・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy

> M. Andini[†], E. Ciani[†], G. de Blasio[†], A. D'Ignazio[†], V. Salvestrini[‡]

> > †Bank of Italy, ‡LSE

Bank of Italy Workshop on Big Data Rome, 26-27 March 2018

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Prediction policy problems

- The impact of a policy depends on who benefits from it
 - Some individuals may have a higher payoff
 - The effect may be zero on some groups, also because some may be less likely to put into practice the incentivized behavior
- Predicting who is more likely to belong to these groups is a **prediction policy problem** (Kleinberg et al., 2015)
 - Predicting effectiveness of teachers in terms of value added (Rockoff et al., 2011)
 - Targeting of households at risk of poverty in developing countries (McBride and Nichols, 2015)
- How can Machine Learning (ML) help us with this task?

Introductio	n
0000	

Machine Learning for Policy Prediction

- ML methods can help us because they are suited for prediction:
 - A targeting rule has to work well **out-of-sample**, and ML models are trained and validated to this purpose
 - ML allows us to use data driven specifications
- But via prediction we may not obtain what we want
 - Predicting individuals at risk is not the same as predicting individuals with stronger effect (Ascarza, 2017; Athey, 2018)
 - We need to assess whether targeting-on-prediction increases effectiveness by exploiting the causal inference toolbox
 - Hence out-of-sample accuracy is not sufficient
 - We try to reconcile the two by combining ex-ante prediction and ex-post evaluation

- Our paper provides an application of ML targeting to a massive tax-rebate introduced in Italy in 2014
- We consider the hypothetical situation in which its only purpose was to increase consumption
- We set ourselves in an ex-ante situation in which theory and previous evidence suggests which group should be targeted to reach this purpose, but this group cannot be directly observed and needs to be predicted
- We use supervised ML methods to carry out this prediction and we check whether it would have improved the impact on consumption

(日)

The tax rebate

- In Spring 2014 the Italian Government introduced a large scale tax credit
- The tax rebate aimed at reshaping labor taxation and also aimed at providing a short-run boost to consumption
- It was channeled to employees with annual income between 8,145 and 26,000 euro
- 640 euro/year if income \leq 24,000 and declined to zero until the 26,000 threshold
- The total transfer was almost 7 billion euro in 2014 (0.4% of Italian GDP)

The target group

- The impact of a fiscal policy on consumption also depends on the heterogeneity of marginal propensity to consume (Jappelli and Pistaferri, 2014)
- Neri et al (2018) find that the tax rebate had an impact on consumption, but it was stronger for **consumption constrained** households
- In the Bank of Italy's Survey on Household Income and Wealth (SHIW) we have a (reasonably good) proxy of consumption constraints
- We look at **Needy** which is a dummy for the household reporting to make ends meet with at least some difficulty (needy = consumption constrained from now on)

Targeting with ML

- The policy-maker cannot obviously know who are the households with difficulties in making ends meet
- Our targeting exercise aims at identifying them, through the following steps:
 - We use the 2010 and 2012 SHIW to train and test a model for the needy (constrained) status on the basis of observed covariates
 - We predict this status on the 2014 wave and we assess whether the impact of the tax rebate was larger among predicted needy households
 - We show how much the predicted needy households overlap with actual recipients of the rebate

- We use the 2010 and 2012 SHIW waves to train a model to predict "needy" households on the basis of observable characteristics (income, demographic, etc) in a 2/3 randomly selected training sample
- We use a decision tree, because it allows more transparency (more on this later)
- We correctly predict 74.1% of observations in the 1/3 testing sample (somewhat similars to other methods but slightly worse)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Step 1 (cont.) Classification tree for needy households

Introduction 0000	Results 0000●00	Conclusions
Stop 2		

- We switch to 2014 and we predict the needy status
- We provide evidence about the effect of the tax rebate on consumption according to the predicted status, estimating:

$$c_i = \delta \mathsf{Rebate} \; \mathsf{amount}_i + \beta_{\mathbf{x}} \mathbf{x}_{\mathbf{i}} + \varepsilon_i$$
 (1)

$$E[\varepsilon_i | \text{Rebate amount}_i, \mathbf{x_i}] = 0, \qquad (2)$$

- Assuming selection on observables, δ recovers the impact of the rebate on consumption.
 - the tax rebate was automatically distributed to all eligible individuals, so no self-selection occurred
 - we observe a set of relevant variables related to the rebate that impact on consumption

Step 2 (cont.)

	Total consumption		Food consumption	
	Not_needy Needy		Not_needy	Needy
	(1)	(2)	(3)	(4)
Rebate amount	-0.527	0.710**	0.009	0.369***
	(0.563)	(0.315)	(0.184)	(0.111)
Controls	Y	Y	Y	Y
Ν	1146	2500	1146	2500
R^2	0.459	0.415	0.356	0.442

- We find evidence that the effect is indeed heterogeneous
- This ensures that our prediction satisfies our purposes

Introduction	Results	Conclusions
	000000	

We show how much the predicted needy households overlap with the actual tax rebate recipients

Step 3

		Predicted status (decision tree)			
		Not_needy	Needy	Total	Overlap (%)
	Not Recipient	715	1446	2161	33.0%
Tax rebate	Recipient	431	1054	1485	70.9%
	Total	1146	2500	3646	
	Overlapping (%)	62.4%	42.1%		48.5%

- The overlap (i.e. households that: (i) receive the rebate and are predicted to be constrained, and (ii) did not receive the rebate and are predicted to be non-constrained) is 48.5%
- 29.1% of the households that received the rebate are predicted not to be constrained

Introduction	Results	Conclusions
0000	000000	•00

Issues

- Omitted payoffs (Kleinberg et al, 2017)
 - A full evaluation of the proposed targeting also needs to consider the other targets of the policy
 - In terms of poverty, our targeting would reach poorer households; in terms of labor supply a full assessment requires a structural model to assess both the extensive and intensive margins (and the second earner's reaction)

• Prediction stability (Athey, 2018)

- We assessed whether the association between the variable used by the decision tree and the needy status is stable between 2010 and 2012
- The effectiveness check on 2014 also confirms stability

Issues (cont.)

- Manipulability (Athey, 2018)
 - Households may manipulate their variables to (ex-post) be part of the predicted constrained
 - Even the current rule is subject to manipulation, which is made more difficult in our targeting rule because more variables would have to be altered
- Transparency
 - We used decision tree as they provide a more transparent decision rule
 - This implies a loss in prediction accuracy with respect to more black-box models
 - Formal vs actual transparency: targeting via ML forces us to clearly indicate the purpose and assess whether the rule is fit for it

Introduction	Results	Conclusions
0000	0000000	00●
Conclusions		

- We discuss how to use ML algorithms on survey data to improve the targeting of a cash benefit
- Our approach shows that they can increase effectiveness, but we need to be careful in how we validate the model: prediction accuracy is not enough!
- One alternative is to work ex-post in a causal-inference framework and assess the heterogeneity of the effect (using ML), but this might be costly and have low external validity
- Our application is not the best to show the gains of ML, as we have few observed covariates (and a small dataset)
- We are currently working on the targeting of a public credit guarantee scheme

Out of sample performance (2010-12 testing dataset)

		Real Status		
		Not Needy	Needy	Total
	Par	nel A: LPM		
Predicted status	Not Needy	608	208	816
	Needy	447	1358	1805
	Total	1055	1566	2621
	% Correctly Predicted	57.6%	86.7%	75.0%
	Panel B: k-NN			
Predicted status	Not Needy	593	244	837
	Needy	462	1322	1784
	Total	1055	1566	2621
	% Correctly Predicted	56.2%	84.4%	73.0%
	Panel C: Decision tree			
Predicted status	Not Needy	608	232	840
	Needy	447	1334	1781
	Total	1055	1566	2621
	% Correctly Predicted	57.2%	85.1%	74.1%