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The stripped down model: preview

I We have news and noise

I News shocks.

Fundamental: at = at−1 + εt−1

Agents know εt → Agents’ decisions depend on εt.

I What if agents (and econometrician) face a signal extraction
problem?

Signal: st = εt + vt

I Consumption: ct = lim
j→∞

E(at+j |It)

I What happens if one tries to identify shocks εt and vt?
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In this paper

Two contributions:

I New VAR approach: identify economic shocks in a situation
where agents can only observe a noisy signal.

I Investigate the role of noise (vt) and news (εt) as sources of
business cycle fluctuations.

Main results:

1. Noise (vt) and news (εt) together explain more than half of the
fluctuations of GDP, consumption and investment.

2. One third of fluctuations is due to noise (vt) shocks.
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Motivation (1/2)

Renewed interest in the idea (Pigou, 1927) that news about future
changes in fundamentals can generate business cycles through changes
in expectations.

I Many papers assume perfect information (Beaudry and Portier,
2006): agents observe εt (but maybe not the econometrician...).

I Economic fluctuations are generated by expected changes in
future economic conditions which always materialize.
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I In a VAR, the innovation et is function of present and past Y :

et = Yt − proj(Yt|Yt−1, Yt−2, ...)

I If agents do not observe the shocks, current and past realizations
of the data cannot provide enough information to estimate the
shocks (non-fundamentalness). (More)

I Structural shocks εt do not “contemporaneously live” in the
agents’ innovations:

εt 6= Ket

I Implication: standard VAR analysis will fail.
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I Fundamental:
at = at−1 + εt−1,

where εt is white noise.

I Agents observe a noisy signal:

st = εt + vt

vt, the noise shock, is a white noise, uncorrelated with εt.

I Agents’ information set: It = span(at−k, st−k, k ≥ 0).

I Consumption is set on the basis of expected long-run
fundamentals

ct = lim
j→∞

E(at+j |It)
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A simple model (2/3)

Given the process for at:

E(at+j |It) = at + E(εt|It) = at + γst

where E(εt|It) = γst is the projection of εt on st (γ = σ2
ε/σ

2
s).

Consumption:
ct = at + γ(εt + vt)

Change in consumption:

∆ct = ∆at + γ∆st

= γεt + (1− γ)εt−1 + γvt − γvt−1
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A simple model (3/3)

∆ct = ∆at + γ∆st = γεt + (1− γ)εt−1 + γvt − γvt−1

Remarks:

I Noise vt can generate temporary fluctuations in consumption.

I Business cycles can be driven by expected changes in
fundamentals which never materialize.
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The failure of standard structural VAR methods

Interesting econometric implications. Model solution is:

(
∆at
st

)
=

(
L 0
1 1

)(
εt
vt

)

The polynomial matrix has rank = 1 when L = 0.

⇒ the MA is non-invertible

⇒ A VAR representation in the structural shocks does not exist
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What does a VAR do?

Rewrite the structural representation:(
∆at
st

)
=

(
L 0
1 1

)(
εt
vt

)
as the Wold representation (estimated with VAR):(

∆at
st

)
=

(
1 Lσ2

ε/σ
2
s

0 1

)(
ut
st

)
where: (

ut
st

)
=

(
L
σ2
v

σ2
s
−Lσ

2
ε

σ2
s

1 1

)(
εt
vt

)
,

The innovations (ut st)
′ are combinations of present and past values

of the structural shocks (recall: εt 6= Ket).
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I Estimate directly the model with the Kalman filter as in BLLH
or BS.

I Problem: tight restrictions.

I BLLH and BS find opposite results. (BLLH and BS)
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The structural shocks can be obtained as a combination of future and
present values of the fundamental innovations.

Intuition: at time t+ 1 agents look back and understand whether it
was noise or news at time t.
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Econometric model (2/3)

The fundamental representation is(
∆at
st

)
=

(
c(L)
b(L)

c(L)σ2
ε

σ2
s

0 1

)(
ut
st

)
,

where (
ut
st

)
=

(
b(L)

σ2
v

σ2
s
−b(L)

σ2
ε

σ2
s

1 1

)(
εt
vt

)
and the Blaschke factor:

b(L) =

n∏
j=1

L− rj
1− r̄jL

where rj , j = 1, . . . , n, are the roots of c(L) which are smaller than
one in modulus and r̄j is the complex conjugate of rj .



Econometric model (3/3)

Assume that the signal is not observable to the econometrician. There
is an observable variable, zt, which reveals the signal:

zt = d(L)ut + f(L)st

Therefore,(
∆at
zt
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Dynamic identification

1. Estimate an unrestricted VAR for ∆at and zt and identify with a
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Empirical specification

VAR model for:

I at: log of US per-capita potential GDP from the CBO.

I zt, the variable that reveals the signal st: expected business
conditions within the next 12 months (Michigan Consumer
Survey).

I Add log real per-capita GDP, consumption, and investment.

(Multivariate model)
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IRF: news (real) εt - noise vt (1/2)



IRF: news (real) εt - noise vt (2/2)



Variance decomposition

Variable Horizon
Impact 1-Year 2-Years 4-Years 10-Years

News (Real) εt
Potential 0.0 87.4 87.6 81.4 63.1
Sentiment 16.3 15.1 21.2 23.3 21.2

GDP 1.4 15.7 22.2 39.3 44.3
CONS 1.0 18.7 23.9 41.6 48.9
INV 1.3 3.3 4.6 11.8 18.5

Noise vt
Potential 0.0 4.6 2.1 3.1 1.1
Sentiment 83.7 75.1 63.0 51.1 47.1

GDP 7.3 24.6 40.0 33.5 16.2
CONS 5.5 19.3 32.4 29.6 13.1
INV 6.5 33.5 45.0 39.3 29.0

News (Real) + Noise
Potential 0.0 92.0 89.7 84.5 64.1
Sentiment 100.0 90.2 84.2 74.4 68.3

GDP 8.7 40.2 62.2 72.8 60.4
CONS 6.5 38.0 56.3 71.2 62.0
INV 7.8 36.8 49.7 51.1 47.5

Learning ut
Potential 100.0 91.5 78.8 62.6 49.6
Sentiment 0.1 1.5 5.0 8.1 8.8

GDP 6.4 3.4 4.7 16.3 29.0
CONS 15.3 6.5 7.0 17.7 32.3
INV 0.5 0.9 0.7 4.0 12.3

Signal st
Potential 0.0 2.9 12.5 23.0 15.2
Sentiment 99.9 88.9 79.4 65.6 59.4

GDP 8.2 37.2 58.1 57.2 31.7
CONS 5.5 32.3 50.2 54.3 30.0
INV 7.7 36.1 49.0 47.5 35.3



Historical decomposition of GDP

Top: GDP y-to-y growth rate (solid); noise (dashed)

Bottom: Business cycle GDP y-to-y growth rate (solid); noise (dashed)



A companion paper: Noise Bubbles

I Price equation: pt = k
1−ρ + 1−ρ

ρ

∑∞
j=1 ρ

jEtdt+j
I dt: (log) dividends.
I pt: (log) prices.

I Dividends process: dt = dt−1 + at−1

I at: real (news) shock.

I Signal: st = at + et
I et: “noise” shock.

I Price equation solution: pt = k
1−ρ + dt + Etat

I Price growth solution: ∆pt =
σ2
a

σ2
s

(
at +

σ2
e

σ2
a
at−1

)
+

σ2
a

σ2
s

(et − et−1)



Impulse response functions



Historical decomposition of S&P500

Dashed: S&P500 - Solid: noise comp. - Dotted: S&P500-noise



Conclusions

1. Expectations of future changes in economic fundamentals, which
in part do not eventually materialize should be considered a
major source of business cycle fluctuations.

2. VAR can be successfully employed under the assumption of
imperfect information.

3. Quite general identification procedure. Requirement: a variable
clean of noise.

4. Companion paper on stock prices. We show noise can generate
stock prices fluctuations independent on economic fundamentals.
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Fundamentalness (1/2)

a) Econometrician and agents have the same information but they cannot
uncover shocks (as in this paper).

(Back)



Fundamentalness (2/2)
b) Econometrician has less info than agents: more info might help.

Forni, Gambetti, Sala (2013): Lucas tree model. TFP:

at = at−1 + εt−2 + ηt,

Agents maximize Et
∑∞
t=0 β

tct, observe εt and ηt at time t.

The equilibrium value for asset prices is:

pt =

∞∑
j=1

βjEtat+j

The structural MA:(
∆at
∆pt

)
=

(
L2 1

β2

1−β + βL β
1−β

)(
εt
ηt

)
det(.) = 0 for L = 1 and L = −β. As |β| < 1, the shocks ηt and εt are
non-fundamental for the variables ∆pt and ∆at.

The econometrician observing productivity and stock prices cannot recover
εt by estimating a VAR on ∆at and ∆pt.
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Blanchard, Lorenzoni and L’Huillier

Fundamental driven by 2 components, transitory and temporary:

at = xt + zt

∆xt = ρ∆xt−1 + εt

zt = ρzt−1 + ηt

st = xt + vt

The structural non-fundamental representation:

(
∆at
st

)
=

(
(1− ρL)−1 0 (1− L)(1− ρL)−1

1 1 0

)εtvt
ηt


2 variables, 3 shocks: no way to recover 3 shocks with 2 variables!

(Back)



Barsky and Sims

Fundamental driven by 2 components:

at = at−1 + gt−1 + εa,t

gt = (1− ρ)g∗ + ρgt−1 + εga,t

st = gt + εs,t

Again, 2 variables (at and st), 3 shocks: no way to recover 3 shocks
with 2 variables!

(Back)



Multivariate specification

∆at = c(L)εt + g(L)et,

The innovation representations is∆at
zt

∆wt

 =

 c(L)σu

b(L)
c(L)σ2

ε

σs
g(L)

d(L)σu f(L)σs p(L)
q(L) h(L) m(L)


ut/σust/σs

et


where g(0) = p(0) = 0 and c(0) = 0.

From fundamental to structural (non-fundamental) shocks:ut/σust/σs
et

 =

 b(L)σv

σs
− b(L)σε

σs
0′

σε

σs

σv

σs
0′

0 0 I

εt/σεvt/σv
et



(Back)



Testing for fundamentalness

A VAR is fundamental if the shocks are orthogonal to past
information (econometrician fundamentalness)

VAR for 5 variables above is fundamental.

Signal (st) and learning (ut) shocks are orthogonal to past
information (summarized in PC)



Testing for fundamentalness

A VAR is fundamental if the shocks are orthogonal to past
information (econometrician fundamentalness)

VAR for 5 variables above is fundamental.

Signal (st) and learning (ut) shocks are orthogonal to past
information (summarized in PC)



Testing for fundamentalness

A VAR is fundamental if the shocks are orthogonal to past
information (econometrician fundamentalness)

VAR for 5 variables above is fundamental.

Signal (st) and learning (ut) shocks are orthogonal to past
information (summarized in PC)



On impact,

Identification 1:∆at
zt

∆wt

 =

k · c(0) 0 0
X X 0
X X X

εt/σεvt/σv
et



Identification 2:∆wt
∆at
zt

 =

X 0 0
X k · c(0) 0
X X X

 et
εt/σε
vt/σv



(Back)



IRF: learning ut - signal st (1/2)



IRF: learning ut - signal st (2/2)



IRF: zt ordered last



IRF: zt ordered last



IRF: 3 leading variables



Historical decomposition of GDP (with S&P500)



Historical decomposition of GDP (with leading
indicator)


