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Intro

Does monetary stability requires a fiscal authority?

I Fiscal authority: who can impose transfers at will (6= capitalized)

I Monetary stability: money is used + price is uniq. determined

Existing literature (extreme redux):

I Sargent & Wallace (1981): it is a danger

I Obstelf & Rogoff (1983,2017): no need

I Sims (1994), Woodford (1995): must commit to surpluses

This paper:

I Essential active off-equilibrium role
I no fiscal surpluses along the equilibrium

I textbook Samuelson (1958)/Sims (2013) model of fiat money

I discretionary policy=f*(portfolio choice)
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1. Model



OLG Model: consumption-saving problem

I Discrete time: t ∈ {0, 1, ...}
I Overlapping generations of agents living for two periods.

I Representative agent born at time t maximizes:

Ut ≡ log Ct,y + log Ct+1,o

I subject to:

young : Ct,y +
Mt

Pt
+ St + Tt,y = W

old : Ct,o =
Mt−1

Pt
+ θSt−1 + Tt,o

where:
I individual endowment W , lump sum taxes/transfers Tt,y , Tt,o ;

I agents choose consumption C and composition of savings:

I either in real cash holdings M/P

I or in freely available storage S with a return θ < 1

I At date 0, M−1 = M̄.



OLG Model: the authority

At date-t, the authority’s objective is:

log Cy ,t + log Co,t + λ log Gt ,

Gt : government expenditures, and λ > 0. Its budget constraint is:

Tt,y +
Mg ,t−1

Pt
=

Mg ,t

Pt
+ Tt,o + Gt .

with Mg ,t + Mt = M̄.

A policy at time t is Pt ≡ (Tt,y ,Mg ,t ,Gt ,Tt,o).

As in Obstfeld-Rogoff (1983): the authority can be net buyer of money.

I In the FTPL: price set indirectly by agents affected by tax decisions.

I Still, fixing a redemption price does not imply agent trading money
I at the core of time-consistency
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2. Benchmark: No Policy



Optimal choices of agents

No policy benchmark: Pt = (0, 0, 0, 0).

Savings

Dt ≡ St +
Mt

Pt
=

W

2

for any expected return (property of log-utility)

ρt =
θSt + Mt/Pt+1

Dt

Portfolio allocation:

Mt

Pt
= Dt and St = 0 if Πt+1 <

1

θ
,

Mt

Pt
+ St = Dt if Πt+1 =

1

θ
,

St = Dt and
Mt

Pt
= 0 if Πt+1 >

1

θ
,

where Πt+1 ≡ Pt+1/Pt is the inflation rate from time t to time t + 1.



No policy leads to indeterminacy

1 10 20 30

0

0.2

0.4

0.6

0.8

1

S
t

time
1 10 20 30

0

0.2

0.4

0.6

0.8

1

M
t
/P

t

1 10 20 30
0.9

1

1.1

1.2
Π

t

pure monetary
asymptotic autarky
asymptotic autarky
pure autarky

Figure : Equilibria without policy intervention for θ = 0.9,W = 2 and M̄ = 1.



3. Optimal policy with fiscal power



Optimal policy with fiscal power

At any t, an optimal policy is a P∗t = (T ∗y ,t ,M
∗
g ,t ,G

∗
t , 0) that solves:

max
Pt ,Gt

{log Cy ,t + log Co,t+λ log Gt} ,

subject to

Ty ,t +
Mg ,t−1

Pt
=

Mg ,t

Pt
+Gt

taking into account agents’ decision process on consumption:

Cy ,t =
Mt

Pt
+ St =

W − Ty ,t

2

Co,t =
Mt−1

Pt
+ θSt−1

and market clearing conditions, with S0 = 0 and M0 ≤ M̄.

I WLoG: no transfers to old.



Optimal policy with fiscal power

We can rewrite the problem of the authority as

max
Pt ,Gt

log

(
W − Gt −

Mt−1

Pt
− St

)
︸ ︷︷ ︸

=Cy,t

+ log

(
Mt−1

Pt
+ θSt−1

)
︸ ︷︷ ︸

=Co,t

+ λ log Gt


whose solution is{

Gt = λCy ,t , Pt = (2+λ)Mt−1

W−(1+λ)θSt−1−St
with Cy ,t ≥ Co,t

Gt = λCy ,t , Pt →∞ otherwise.

The authority likes consumption equality → it fights inflation!

But inflation fixed by arbitrage → more storage is needed for the same
inflation rate → at same point it is unfeasible

If no private money demand → incentive to infinite deflation → autarky
is not an equilibrium
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Optimal policy with fiscal power compare
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Figure : Uniqueness with optimal policy for θ = 0.9,W = 2, M̄ = 1 and λ→ 0.



Monetary equilibrium

A single equilibrium:

(i) no inflation Πt = 1,

(ii) real value of money:

M̄

Pt
=

Mt

Pt
=

W

2 + λ
and St = 0,

(iii) no public open market interventions:

Ty ,t = Gt =
λ

2 + λ
W ,

for each t ≥ 1.

I 6= Fiscal theory of the price level:

I No surplus in equilibrium: Ty,t = Gt

I No money purchase in equilibrium: Mg,t = Mg,t−1

I Money = bubble → no-fundamental dividend
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4. Optimal policy without fiscal power



Optimal policy without fiscal power

At any t, an optimal policy is a P∗t = (T̄ ,M∗g ,t ,G
∗
t , 0) that solves:

max
Mg,t ,Gt

{log Cy ,t + log Co,t+λ log Gt} ,

subject to

T̄ +
Mg ,t−1

Pt
=

Mg ,t

Pt
+Gt

taking into account agents’ decision process on consumption:

Cy ,t =
Mt

Pt
+ St =

W − T̄

2
and Co,t =

Mt−1

Pt
+ θSt−1

and market clearing conditions, with S0 = 0 and M0 ≤ M̄.

I The authority has real endowment, but cannot raise taxes in
response to a change in private savings!
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Optimal policy without fiscal power

We can then rewrite the problem of the authority as

max
Pt

log
W − T̄

2
+ log

(
Mt−1

Pt
+ θSt−1

)
︸ ︷︷ ︸

=Co,t

+λ log

(
W + T̄

2
− Mt−1

Pt
− St

)
︸ ︷︷ ︸

=Gt


whose solution is{

Pt = 2(1+λ)Mt−1

W+T̄−2λθSt−1−2St
with λCo,t ≤ Gt

Pt →∞ otherwise.

The authority trades-off public and old’s cons. → it produces inflation!

But inflation fixed by arbitrage → less storage is needed for the same
inflation rate → at same money and storage can steadily coexist

If no private money demand → infinite inflation could be possible →
autarky can be an equilibrium



Optimal policy without fiscal power

We can then rewrite the problem of the authority as

max
Pt

log
W − T̄

2
+ log

(
Mt−1

Pt
+ θSt−1

)
︸ ︷︷ ︸

=Co,t

+λ log

(
W + T̄

2
− Mt−1

Pt
− St

)
︸ ︷︷ ︸

=Gt


whose solution is{

Pt = 2(1+λ)Mt−1

W+T̄−2λθSt−1−2St
with λCo,t ≤ Gt

Pt →∞ otherwise.

The authority trades-off public and old’s cons. → it produces inflation!

But inflation fixed by arbitrage → less storage is needed for the same
inflation rate → at same money and storage can steadily coexist

If no private money demand → infinite inflation could be possible →
autarky can be an equilibrium



Optimal policy without fiscal power

We can then rewrite the problem of the authority as

max
Pt

log
W − T̄

2
+ log

(
Mt−1

Pt
+ θSt−1

)
︸ ︷︷ ︸

=Co,t

+λ log

(
W + T̄

2
− Mt−1

Pt
− St

)
︸ ︷︷ ︸

=Gt


whose solution is{

Pt = 2(1+λ)Mt−1

W+T̄−2λθSt−1−2St
with λCo,t ≤ Gt

Pt →∞ otherwise.

The authority trades-off public and old’s cons. → it produces inflation!

But inflation fixed by arbitrage → less storage is needed for the same
inflation rate → at same money and storage can steadily coexist

If no private money demand → infinite inflation could be possible →
autarky can be an equilibrium



Optimal policy without fiscal power

We can then rewrite the problem of the authority as

max
Pt

log
W − T̄

2
+ log

(
Mt−1

Pt
+ θSt−1

)
︸ ︷︷ ︸

=Co,t

+λ log

(
W + T̄

2
− Mt−1

Pt
− St

)
︸ ︷︷ ︸

=Gt


whose solution is{

Pt = 2(1+λ)Mt−1

W+T̄−2λθSt−1−2St
with λCo,t ≤ Gt

Pt →∞ otherwise.

The authority trades-off public and old’s cons. → it produces inflation!

But inflation fixed by arbitrage → less storage is needed for the same
inflation rate → at same money and storage can steadily coexist

If no private money demand → infinite inflation could be possible →
autarky can be an equilibrium



Optimal policy without fiscal power compare
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Figure : Uniqueness with fixed taxes for θ = 0.9,W = 2, M̄ = 1 and λ = 0.05.



The monetary equilibrium?

I In this equilibrium:

Mt

Pt
=

M0

P∗
=

W − T̄

2
, for any t ≥ 1,

Πt = 1 + λ, for any t > 1,

St = 0, for any t > 1.

I 6= previous monetary equilibrium:

I Consumption not equalized across generation.

I Seigniorage in equilibrium.

I Exist only when 1 + λ ≤ θ−1.

Otherwise: storage strictly preferred to money.



Multiplicity without fiscal power
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Figure : Multiplicity: A=autarky, M/S=asymptotic storage, M=pure monetary



5. Conclusion



Conclusion

A new way to think about the uniqueness of the monetary equilibrium.

Monetary stability relies on the active but off-equilibrium role of an
authority with fiscal power.

Fiscal power is needed to let agents trust that money will not be used to
implicitly tax instead!



Thanks
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Figure : Equilibria without policy intervention for θ = 0.9,W = 2 and M̄ = 1.



Appendix: Fluctuations in Endowment



Optimal policy reaction

I What happens when stochstic increases in endowment makes
Πt = Wt/Wt+1 > θ−1?

I We build our solution on two elements:
I First, in a solution where St > 0 we have that

Πt =
Wt + θSt−1 − 3St

Wt+1 − θSt − St+1
= θ−1

I Second, whenever St = 0 instead imposes

Πt =
Wt + θSt−1

Wt+1 − St+1
< θ−1,

I Backward Implication: Suppose St > 0, St+1 = 0 and St+2 = 0.
Having Wt = W at all times implies St−1 > 0 which in turn implies
St−2 > 0 and so on.



Optimal policy reaction

Consider W1 = W + ε. The solution is a number n of periods of use of
storage such that

ST−n =
nθnε+

(
nθn − 1−θn

1−θ

)
W

(1 + n) θn
≥ 0 for n = T − 1

ST−n =
nθnθST−n−1 +

(
nθn − 1−θn

1−θ

)
W

(1 + n) θn
≥ 0 for 0 ≤ n ≤ T − 2

and

θST−1 <
1− θ
θ

W and ST = 0



Optimal policy reaction: w3 = 0.2, θ = 0.99
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Optimal policy reaction: w3 = 0.5, θ = 0.99
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Optimal policy reaction: w3 = 1, θ = 0.99
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Optimal policy reaction: w3 = 1, θ = 0.98

boom01098.pdf
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