The theory of unconventional monetary policy

R. Farmer P. Zabczyk

Discussion by Francesco Lippi

University of Sassari and EIEF

Banca d’Italia, October 2016
Overview

Setup explicit model where OMO have distributional effects

Objective: discuss “risk composition” of CB balance sheet

Key questions:

– do OMO matter (for allocations)?

– what about non-standard OMO (e.g. trading Bonds for Equity)?

– can CB policy improve welfare (i.e. complete markets)?

Bottomline: lots of food for tough in simple model highly pedagogical: explicit fiscal-monetary nexus, distributional effects (Wallace’s irrelevance, non-Ricardian effects)
Main ingredients of the theory

2 period model (flex prices, MIU), all vars in dollars:

- **heterogenous agents**: 2 workers and 1 entrepreneur

- **redistributive taxation** $T_1 = T_2 = T_3$, transfers $TR_1 = TR_2 = \frac{QB}{2}$, $TR_3 = 0$

- **segmented asset markets**: only workers (i=1,2) buy B and get $TR_i > 0$

- **incomplete asset markets** (NO AD securities)
Main ingredients of the theory

2 period model (flex prices, MIU), all vars in dollars:

- heterogenous agents: 2 workers and 1 entrepreneur

- redistributive taxation $T_1 = T_2 = T_3$, transfers $TR_1 = TR_2 = \frac{Q \cdot B}{2}$, $TR_3 = 0$

- segmented asset markets: only workers (i=1,2) buy B and get $TR_i > 0$

- incomplete asset markets (NO AD securities)

Note: workers’ nominal wealth \mathcal{W}_i

$$\mathcal{W}_i = w + \frac{TR_i}{Q} - T_i = (\text{use budg. const}) = w + \frac{B}{2} - \frac{B}{3} - \frac{rM}{3}$$

- nominal bonds are net wealth (no ricardian equivalence)
- monetary policy M sets seigniorage tax (rM) for given B
Proposition 1. Let \(\{M, B\} \geq 0 \) characterize monetary and fiscal policy, and let \(w > 0 \) satisfy the feasibility conditions,

\[
w \geq \frac{\mu_i B}{4(1+\lambda+\mu)-6\mu_i}, \quad i \in \{1,2\} \quad \text{and} \quad w \geq \frac{2-\mu+\lambda(2-3\alpha)B}{\mu+\alpha\lambda}.
\]

(23)

The equilibrium level of nominal wealth, the interest rate, the real wage and are given by,

\[
\mathcal{W} = \frac{6w+B}{2(1+\lambda+\mu)}, \quad r = \frac{\gamma}{M} \mathcal{W}, \quad \frac{w}{p} = \alpha \left(2-\frac{\mu\mathcal{W}}{w}\right)^{\alpha-1}.
\]

(24)

The equilibrium values of \(\{n_i,M_i\}_{i \in 1,2}, \{c_i\}_{i=1,2,3}, y, n \) are determined by equations (11) – (13) and (16) – (18) respectively. \(\square \)

3 equations (24) in 4 vars: \(\mathcal{W}, w, p, r \): (real) multiplicity if \(\alpha < 1 \), Homo-1

– real allocations indexed by e.g. \(w \) (nominal wage): 1-eq given \(B/w \)
Mechanism behind multiplicity

Proposition 1. Let \(\{M, B\} \geq 0 \) characterize monetary and fiscal policy, and let \(w > 0 \) satisfy the feasibility conditions,

\[
w \geq \frac{\mu_i B}{4 (1 + \lambda + \mu) - 6 \mu_i}, \quad i \in \{1, 2\} \quad \text{and} \quad w \geq \frac{2 - \mu + \lambda (2 - 3\alpha) B}{\mu + \alpha \lambda}.
\]

(23)

The equilibrium level of nominal wealth, the interest rate, the real wage and are given by,

\[
\mathcal{W} = \frac{6w + B}{2 (1 + \lambda + \mu)}, \quad r = \frac{\gamma \mathcal{W}}{M}, \quad \frac{w}{p} = \alpha \left(2 - \frac{\mu \mathcal{W}}{w}\right)^{\alpha^{-1}}.
\]

(24)

The equilibrium values of \(\{n_i, M_i\}_{i \in 1, 2}, \{c_i\}_{i = 1, 2, 3}, y, n \) are determined by equations (11) – (13) and (16) – (18) respectively. \(\square \)

3 equations (24) in 4 vars: \(\mathcal{W}, w, p, r \): (real) multiplicity if \(\alpha < 1 \), Homo-1

– real allocations indexed by e.g. \(w \) (nominal wage): 1-eq given \(B/w \)
– they assume \(\{w_L, w_H\} \), and build sunspot eq. on implied allocations
Mechanism behind multiplicity

Proposition 1. Let \(\{M, B\} \geq 0 \) characterize monetary and fiscal policy, and let \(w > 0 \) satisfy the feasibility conditions,

\[
w \geq \frac{\mu_i B}{4(1 + \lambda + \mu) - 6\mu_i}, \quad i \in \{1, 2\} \quad \text{and} \quad w \geq \frac{2 - \mu + \lambda(2 - 3\alpha) B}{\mu + \alpha\lambda}.
\]

The equilibrium level of nominal wealth, the interest rate, the real wage and are given by,

\[
W = \frac{6w + B}{2(1 + \lambda + \mu)}, \quad r = \frac{\gamma}{M} W, \quad \frac{w}{p} = \alpha \left(2 - \frac{\mu W}{w} \right)^{\alpha - 1}.
\]

The equilibrium values of \(\{n_i, M_i\}_{i \in 1, 2}, \{c_i\}_{i = 1, 2, 3} , y, n \) are determined by equations (11) – (13) and (16) – (18) respectively. □

3 equations (24) in 4 vars: \(W, w, p, r \): (real) multiplicity if \(\alpha < 1 \), Homo-1

– real allocations indexed by e.g. \(w \) (nominal wage): 1-eq given \(B/w \)
– they assume \(\{w_L, w_H\} \), and build sunspot eq. on implied allocations

– Note: if you fix \(B/w \) then no multiplicity, reminiscent of FTPL
Mechanism behind multiplicity

Proposition 1. Let \(\{M, B\} \geq 0 \) characterize monetary and fiscal policy, and let \(w > 0 \) satisfy the feasibility conditions,

\[
 w \geq \frac{\mu_i B}{4(1 + \lambda + \mu) - 6\mu_i}, \quad i \in \{1, 2\} \quad \text{and} \quad w \geq \frac{2 - \mu + \lambda(2 - 3\alpha) B}{\mu + \alpha \lambda}. \tag{23}
\]

The equilibrium level of nominal wealth, the interest rate, the real wage and are given by,

\[
 \mathcal{W} = \frac{6w + B}{2(1 + \lambda + \mu)}, \quad r = \frac{\gamma \mathcal{W}}{M}, \quad \frac{w}{p} = \alpha \left(2 - \frac{\mu \mathcal{W}}{w}\right)^{\alpha - 1}. \tag{24}
\]

The equilibrium values of \(\{n_i, M_i\}_{i=1,2}, \{c_i\}_{i=1,2,3}, y, n \) are determined by equations (11) – (13) and (16) – (18) respectively. \(\Box \)

3 equations (24) in 4 vars: \(\mathcal{W}, w, p, r \): (real) multiplicity if \(\alpha < 1 \), Homo-1

– real allocations indexed by e.g. \(w \) (nominal wage): 1-eq given \(B/w \)
– they assume \(\{w_L, w_H\} \), and build sunspot eq. on implied allocations

– **Note:** if you fix \(B/w \) then no multiplicity, reminiscent of FTPL
– alternatively: fixing \(r \) (small open ec. or economy with capital) would do
Channels for redistribution and OMO “relevance”

- targeted fiscal transfers TR_i redistribute from EE to workers
- OMO (increase $\theta = M/B$) redistributes towards EE: $T_3 = \frac{B-rM}{3} = B\frac{1-r\theta}{3}$
- notice “equivalence” between fiscal (T_i, B) and monetary policy (M)
Channels for redistribution and OMO “relevance”

- targeted fiscal transfers TR_i redistribute from EE to workers

- OMO (increase $\theta = M/B$) redistributes towards EE: $T_3 = \frac{B-rM}{3} = B^{\frac{1-r\theta}{3}}$

- notice “equivalence” between fiscal (T_i, B) and monetary policy (M)

- with CM (and full participation) consumption constant across states
Channels for redistribution and OMO “relevance”

- targeted fiscal transfers TR_i redistribute from EE to workers

- OMO (increase $\theta = M/B$) redistributes towards EE: $T_3 = \frac{B-rM}{3} = B^{1-r\theta}$

- notice “equivalence” between fiscal (T_i, B) and monetary policy (M)

- with CM (and full participation) consumption constant across states

- Prop. 8: monetary policy replicates CM with IM + segmented model.
 – technically: bonds and equity purchases by CB replicate CM payoffs
Some critical remarks

- Other explicit models make OMO non irrelevant (“The Theory...”?)
 - segmentation is enough: Traders vs Non-Traders
Some critical remarks

- Other explicit models make OMO non irrelevant (“The Theory...?”)
 – segmentation is enough: Traders vs Non-Traders

- venerable tradition, some great papers in this line:
 how you get liquidity effects via incomplete participation (segmentation)
 liquidity and output effects via segmentation, mostly impact effect, some have propagation
Some critical remarks (II)

- Other explicit models make OMO non irrelevant (“The Theory...”?)
 - segmentation is enough: Traders vs Non-Traders (e.g. Alvarez-Lucas)

- Not all ingredients are essential:
 - multiple equilibria not needed (alternatively: endowment shocks)
 - differential fiscal taxation ($T_1 > 0, T_3 = 0$) not needed
Some critical remarks (II)

- Other explicit models make OMO non irrelevant (“The Theory...”?)
 - segmentation is enough: Traders vs Non-Traders (e.g. Alvarez-Lucas)

- Not all ingredients are essential:
 - multiple equilibria not needed (alternatively: endowment shocks)
 - differential fiscal taxation ($T_1 > 0, T_3 = 0$) not needed

- lots of instruments in this economy (fiscal and monetary);
 - Note: unconventional policy is about providing social insurance

 Samuelson 54, Scheinkman-Weiss 86, Levine 91, Lippi-et al 15
Some critical remarks (II)

- Other explicit models make OMO non irrelevant ("The Theory...?")
 - segmentation is enough: Traders vs Non-Traders (e.g. Alvarez-Lucas)

- Not all ingredients are essential:
 - multiple equilibria not needed (alternatively: endowment shocks)
 - differential fiscal taxation ($T_1 > 0$, $T_3 = 0$) not needed

- lots of instruments in this economy (fiscal and monetary);
 - Note: unconventional policy is about providing social insurance
 Samuelson 54, Scheinkman-Weiss 86, Levine 91, Lippi-et al 15
 - unclear why the job should be done by fiscal or monetary
Some critical remarks (II)

- Other explicit models make OMO non irrelevant (“The Theory...”?)
 - segmentation is enough: Traders vs Non-Traders (e.g. Alvarez-Lucas)

- Not all ingredients are essential:
 - multiple equilibria not needed (alternatively: endowment shocks)
 - differential fiscal taxation ($T_1 > 0$, $T_3 = 0$) not needed

- lots of instruments in this economy (fiscal and monetary);
 - Note: unconventional policy is about providing social insurance
 Samuelson 54, Scheinkman-Weiss 86, Levine 91, Lippi-et al 15
 - unclear why the job should be done by fiscal or monetary

- nice talking about risk management equity vs bonds vs money but
 - (1) the theory behind such assets is very ad hoc: M not “essential” !
 - (2) would agents replicate CB policy by themselves if we let them?