Forecasting US Birth Rates with Google Trends

Francesco Billari Francesco D’Amuri Juri Marcucci
Bocconi University Bank of Italy Bank of Italy

Bank of Italy’s Workshop
on Harnessing Big Data & Machine Learning Techniques for Central Banks
Bank of Italy
Rome, 27 March 2018
Outline

- Data and Determinants for US fertility
- Short-Term emphasis
- New Leading indicators
- Forecasting models
- Out-of-sample evaluation
- Some robustness (state level)
Motivation

- A simple Supply-Side Decomposition
- Macro-based accounting framework

\[GDP_t = \frac{GDP_t}{Hours_t} \times \frac{Hours_t}{Workers_t} \times \frac{Workers_t}{LaborForce_t} \times \frac{LaborForce_t}{Population_t} \times Population_t \]

- Efficiency in production
- Labor market developments
- Demographic developments

We concentrate on the last part (demographic developments)
Motivation

- Fertility is the major component of population dynamics
- The size and structure of population is entirely dependent on fertility
- Trends in fertility are the most difficult demographic variable to project
- Fertility rates represent the most important modeling variable in any population model
- These models are of critical importance
- Forecasts of births and birth rates are fundamental to forecasts of future population sizes (Keyfitz, 1972).
- Yet the forecasting of births and birth rates, even in highly developed countries has proven to be quite difficult to do
Introduction

- Demographers model long-run fertility (see for example Booth, IJF, 2006, for a review)
- However short-term perspective is useful to spot diverging trends (for example to assess the impact on births of a crisis)
- Our approach:
 - Pure time series models with leading indicators:
 - GDP, Unemployment rate dynamics (Goldstein et al., PDR, 2009)
 - We also add Economic Policy Uncertainty (EPU) index by Baker, Bloom, and Davis (2016) as an additional leading factor affecting birth rates
 - For a shorter sample (from 2004 onwards) we suggest using Google Index based on Google Trends: fertility-related web searches (in different contexts: Choi and Varian, 2009; D’Amuri and Marcucci, 2017; Ginsberg et al., 2009, Da, Engelberg, and Zha, 2011, etc.)
We predict the US Birth Rates using:

- **Traditional macro indicators:**
 - GDP
 - UR

- **New web-based indicators:**
 - EPU (Economic Policy Uncertainty) Index by Baker, Bloom and Davis (2016)
 - Google Trends indicators

We find forecasting improvements with both web-based indicators.
“The Social Science (Big) Data Revolution” (Gary King)

- “Between the dawn of civilization and 2003, we only created five exabytes of information; now we’re creating that amount every two days” (1 exabyte = 2^6 bytes $\approx 1.15 \times 10^{18}$ bytes, i.e. 10^9GB)
- “In 2010 human race created 800 exabytes of information” (around 800 billion gigabytes, 1GB = 10^9 bytes)
- 90% of the world’s data was created in the last 2 years
- Most of the World’s Data is **Unstructured**
 - 2009 HP survey: 70%
 - Gartner: 80%
 - Jerry Hill (Teradata), Anant Jhingran (IBM): 85%
- “There’s a systemic gap between the low-frequency data employed by governments and the high-frequency data of business’ (Hal Varian, Google)
- “Data is like food. We used to be data poor, now the problem is data obesity’ (Hal Varian, Google)’
Big Data

One of the 3 V’s: **Variety**: Different sources, different types
Google Trends data

- Google Trends (previously separated from Google Insights for Search) tracks relative changes in Google search queries from January 2004
- Google search queries
 - web searches
 - news searches
 - image searches
 - product searches
 - YouTube searches
- Different Geographical areas and levels (national, state and metropolitan area level) based on the originating IP address
- Available to the public for free download online at www.google.com/trends/
Features of *Google Trends* data

- Google Trends data represent **how many web searches** are done for a particular *keyword*, relative to the total # of searches in certain geographical area over time.
- They indicate the **likelihood of a random user to search for a particular keyword on Google** from a certain location at a certain time on a relative basis.
- They are gathered **using IP address information** from Google logs and updated daily.
- They are gathered only if the number of searches exceeds a certain **threshold of traffic**.
- They are such that **repeated queries** from a single user/IP over a short period of time are eliminated.
- They are **available world-wide** (by country, by region, by city).
- They are **normalized** (divided by the total website traffic in the geographical area) ⇒ comparability issues ⇒ Search Volume Index (*SVI*).
- They are **scaled** (from 0 to 100) dividing each data point by the maximum.
- They are available **monthly, weekly, daily, and intra-daily** (only on shorter samples).
Aggregation, Normalization and Scaling

- For region r, the SVI for week τ is constructed aggregating the daily data for each day t. Given the search volume on a term “V”, $(V_{t,r})$ in region r on day t and the total search volume in that region $T_{t,r}$ we have the following for a total of T weeks

- Search Share for day t and week τ:

$$S_{t,r} = \frac{V_{t,r}}{T_{t,r}} \quad \text{and} \quad S_{\tau,r} = \frac{1}{7} \sum_{t=\text{Saturday}}^{\text{Sunday}} S_{t,r}$$

- Web Search Volume for week τ:

$$S^*_{\tau,r} = \frac{100}{\max_{\tau}(S_{\tau,r})} \frac{1}{7} \sum_{t=\text{Sunday}}^{\text{Saturday}} S_{t,r}$$

where $\tau = 1, \ldots, T$
Matching options for “fertility”-related web queries in Google Trends

- Typing **maternity leave**: GI includes searches containing both *maternity* and *leave* in any order and along with additional terms before (e.g. *using short term disability for maternity leave*) and after (e.g. *maternity leave replacement*)

- Typing "**pregnancy test**": GI includes searches with that specific order in quotes along with additional terms before and after (e.g. "**pregnancy test** calculator")

- Typing "**ovulation** + "**pregnancy test**": GI includes searches with either "**ovulation**" or "**pregnancy test**", but not both
Which **keyword(s)** to forecast birth rates?

- We tried to imagine what an average American internet user who wanted to have children would type in the Google bar. For example:
 - ‘maternity’
 - ‘pregnancy’
 - ‘ovulation’
Peculiar seasonality
Relevance of our preferred keyword?
Incidence of keywords "maternity" + "pregnancy" + "ovulation" vs other popular keywords "facebook" (highest incidence)
Economic Policy Uncertainty

How is it built by Baker, Bloom and Davis (2016)?

- Counting articles from newspapers containing (E)conomic, (P)olicy and (U)ncertainty words
 - (E) “economic” or “economy”;
 - (U) “uncertain” or “uncertainty”;
 - (P) “congress”, “deficit”, “Federal Reserve”, “legislation”, “regulation” or “White House”
US Economic Policy Uncertainty (EPU) index vs VIX

Figure 6: U.S. EPU Compared to 30-Day VIX

Notes: The figure shows the U.S. EPU Index from Figure 1 and the monthly average of daily values for the 30-day VIX.
The setup of the forecasting horse-race

- **Timing:** \(T = R + P \) observations
 - In the 'Long sample' (1990.1-2013.12) we have \(T = 288 \)
 - In the 'Short sample' (2004.1-2013.12) we have \(T = 120 \)

- The first \(R \) are used to estimate the models (in-sample) while the last \(P \) are used for out-of-sample evaluation.

- Want to predict \(u_t \) using linear AR models w/ and w/o exogenous leading indicators \(x_t \):

 \[
 x_t = \{ GI_t, \ldots, GI_{t-k} \} \\
 x_t = \{ GDP_t, \ldots, GDP_{t-k} \} \\
 x_t = \{ UR_t, \ldots, UR_{t-k} \} \\
 x_t = \{ EPU_t, \ldots, EPU_{t-k} \}
 \]

- \(GI_{1t} = \text{'Maternity'}, \, GI_{2t} = \text{'Pregnancy'}, \, \text{and} \, GI_{3t} = \text{'Ovulation'}. \)
The setup of the forecasting horse-race

- Forecasting scheme: we use a **rolling** scheme.
 - ‘**In Sample**’ (2004.2-2008.12) w/ $R = 60$
 - ‘**Out-Of-Sample**’ (2009.1-2013.12) w/ $P = 60$
- We use **direct** forecasts.
 - Benchmark $AR(p)$ with p selected by BIC recursively ex-ante at each forecast origin
 \[
 y_{t+h}^h = \beta_0 + \beta_1(L)y_t + \eta_{t+h}, \quad t = 1, 2, \ldots, T
 \]
 (1)
 - versus $AR-X(p)$ model w/ LI x_t with lags p and q selected by BIC recursively and sequentially ($p_{max} = q_{max} = 4$)
 \[
 y_{t+h}^h = \beta_0 + \beta_1(L)y_t + \beta_2(L)x_t + \varepsilon_{t+h}, \quad t = 1, 2, \ldots, T
 \]
 (2)
Google Web Searches for US Birth-related Keywords

I. GDP

II. UR

III. GI1 - ‘Maternity’

IV. GI2 - ‘Pregnancy’

F. Billari, F. D’Amuri & J. Marcucci (Bocconi U. & Bank of Italy) Forecasting US Birth Rates with Google Trends
Forecasts of US Birth Rates

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(t + \ldots)</td>
</tr>
<tr>
<td>(AR(p)) (RMSE)</td>
</tr>
<tr>
<td>(DGDP_t)</td>
</tr>
<tr>
<td>(DUR_t)</td>
</tr>
<tr>
<td>(EPU_t)</td>
</tr>
<tr>
<td>(GI_{1t})</td>
</tr>
<tr>
<td>(GI_{2t})</td>
</tr>
<tr>
<td>(GI_{3t})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(t + \ldots)</td>
</tr>
<tr>
<td>(AR(p)) (RMSE)</td>
</tr>
<tr>
<td>(DGDP_t)</td>
</tr>
<tr>
<td>(DUR_t)</td>
</tr>
<tr>
<td>(EPU_t)</td>
</tr>
</tbody>
</table>

¹*,**,*** indicate significance at 10%, 5%, and 1% respectively of the Diebold and Mariano’s (1995) test of equal forecast accuracy, when competing models beats the benchmark. +,++, and +++ are defined in the same way when the benchmarks outperforms.

RMSE in red and ratios w.r.t. benchmark in black.
Long sample forecasts
24-month-ahead - Sample: 1990M1-2013M12

\[R = 228, \ P = 60, \ \text{In-sample} = 1990:M1-2008:M12; \ \text{Out-of-sample} = 2009:M1-2013:M12 \]
Short sample forecasts

24-month-ahead - Sample: 2004M1-2013M12

\[R = 60, \ P = 60, \ \text{In-sample} = 2004:M1-2008:M12; \ \text{Out-of-sample} = 2009:M1-2013:M12 \]
CSSED

\[CSSED_{m,\tau} = \sum_{\tau=R}^{T} (\hat{e}_{bm,\tau}^2 - \hat{e}_{m,\tau}^2) \] ‘best’ competing model w.r.t. the AR\((P)\) benchmark

(3)

where \(\hat{e}_{bm,\tau}^2\) is the squared forecast error of the AR benchmark model and \(\hat{e}_{m,\tau}^2\) denotes the same for the competing model

What happens if the benchmark model \((bm)\) outperforms the competing model \((m)\)?

\[\hat{e}_{bm,\tau}^2 < \hat{e}_{m,\tau}^2 \Rightarrow CSSED_{m,\tau} < 0 \]

And if the competing model \(m\) beats the benchmark \(bm\)?

\[\hat{e}_{bm,\tau}^2 > \hat{e}_{m,\tau}^2 \Rightarrow CSSED_{m,\tau} > 0 \]
Predictive Relative Performance with CSSED - Long sample

\[CSSED_{m,\tau} = \sum_{\tau=R}^{T} (\hat{e}_{bm,\tau}^2 - \hat{e}_{m,\tau}^2) \] ‘best’ competing model w.r.t. the AR(P) benchmark

\[R = 228, \ P = 60, \ \text{In-sample} = 1990:M1-2008:M12; \ \text{Out-of-sample} = 2009:M1-2013:M12 \]
Predictive Relative Performance with CSSED - Long sample

\[CSSED_{m,\tau} = \sum_{\tau=R}^{T} (\hat{e}_{bm,\tau}^2 - \hat{e}_{m,\tau}^2) \] ‘best’ competing model w.r.t. the \(AR(P) \) benchmark\(^5\)

\(R = 228, \ P = 60, \text{ In-sample = 1990:M1-2008:M12; Out-of-sample = 2009:M1-2013:M12} \)

F.Billari, F.D’Amuri & J.Marcucci (Bocconi U. & Bank of Italy)
Predictive Relative Performance with CSSED - Short sample

$CSSED_{m, \tau} = \sum_{\tau = R}^{T} (\hat{e}_{bm, \tau}^2 - \hat{e}_{m, \tau}^2)$ 'best' competing model w.r.t. the $AR(P)$ benchmark\(^6\)

\(\text{Forecast horizon: } h = 24\)

\(R = 60, \ P = 60, \text{ In-sample } = 2004:M1-2008:M12; \text{ Out-of-sample } = 2009:M1-2013:M12\)
Predictive Relative Performance with CSSED - Short sample

\[CSSED_{m,\tau} = \sum_{\tau=R}^{T} (\hat{e}_{bm,\tau}^2 - \hat{e}_{m,\tau}^2) \] ‘best’ competing model w.r.t. the AR(\(P\)) benchmark\(^7\)

\(R = 60, \ P = 60, \) In-sample = 2004:M1-2008:M12; Out-of-sample = 2009:M1-2013:M12

F.Billari, F.D’Amuri & J.Marcucci (Bocconi U. & Bank of Italy) Forecasting US Birth Rates with Google Trends 28
Robustness - Forecasting birth rates across states

- We repeat the same forecasting exercise for each one of the 50 US states plus DC.
- We ran the same horse race between a benchmark $AR(p)$ and an $ARX(p)$ where the leading indicator could be
 - GDP
 - UR
 - EPU (federal level)
 - GI i.e. the Google Index for ‘pregnancy’\(^8\)
- Good results even at the state level for Google-based models
 - At 12-month ahead, Google-based models are better for 59% of states
 - At 18-month ahead, Google-based models are better for 88% of states
 - At 24-month ahead, Google-based models are better for 82% of states

\(^8\)The GI for ‘maternity’ was not populated for some states, i.e. below the Google threshold.
A circle indicates the Google-based model outperforms for state on x axis at forecast horizon on y axis. States in alphabetical order.
Conclusion

- EPU index seems useful in forecasting US birth rates, at least in the long sample
- Google Trends data seems even more useful in forecasting birth rates at 12, 18 and 24 month ahead
- Google-based model outperform over the short sample
- Only caveat: Google Trends data available only from January 2004
- Google-based model tend to outperform even at the state level
Thank you!

E-mail: francesco.damuri@bancaditalia.it
E-mail: juri.marcucci@bancaditalia.it