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Introduction

Introduction

Recent financial disasters emphasised the need to investigate the
consequences associated with the extreme tail co–movements among
institutions.

During the last years particular attention has been devoted to
measure and quantify the level of financial risk within a firm or
investment portfolio.

One of the most diffuse risk measurement has become the
Value-at-Risk (VaR).

The VaR is an important capital evaluation tool where different
institutions are considered as independent entities.

Unfortunately, such risk measure fails to consider the institution as
part of a system which might itself experience instability and
spread new sources of systemic risk.
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Introduction

Systemic risk literature

During financial crises, episodes of contemporaneous distress of many
institutions are not rare and thus need to be taken into account in order to
analyse the overall health level of a financial system.

For this reason different systemic risk measures have been proposed in
literature to analyse the tail-risk interdependence

1. Acharya et al. (2010, 2012), Banulescu and Dumitrescu (2012), Adams et
al. (2010), Brownlees and Engle (2012).

2. Acharya and Richardson (2009), Tarashev et al. (2002), Huang et al.
(2012).

⇒ (Interesting): Billio et al. (2013) and Ahelegbey and Giudici (2014).

⇒ (Extensions): Bernardi, Maruotti and Petrella (2013), Bernardi and
Petrella (2014), Bernardi, Durante and Petrella (2014) and Bernardi,
Durante, Jaworski and Petrella (2014).

Adrian and Brunnermeier (2011) propose the CoVaR, defined as the overall
VaR of an institution conditional on another institution being under distress.
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Introduction

Goals

1. We propose to estimate VaR and CoVaR using Bayesian quantile
regression approach.

2. We extend the Adrian and Brunnermeier (2011) CoVaR approach
to account for the dynamics of the tails behaviour. The idea is to
consider time varying quantiles to link the future tail behaviour of a
time series to its past movements.

3. We analyse different U.S. companies belonging to several sectors of
the Standard and Poor’s Composite Index (S&P500) in order to
evaluate the marginal contribution to the overall systemic risk of a
single institution belonging to it.
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CoVaR Definition

CoVaR Definition

Let Yk and Yj be two different institutions’ returns and X a set of
exogenous covariates, CoVaRx,τ

k|j is the Value-at-Risk of institution k
conditional on institution j being at its τ–VaR level, i.e. Yj = VaRx,τ

j

P(Yk ≤ CoVaRx,τ
k|j | X = x,Yj = VaRx,τ

j ) = τ. (1)

The CoVaR not only capture the systematic risk embedded in each
institution, but also reflects individual contribution to the systemic risk,
capturing extreme tail risk dependency.
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CoVaR Definition

CoVaR estimation

There are many possible ways to infer on VaR and CoVaR. The most
common approaches to estimate VaR is the variance–covariance
methodology, historical and Monte Carlo simulations. For an overview of
alternative parametric and nonparametric methodologies and processes
to generate VaR estimates see Jorion (2006) and Lee and Su (2012).

Recently, Chao et al. (2012) and Taylor (2008) suggest to estimate VaR
using quantile regression.

Since both VaR and CoVaR are distribution quantiles we address the
problem of their estimation using a quantile regression approach.

VaRx,τ
j = θτj,0 + θτj,1x1 + θτj,2x2 + . . .+ θτj,MxM

CoVaRx,τ
k|j = θτk,0 + θτk,1x1 + θτk,2x2 + . . .+ θτk,MxM + βτVaRx,τ

j .
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Static CoVaR

Time invariant CoVaR model

To estimate VaRx,τ
j and CoVaRx,τ

k|j we follow a quantile regression
approach:

yj,t = xT
t θj + εj,t (2)

yk,t = xT
t θk + βyj,t + εk,t , (3)

where β, θj and θk are unknown parameters and εj,t ∼ AL(τ, 0, σj)
εj,k ∼ AL(τ, 0, σk) are independent Asymmetric Laplace distributions.

Due to the property of AL distributions, the functions xTθj and
xTθk + βyj correspond to the τ -th quantiles of Yj | X = x and
Yk | {X = x,Yj = yj}, respectively.
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Static CoVaR

Prior distributions

In the static regression framework we impose the following structure of
conjugate proper priors on the parameters γ = (θ, β, σj , σk)

π (γ) = π (θ)π (β)π (σj)π (σk) , (4)

where a Gaussian distribution is chosen for the regression parameters θ
and β, and Inverse Gamma distributions are imposed on the nuisance
parameters (σj , σk), (see e.g. Lum and Gelfand, 2012):

θ = (θj ,θk)T ∼ N(2M+2)
(
θ0,Σ0

)
(5)

β ∼ N
(
β0, σ2

β

)
(6)

σj ∼ IG
(
a0

j , b0
j

)
(7)

σk ∼ IG
(
a0

k , b0
k

)
, (8)

and M is the number of covariates.
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Static CoVaR

The Gibbs sampler

To make inference we exploit the representation of Asymmetric Laplace
distributions as a location-scale mixture of Normals.

Definition
Let εl ∼ ALD (τ, 0, σl), for l ∈ {j, k}, then

εl = λWl + δ
√
σlWlZl , (9)

where Wl ∼ E
(
σ−1) and Zl ∼ N (0, 1), for l ∈ {j, k}, are independent

random variables and E(·) denotes the Exponential distribution and

λ = 1− 2τ
τ (1− τ) , δ = 2

τ (1− τ) , (10)

in order to ensure that the τ−th quantile of ε is equal to zero.
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Static CoVaR

The Gibbs Sampler, cont’d

The Partially collapsed Gibbs Sampler (see Liu, 1994; Van Dyk and
Park, 2008 and Park and Van Dyk, 2009) consists of the following steps

1. π (σl | yl ,x,θl), l ∈ {j, k}, (collapsed step)
2. π

(
ω−1

j,t | yj,t ,xt ,θj , σj
)
, ∀t = 1, . . . ,T

3. π
(
ω−1

k,t | yt ,xt ,θk , β, σk
)
, ∀t = 1, . . . ,T ,

4. π (θj | yj ,x,ωj , σj),

5. π
(
(θk , β)T | y,x,ωk , σk

)
.

In this way we generate a Markov chain converging to the desired joint
posterior distribution π (θj , ) which corresponds to the blocked Gibbs
algorithm described in Park and Van Dyk (2009). This is because
combining steps 1., 2. and 3. above produces draws from the conditional
posterior distribution of (ωl,1, ωl,2, . . . , ωl,T , σl), for l ∈ {j, k}.
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Dynamic CoVaR

Dynamic extension

When modelling time varying quantiles, it is important to link future
tail behaviours of time series to their past movements.

We model both VaR and CoVaR as a function of latent variables having
their own time dynamics.

The observed vector (yj,t , yk,t), is a function of independent latent
processes (µj,t , µk,t), the regressor terms (θj ,θk), and the loading factor
βt :

yj,t = µj,t + xT
t θj + εj,t

yk,t = µk,t + xT
t θk + βtyj,t + εk,t .
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Dynamic CoVaR

Latent factors dynamics

The dynamics of the unobserved factors µj,t and µk,t are

µl,t+1 = µl,t + µ∗l,t + ηl,t (11)
µ∗l,t+1 = µ∗l,t + η∗l,t , (12)

for l = j, k, where (ηl,t , η
∗
l,t)T ∼ N2(0, Sl) and Sl = s2

l V.

This dynamic specification allows for a certain degree of smoothness of
the quantile process.
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Dynamic CoVaR

Latent factors dynamics, cont’d

Since one of our main focuses is to analyse the dynamic tail
co-movement of two institutions, we allow the loading parameter βt to
change over time:

βt+1 = βt + β∗t + ηβ,t (13)
β∗t+1 = β∗t + η∗β,t , (14)

where (ηβ,t , η∗β,t)T ∼ N2(0, s2
βV).
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Dynamic CoVaR

Inference

Equations (11)-(14) can be written using a non-Gaussian State Space
representation

yt = Ztξt + xT
t θ + εt (15)

ξt+1 = Aξt + ηt (16)
ξ1 ∼ N (0, κ16) (17)

where

Zt =
(

1 0 0 0 0 0
0 0 1 0 yj,t 0

)
is the matrix of loading factors

A is a block diagonal matrix

ξt =
(
µj,t , µ

∗
j,t , µk,t , µ

∗
k,t , βt , β

∗
t

)T
is the vector of latent states

θ = (θj ,θk) is a (M × 2) matrix of time invariant coefficients

ηt =
(
ηj,t , η

∗
j,t , ηk,t , η

∗
k,t , ηβ,t , η

∗
β,t

)T
∼ N6 (0,Ω).
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Dynamic CoVaR

Gaussian State Space representation

Exploiting the location–scale mixture representation of the AL
distribution, the linear non-Gaussian State Space model in (15)-(17)
admits the following conditionally Gaussian representation:

yt = ct + Ztξt + xT
t θ + Gtνt , νt ∼ N2 (0,12) (18)

ξt+1 = Aξt + ηt , ηt ∼ N (0,Ω) (19)
ξ1 ∼ N (0, κ16) (20)

where the time–varying vector ct , and matrix Gt are respectively

ct = λ [ωj,t , ωk,t ]T (21)

Gt = δ

[ √
σjωj,t 0
0 √

σkωk,t

]
(22)

and ωj,t and ωk,t are independent with ωl,t ∼ E
(
σ−1

l

)
for l ∈ (j, k) and

σl > 0; λ and δ are defined in equation (10).
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Dynamic CoVaR

Prior distributions

The same prior structures as in the static framework are imposed on
regression and nuisance parameters (θ, σj , σk), while the scale of the
unobserved components have independent Inverse Gamma disturbutions

s2
j ∼ IG

(
r0

j , v0
j

)
(23)

s2
k ∼ IG

(
r0

k , v0
k

)
(24)

s2
β ∼ IG

(
r0
β , v0

β

)
(25)

where the hyper parameters r0
l , v0

l should be carefully selected because
they are related with the prior signal-to-noise ratio.
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Dynamic CoVaR

The Gibbs Sampler

The resulting Gaussian State Space model (18)–(20) combined with
conjugate priors on the unknown parameters allow to implement the
following Gibbs sampling algorithm:

1. π
(
s2
l | yl , ξ

l
t

)
, l ∈ {j, k},

2. π
(
σl | yl , ξ

l
t ,θl

)
, l ∈ {j, k}, (collapsed step)

3. π
(
ω−1

j,t | yj,t ,xt ,θj , σj , µj,t
)
, ∀t = 1, . . . ,T

4. π
(
ω−1

k,t | yt ,xt ,θk , βt , σk , µk,t
)
, ∀t = 1, . . . ,T ,

5. π (θj | yj ,x,ωj , σj ,µj),
6. π (θk | y,x,ωk , σk ,µk),
7. π

(
ξt , βt | y,x,θj ,θk , σj , σk ,ωj ,ωk , s2

j , s2
k

)
.
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Dynamic CoVaR

Quantile point estimates

In order to make posterior inference we use the Maximum a Posteriori
(MaP) summarising criteria.

When dealing with dynamic quantiles it is important to prove that the
resulting quantile estimates are properly defined in terms of the
conditional or unconditional distributions of observables.

We prove that the estimated sample quantiles (at MaP) have the
appropriate number of observations above and below, so that they are
unconditional quantiles.
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Dynamic CoVaR

Proposition

For the state space model defined in equations (11)–(14) with the prior
distributions specified in equations (5)–(8) and (23)–(25), κ large
enough and a diffuse prior on θ, the MaP quantile estimates
µMaP

j,t + xT
t θ

MaP
j and µMaP

k,t + xT
t θ

MaP
k + yj,tβ

MaP
t satisfy

∑
t /∈C

(xm,t + 1)χτ
(
yj,t −

(
µMaP

j,t + xT
t θ

MaP
j

))
= 0

∑
t /∈C

(yj,t + xm,t + 1)χτ
(
yk,t −

(
µMaP

k,t + xT
t θ

MaP
k + yj,tβ

MaP
t

))
= 0,

∀m ∈ {1, . . . ,M}, where C ⊂ {1, . . . ,T} is the set of all points such
that the MaP quantile estimate coincides with observations and

χτ : z →
{
τ − 1 if z < 0
τ if z > 0.
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Empirical Application

Empirical application

The empirical application analyses tail co-movements between an
individual institution j and the whole system k it belongs to (systemic
risk).

We consider the S&P500 Composite Index (k) for the U.S market where
different sectors (j) are included. The sample period is January 2, 2004 –
December 28, 2012.

To control for the general economic conditions we use observations of
macroeconomic regressors: VIX index, weekly change of 3–month
Treasury Bill rate, short term liquidity spread, the change in the slope of
the yield curve, the change in the credit spread, DJ US Real Estate Index.

To account for the individual firms’ characteristics, we include
observations from the following microeconomic regressors: leverage, the
market to book value, size, the maturity mismatch.
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Empirical Application

Empirical Application, cont’d

For all the reported institutions the βt ’s parameters are positive and
significantly different from zero.
By comparing HPD95% for the βt parameters, it is evident that the
systemic risk contribution is significantly different across institutions
belonging to different sectors.
On average the systemic βt has lower value for institutions belonging to
the financial sector and is higher for institutions belonging to consumer
and energy sectors.
This evidence gives the idea of existence of sectors having different
sensitivity to the risk exposure.
Comparing the βts for two different values of τ , we observe that on
average higher values of the parameter tend to be associated with
smaller values of the confidence level τ , meaning that the co-movement
between asset and market becomes stronger for extreme returns.
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Empirical Application
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Conclusion

Conclusion

In this paper we address the problem of estimating the CoVaR in a
Bayesian framework using quantile regression.

We first consider a time-invariant model allowing for interactions only
among contemporaneous variables.

The model is subsequently extended in a time-varying framework where
the constant and the loading parameter β are modelled as unobserved
processes having their own dynamics.

The dynamic model shows high flexibility, providing risk measures that
promptly react to the economic and financial downturns.

This is the first attempt to implement a Bayesian inference for the
CoVaR.
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