

Confidence Cycles and Liquidity Hoarding

Volha Audzei ¹

Second Annual Workshop of the ESCB Research Cluster 1 on Monetary Economics Rome,

October 12, 2018

¹Czech National Bank and CERGE-EI, The views expressed herein are those of the authors and do not necessarily reflect the view of the Czech National Bank

Motivation

- Credit crunch and central banks unconventional policies
- Liquidity hoarding
- Change in sentiment
- No agreement about policy effects in the literature:
 - Curdia and Woodford (2011) and Taylor and Williams (2009): policies were not efficient or irrelevant
 - Del Negro et al. (2011) and Christensen et al. (2014), Gertler and Karadi (2011): policies helped avoid more severe recession

Paper Contribution

Q: How does the banks' confidence affect the transmission of unconventional monetary policies?

- A tractable DSGE model with the interbank market
- Imperfect information, the banks are:
 - learning about shock realization
 - observing heterogeneous signals: ex post heterogeneous beliefs.
- Liquidity hoarding
- Policy exercises:
 - liquidity provision, targeted liquidity provision, policy rate decline, collateral constraints relax

Structure of the Presentation

- Simple model of the interbank market
- Policy insights
- DSGE model
- Crisis simulations and policy effects

Banking Sector Overview

- Two types of assets:
- safe (reserves), pays R_t^{res}
- risky, pays R_{t+1}^k
- ullet Banks differ by their beliefs about risky asset return, $\hat{E}^i_t R^k_{t+1} \sim U$
- ullet Continuum of banks, indexed by i, lend to each other and invest into the real sector
- Banks are risk neutral: corner solutions.

Assets	Liabilities	
Risky Asset (Manufacturer claims)	Deposits	
Reserves	Interbank borrowing	
Interbank lending	Net worth	

Interbank Market

- I treat the bankers as the members of one family $N_t^i = N_t$, $D_t^i = D_t$.
- Borrowing is limited $L_t^i = \lambda_b * N_t$.
- Interbank lending is risky
- Probability that the loan will be repayed (lender's perspective): full repayment only:

$$p_t^i = Prob(\text{Return} > \text{Liabilities})$$

= $Prob\left(\hat{E}_t^i R_{t+1}^k (1 + \lambda_b) > R_t d_t + \lambda_b R_t^{ib}\right)$.

• Expected interbank market return $p_t^i R_t^{ib}$.

Bank Expectations and Investment Decisions

Some Policy Insights

Some Policy Insights

Some Policy Insights: IBM collapse

Some Policy Insights: IBM collapse

Takeaways from the Simple Model

- Interbank market allocations and interest rate depend on the moments of the beliefs distribution
- With very low average belief IBM collapses
- When the market beliefs are too low (IBM collapses):
 - Liquidity provision effect is conditional on market optimism
 - Effect of policy rate decline is limited
 - Collateral constraint relaxation has no effect

Model Overview

Banking Sector Overview

• Assumption 1:

$$R_t^k = \frac{(\alpha \frac{P_t Y_t}{K_t} + Q_t - \delta) \zeta_t}{Q_{t-1}}$$

• Assumption 2:

$$\zeta_t = \rho_{\zeta} \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t} \tag{1}$$

• μ_t is a persistent shock

$$\mu_t = \rho_\mu \mu_{t-1} + v_t$$

Structure of Beliefs

The capital quality shock

$$\zeta_t = \rho_{\zeta} \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t} \tag{2}$$

To forecast ζ_t every banker combines (using Kalman filter):

- past observations on ζ_t ,
- heterogeneous signal about μ_t .

$$\mu_t^i = \mu_t + \theta_t^i \tag{3}$$

Crisis and Policy Responses

- "Fundamental" shock: $\zeta_t = \rho_{\zeta} \zeta_{t-1} + \mu_t + \varepsilon_{\zeta,t}$
- Sentiment shock: $\hat{\mu}_t^i = \mu_t + \eta_t^i$
- Policy: $\nabla_t^p = \kappa^p \left(R_{t+1}^k R_t (\overline{Rk R}) \right)$
 - untargeted $\nabla_t^{unt}(\mathsf{Risky\ Asset} + \mathsf{Reserves})$
 - targeted: $\nabla_t^{targ}(\text{Risky Asset})$
 - interest rate $R_t^{res} \nabla_t^r$
- ullet Policy costs: $au
 abla^{unt}_t(\mathsf{Risky\ Asset} + \mathsf{Reserves})$ or $au
 abla^{targ}_t(\mathsf{Risky\ Asset})$

IRFs (5%) Fundamental Shock

- ullet agents overestimate crisis, ξ
- model results in a smaller drop in net wealth (diversification) data
- lending falls and IBM rate rises

Comparable Net Worth

- when controlling for net worth differences, there is a larger recession
- set of lenders declines

IRFs (5%) Combination of Shocks

- with sentiment shock, the recession is comparable to the baseline
- pure expectational shock generates a significant recession

Liquidity Provision vs Baseline

- $\bullet x^p x^{np}$
- when controlling for expectations, policy effects are less pronounced and delayed
- crowding out of private lending and deposits

Policy Effects with a Crisis Shock

Under targeted policy:

- smaller safe asset holdings
- smaller share of hoarders
- lower price of capital
- slightly larger drop
 in capital and output
 Low reserve rate worsens
 bank balance sheets

Conclusion

- The model of interbank market to capture counterparty risk and liquidity hoarding
- Investors' expectations are shown to generate long and large responses in model variables
- With low sentiment, policy effects are smaller and delayed
 - Liquidity provision effects are limited by banks sentiment
 - Low interest rate worsens bank's balance sheet
- The importance of other factors for liquidity hoarding is acknowledged

	Our Model	Baseline	Data
Output, Y	0.109	0.17	0.034
Consumption, C	0.222	0.28	0.041
Net Worth, N	0.783	1.54	0.817

For output we use GDP per capita, for consumption - final consumption per capita, for net worth - net financial assets of financial corporations. All data are from Eurostat and for the Euro area. The standard deviations are calculated for the log differences of the series back