I} (Pol_{j} = 1)$$

$$NF = n^{-1} \sum_{j=1}^{n} \mathbf{I} (Pol_{j} = -1)$$
(5)

by Zhang et al (2016) with j = 1, ..., n sentences in document.

 \bigcirc *PF*_{*i*,*t*} and *NF*_{*i*,*t*} account for fractions of company *i* on day *t*

Bullishness

$$B = \log\{(1 + PF)/(1 + NF)\}$$
(6)

by Antweiler and Frank (2004).

B_{i,t} accounts for bullishness of company *i* on day *t* Consider |*B_{i,t}*| and *BN_{i,t}* = I (*B_{i,t}* < 0)*B_{i,t}*

Sectors as Panels

Contemporaneous (j = 0) and lagged (j = 1) fixed effect panel regression

$$\log \sigma_{i,t} = \alpha + \beta_1 |B_{i,t-j}| + \beta_2 B N_{i,t-j} + \beta_3^\top X_{i,t-j} + \gamma_i + \varepsilon_{i,t}$$
(7)

$$R_{i,t} = \alpha + \beta_1 B_{i,t-j} + \beta_2^\top X_{i,t-j} + \gamma_i + \varepsilon_{i,t}$$
(8)

for stock i on day t with separate estimation of (7) and (8).

 $X_{i,t}$ - control variables More Information

 γ_i - company specific fixed effect satisfying $\sum_i \gamma_i = 0$

Stock Reaction Indicators

Range-based measure of volatility by Garman and Klass (1980)

 \odot Notation: $\sigma_{i,t}$

Computation

☑ Based on open-high-low-close prices

□ Equivalent results to realized volatility

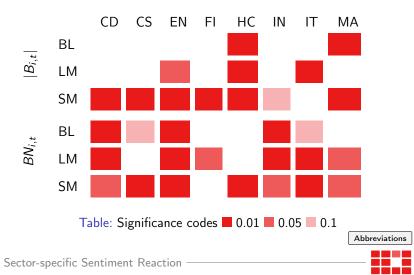
Returns

$$R_{i,t} = \log(P_{i,t}^{C}) - \log(P_{i,t-1}^{C})$$
(9)

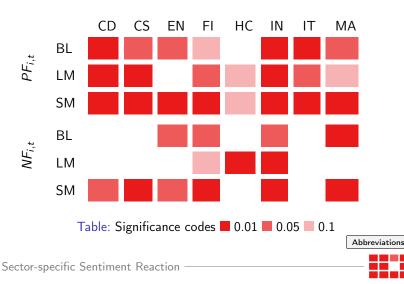
with $P_{i,t}^{C}$ as closing price of stock *i* on day *t*

Contemporaneous - Volatility - Fractions

Contemporaneous - Volatility - Bullishness



Contemporaneous - Returns - Fractions



Contemporaneous - Returns - Bullishness

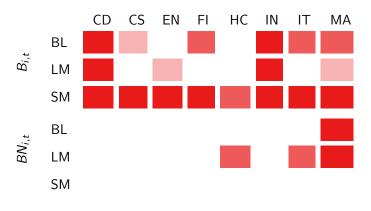


Table: Significance codes 0.01 0.05 0.1

Lagged - Volatility - Fractions

Lagged - Volatility - Bullishness

S&P 500 Sector Indices

AR(1)-GARCH(1, 1) model with control variables

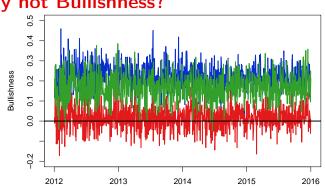
$$R_{i,t} = c_i + \varphi R_{i,t-1} + \varepsilon_{i,t}$$
(10)

 $\sigma_{i,t}^2 = \omega_i + \alpha_i \varepsilon_{i,t-1}^2 + \beta_i \sigma_{i,t-1}^2 + \theta_i PF_{i,t-1} + \gamma_i NF_{i,t-1}$ (11)

for sector index i on day t.

 $PF_{i,t}$ - Fraction of positive words $NF_{i,t}$ - Fraction of negative words

ARIMA-GARCH



Why not Bullishness?

- □ Financial sector, BL (green), LM (red), SM (blue)
- \boxdot Aggregated news for markets are very bullish
- ☑ Potential news bias?

Regression Results

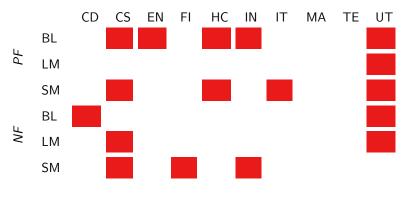


Table: Significance codes 0.01 0.05 0.1

Financials Lags

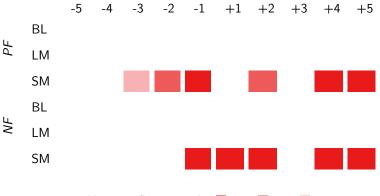


Table: Significance codes 0.01 0.05 0.1

- 5-4

- Closer look at sectors : sectoral attributes, concentration, competition...
- □ Textual sentiment spillover : network modelling

Textual sentiment and sector-specific reaction

Wolfgang Karl Härdle Cathy Yi-Hsuan Chen Elisabeth Bommes

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

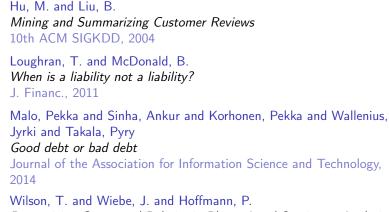
Bibliography

```
Antweiler, W. and Frank, M. Z.
Is All That Talk Just Noise?
J. Fin., 2004
```

Garman, M. and Klass, M. On the Estimation of Security Price Volatilities from Historical Data J. Bus., 1980

Härdle, W. K. and Lee, Y. J. and Schäfer D. and Yeh Y. R. Variable Selection and Oversampling in the Use of Smooth Support Vector Machines for Predicting the Default Risk of Companies J. Forecast., 2009

7-1



Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis HLT-EMNLP, 2005

Zhang, J., Chen C. Y., Härdle, W. K. and Bommes, E. Distillation of News into Analysis of Stock Reactions JBES, 2016

 Zhang, X., Yichao, W., Wang, L. and Runze, L.
 A Consistent Information Criterion for Support Vector Machines in Diverging Model Spaces
 J. Mach. Learn. Res., 2016

Appendix

Tagging Example - BL

... McDonald's has an obesity **problem** that continues to get **worse**. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem **like** a **good** thing, large menus result in **slower** service and more flare-ups between franchisees and the corporation. **Bloated** menus raise inventory costs for smaller franchisees and **lead** to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller **concern** for the company overall. ...

3 positive words and 5 negative words

Q TXTMcDbm Article source

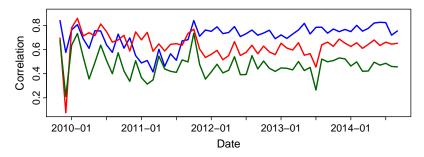
Tagging Example - LM

... McDonald's has an obesity **problem** that continues to get **worse**. And that's nothing to do with the food itself, but rather the huge menus that can now double as medieval fortification. For perspective, the chain's menu has grown 70% since 2007. And while more offerings might seem like a **good** thing, large menus result in **slower** service and more flare-ups between franchisees and the corporation. Bloated menus raise inventory costs for smaller franchisees and lead to lower profit margins. The McDonald's corporate franchise fee is based upon sales instead of profits, making it a smaller **concern** for the

company overall. ...

1 positive word and 4 negative words

Correlation - Positive Sentiment

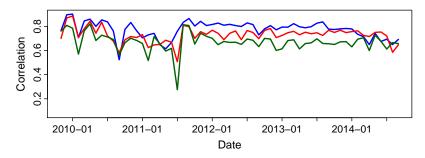


8-3

Figure: Monthly correlation between positive sentiment: BL and LM , BL and MPQA, LM and MPQA. Source: Zhang et al. (2016)

Sector-specific Sentiment Reaction

Correlation - Negative Sentiment



8-4

Figure: Monthly correlation between negative sentiment: BL and LM, BL and MPQA, LM and MPQA. Source: Zhang et al. (2016) Back

Sector-specific Sentiment Reaction

Natural Language Processing (NLP)

\boxdot Text is unstructured data with implicit structure

- ► Text, sentences, words, characters
- Nouns, verbs, adjectives, ...
- Grammar
- ⊡ Transform implicit text structure into explicit structure
- \boxdot Reduce text variation for further analysis
- ☑ Python Natural Language Toolkit (NLTK)
- 🖸 🖸 TXTnlp

Tokenization

String

"McDonald's has its work cut out for it. Not only are sales falling in the U.S., but the company is now experiencing problems abroad."

Sentences

'McDonald's has its work cut out for it.", "Not only are sales falling in the U.S., but the company is now experiencing problems abroad."

Words

"McDonald", "'s", "has", "its", "work", "cut", "out" ...

Sector-specific Sentiment Reaction -

Negation Handling

$$\boxdot$$
 "not good" \neq "good"

 \boxdot Reverse polarity of word if negation word is nearby

```
\odot Negation words
```

```
"n't", "not", "never", "no", "neither", "nor", "none"
```


Part of Speech Tagging (POS)

Grammatical tagging of words

- dogs noun, plural (NNS)
- saw verb, past tense (VBD) or noun, singular (NN)
- ☑ Penn Treebank POS tags
- Stochastic model or rule-based

Lemmatization

\boxdot Determine canonical form of word

- ▶ dogs dog
- saw (verb) see and saw (noun) saw
- \boxdot Reduces dimension of text
- Takes POS into account
 - Porter stemmer: saw (verb and noun) saw

Attention Ratio II

	Attention Ratio				
Sector	Min	Q1	Q2	Q3	Max
Consumer Discretionary	0.448	0.523	0.630	0.737	0.929
Consumer Staples	0.443	0.500	0.521	0.622	0.871
Energy	0.448	0.512	0.534	0.697	0.854
Financials	0.464	0.616	0.686	0.891	0.979
Health Care	0.443	0.512	0.583	0.636	0.841
Industrials	0.458	0.522	0.577	0.661	0.857
Information Technology	0.444	0.528	0.655	0.848	0.991
Materials	0.533	0.585	0.637	0.640	0.643

Table: Attention Ratio of 100 Companies by Sector. Q1, Q2 and Q3 represent 25%, 50% and 75% quantile, respectively.

Sector-specific Sentiment Reaction ------

Loss Functions for Classification

⊡ Logistic: Logit

 $L\{y, s(X)\} = \log(2)^{-1} \log[1 + \exp\{-s(X)y\}]$ (12)

□ Hinge: Support Vector Machines $L\{y, s(X)\} = \max\{0, 1 - s(X)y\}$ (13)

Regularization Term

🖸 L2 norm

$$R(\beta) = 2^{-1} \sum_{i=1}^{p} \beta_i^2$$
(14)

$$R(\beta) = \sum_{i=1}^{p} |\beta_i| \tag{15}$$

Sector-specific Sentiment Reaction -

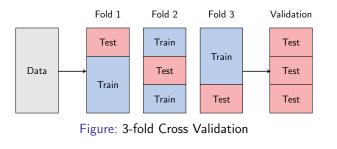
RLM Example

Sentence 1: "The profit of Apple increased." Sentence 2: "The profit of the company decreased."

$$y = (1, -1) \quad (16) \qquad X = \begin{array}{c} x_1 & x_2 \\ the \\ profit \\ of \\ increased \\ company \\ decreased \end{array} \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{array} \right) \qquad (17)$$

k-fold Cross Validation (CV)

- \odot Partition data into k complementary subsets
- \boxdot No loss of information as in conventional validation
- ⊡ Stratified CV: equally distributed response variable in each fold



Oversampling

- Härdle et al. (2009) Trade-off between Type I and Type 2 error in classification
- Balance size of neutral sentences and ones with polarity in sample
- Duplicate sentences within folds of stratified cross validation until the sample is balanced

Classification Error Rates

- \odot Type II error rate = FN/(FN + TN)

with TP as true positive, TN as true negative, FP as false positive and FN as false negative.

Stochastic Gradient Descent (SGD)

 \boxdot Approximately minimize loss function

$$L(\theta) = \sum_{i=1}^{n} L_i(\theta)$$
(18)

⊡ Iteratively update

$$\theta_i = \theta_{i-1} - \eta \, \frac{\partial L_i(\theta)}{\partial \theta} \tag{19}$$

SGD Algorithm

- 1. Choose learning rate η
- 2. Shuffle data
- 3. For i = 1, ..., n, do:

$$\theta_i = \theta_{i-1} - \eta \; \frac{\partial L_i(\theta)}{\partial \theta}$$

Repeat 2 and 3 until approximate minimum obtained.

SGD Example

 $X \sim N(\mu, \sigma)$ and $x_1, ..., x_n$ as randomly drawn sample

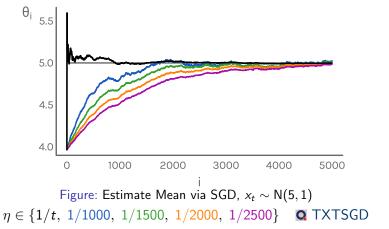
$$\min_{\theta} n^{-1} \sum_{i=1}^{n} (\theta - x_i)^2$$

Update step

$$\theta_i = \theta_{i-1} - 2\eta(\theta_{i-1} - x_i)$$

Optimal gain Set $2\eta = 1/i$ and obtain $\theta_n = \bar{x}$ with \bar{x} as sample mean.

Sector-specific Sentiment Reaction



Back

Sector-specific Sentiment Reaction

Garman and Klass range-based Measure of Volatility

 $\sigma_{i,t}^{2} = 0.511(u-d)^{2} - 0.019 \{c(u+d) - 2ud\} - 0.383c^{2}$ (20) with $u = \log(P_{i,t}^{H}) - \log(P_{i,t}^{O}), \quad d = \log(P_{i,t}^{L}) - \log(P_{i,t}^{O}),$ $c = \log(P_{i,t}^{C}) - \log(P_{i,t}^{O})$

for company *i* on day *t* with $P_{i,t}^H$, $P_{i,t}^L$, $P_{i,t}^O$, $P_{i,t}^C$ as highest, lowest, opening and closing stock prices, respectively.

Evaluation Supervised Learning

Pred True	-1	0	1	Total
-1	1,983	298	254	2,535
0	96	2,134	305	2,535
1	105	469	1,961	2,535
Total	2,184	2,901	2,520	7,605

Table: Confusion Matrix - Supervised Learning with Oversampling

Choice of λ

- \boxdot Fine grid with $\lambda_i \in [5 \cdot 10^{-6}, 0.05]$, $i = 1, \dots, 9999$
- □ Estimate penalized SVM model
- ☑ Results remain stable
 - $\hat{\lambda}_{CV} = 0.000155$
 - Accuracy: 0.8

Choice of λ also possible via information criterion, e.g. Zhang et al. (2016)

Evaluation Logistic Loss Function

Pred True	-1	0	1	Total
-1	397	55	62	514
0	103	2,115	317	2,535
1	58	193	917	1,168
Total	558	2,363	1,296	4,217

Table: Confusion Matrix - Supervised Learning, estimated with Oversampling and evaluated on total Sample, Accuracy: 0.80

Abbreviations

ATT 1 1 1 1 1		
Abbreviation		
CD		
CS		
EN		
=1		
ΗC		
N		
Т		
МА		
ΤΕ		
JT		

Table: Sector Abbreviations

Sector-specific Sentiment Reaction

Control Variables

- $R_{M,t}$ S&P 500 index return
- $\log VIX_t$ CBOE VIX More Information
- $\log \sigma_{i,t}$ Range-based volatility
- R_{i,t} Return

VIX

- Implied volatility
- ☑ Measures market expectation of S&P 500
- □ Calculated by Chicago Board Options Exchange (CBOE)
- ☑ Measures 30-day expected volatility
- Calculated with put and call options with more than 23 days and less than 37 days to expiration

Crawling and Scraping

 \boxdot Automatically extract information from web pages

- Crawling
 - Any information
 - Follows links
 - ► General information extraction

Scraper

- Specific information
- Specific web pages
- Easy to obtain high quality data

Legality of Web Scraping

 \boxdot It is public / Google does it

- Search engines add value
- Log in systems, paywalls, ...?
- Highly context specific
 - Commercial v non-commercial
 - Internal v third party use
- Technicalities
 - Bandwidth usage
 - Denial-of-service (DoS) attack

European Union

☑ Ryanair Ltd v PR Aviation BV (2015)

- ► PR Aviation: price comparison of flights
- Copyright and database right infringement?
- ► ToS prohibited data extraction for commercial purposes
- ⊡ Decision by Court of Justice of the European Union
 - ▶ No infringement of intellectual property, no creative input
 - ToS still apply, liability in terms of breach of contract
- □ In contrast NLA v Meltwater (2013)
 - Scraping of news headlines and links to articles
 - ▶ Intellectual property is infringed because of creative input

United States

Pro

- \boxdot Web data is public, should be accessible
- 🖸 Unfair market power of Facebook, Google, LinkedIn, ...
- \boxdot First Amendment protects information gathering

Contra

- ☑ Copyright infringement
- Breach of contract
- □ Violation of the Computer Fraud and Abuse Act (CFAA), 1986
- Trespass to chattels

LinkedIn v hiQ and vice versa

If you exclude someone from sites like LinkedIn, Facebook and Twitter, you are excluding them from the modern version of the town square.

Laurence Tribe, Harvard law professor

- \boxdot hiQ predicts who is when quitting their job
- □ LinkedIn: CFAA violation, hiQ: blocked
- \boxdot LinkedIn ordered to give access to public profiles

Academia is save, right?

INFORMATION IS POWER absolute must se тне **TERNET'S** BOY sundance (hotpocs

Aaron Swartz

- \boxdot Harvard research fellow
- Automatic download of JSTOR articles
- Laptop in restricted closet at MIT
- □ No civil law suit by MIT and JSTOR
- ⊡ Federal charges: wire fraud, CFAA violations
- Possible penalty of \$1 million and 35 years in prison

Unclear outcome, suicide on January 11, 2013

Bright Side

Cap Verde is beautiful and does not extradite

Ethical Scraping for Academia

I Technical

- Use API if provided
- Appear as a bot, not as a human
- Provide user agent string with contact data
- Decreased rate of requests
- Check robots.txt Google's robots.txt

🖸 Usage

- Strictly non-commercial
- Restrict further access to academia

\boxdot Ask for permission, not for forgiveness!

Scraping How To

- ⊡ Complete framework: Scrapy
- ☑ Fast and easy: Beautiful Soup
- Low level: lxml

R

- □ Complete framework: RCrawler
- ⊡ Fast and easy: rvest
- ⊡ Low level: XML

Back to Flowchart

Nasdaq Articles

9-36

Google's robots.txt

```
User-agent: *
Disallow: /search
Allow: /search/about
Allow: /search/howsearchworks
Disallow: /sdch
Disallow: /groups
Disallow: /index.html?
Disallow: /?
Allow: /?hl=
Disallow: /?hl=*&
Allow: /?hl=*&gws rd=ssl$
Disallow: /?hl=*&*&gws rd=ssl
Allow: /?qws rd=ssl$
Allow: /?pt1=true$
Disallow: /imgres
Disallow: /u/
Disallow: /preferences
Disallow: /setprefs
Disallow: /default
Disallow: /m?
Disallow: /m/
Allow: /m/finance
```

Sector-specific Sentiment Reaction

